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INTRODUCTION
The primary goal of engineering design 
is to balance safety and economy. The 
simplest approach to avoid failure is to 
overcompensate for the expected load-
ing conditions by means of safety factors 
(load and material factors), usually at the 
expense of economy.

Safety factors can be intuitively under-
stood to decrease the probability of failure 
of a design, as it accounts for reasonable 
variation in applied loads and member 
resistance values. The statistical inter-
pretation of safety factors was formalised 
with the development of mathematical 
statistics, which enabled the development 
of the theory for structural reliability 
(Freudenthal 1947; Freudenthal & Gumbel 
1953; Pugsley 1955).

It is customary to quantify structural 
reliability via the reliability index β, which 
expresses the separation between expected 
failure and the mean loading and resistance 
conditions in units of standard deviations. 
β is associated with the failure probability 
within a given reference period via the 
standard normal distribution as (Rackwitz 
& Fiessler 1978):

β = √2 erf–1(1 – 2pf)� (1)

where pf  is the probability of failure of 
the member in its design life, and erf(·) is 
the error function (e.g. McQuarrie 2003). 

For small pf  a member’s expected lifespan 
will far exceed the design lifetime, and 
the probability of failure can be taken as 
constant during the design life.

Calibration studies that aim to deter-
mine partial factors of safety from a 
statistical basis (Milford 1988; Holický et 
al 2010) indicate that the long-standing 
empirical range of factors used in permis-
sible stress design correspond to β values in 
the range of 3 to 5.

As part of an effort to establish a 
robust reliability basis for structural 
design, the Joint Committee on Structural 
Safety (JCSS 2008) considered the tradeoff 
between the cost of a safety measure and 
the risk associated with fatalities due to 
structural failure. Based on this analysis, 
ISO 2394:2014 provides 50-year reference 
period target structural reliability values 
ranging between β = 2.0 and 3.8, for 
structural classes depending on the cost 
of safety and the consequences of failure. 
Many modern limit-states design stan-
dards for loads acting on structures use 
target β that comply with this range. In 
particular, SANS 10160:2011 uses β = 3.0 
(Retief & Dunaiski 2010, also assuming a 
50-year reference period). For consistency 
with these values, 50-year reference 
periods will be assumed throughout 
this study.

Material-focused design codes (e.g. 
SANS 10162:2011 and SANS 10100:2000) 
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all focus on failure of individual members, 
specifying partial factors calibrated to 
target reliability values that depend on 
the dominant mode of failure. Milford 
(1988) recommends that, for South African 
materials codes, β = 3.0 be used for ductile 
failure modes, β = 4.0 for brittle modes and 
β = 4.5 for connections.

However, these factors do not take the 
location of a member in the structure into 
consideration. Almost all structures have 
members of greater and lesser importance; 
determinate structures being an exception. 
Yet, when designed according to current 
building standards, all members will tend 
to have a similar target reliability level, 
so that some members may be under- or 
over-designed from the perspective of risk. 
If the relative importance of members in a 
structure in the context of reducing overall 
risk exposure is taken into account, the 
appropriate adjustment of the design value 
for member resistance capacity needs to 
be investigated.

This work explores the tradeoff between 
safety cost and failure risk in determin-
ing the member reliability that is most 
favourable in terms of the total expected 
benefit over the lifetime of the structure. It 
develops the theory that considers optimal 
adjusted reliability for each member in a 
structure taking risk into account. The 
theory is then applied to two types of 
structures: determinate structures in which 
failure of one member implies failure of 
all, and hierarchical structures where 
the consequences of member failure vary 
with position.

THEORETICAL DEVELOPMENT

Expected benefit
Consider a structure with a design life 
of τ years. The structure consists of N 
members, grouped into n member types. 
Members of a given type have identical 
design specification, reliability, cost, and 
liability payable upon failure. Member 
dependence is specified via the N × N 
matrix Γ, in which entry Γij  is 1 if member 
i supports member j, and 0 otherwise. For 
a determinate structure, all entries of Γ 
will be 1; a structure with a high degree of 
redundancy will have a sparse Γ.

The total expected benefit Ψ derived 
from the use of the structure over the 
course of its design life is given by:

Ψ = I – C – R� (2)

where I is the total revenue generated from 
the structure over its lifetime, C is the cost 
of construction and commissioning, and R 
is the risk due to failure of any part of the 
structure. Risk, defined as the probability 
of an event times the potential loss result-
ing from it, accounts for both the magni-
tude and the likelihood of payable damages.

Member i costs ci  to construct, so that 
the total cost of the structure C can be 
taken as:

C = 
N
Σ
i

ci� (3)

Secondary factors, such as maintenance 
cost, construction time and deprecia-
tion can be taken into account. However, 
they are ignored here to keep the 
theory tractable.

In the event of failure of member i, a 
set of dependent members will be affected, 
described by matrix Γ. Liability di will be 
payable by the owner of the structure, and 
the failed member together with all depen-
dent members will have to be replaced. The 
total cost of the failure would then be:

Cfi = di + 
N
Σ
i

Γij cj� (4)

Members are assumed to have been 
designed to meet a minimum target reli-
ability β0, for example by adhering to the 
specifications set out in SANS 10100:2000, 
SANS 10162:2011 and SANS 10160:2011. 
This implies a failure probability for 

member i of pfi within the design life of the 
structure. The total risk over the lifetime of 
the structure is then:

R = 
N
Σ
i

pfi cfi = 
N
Σ
i

pfi  di + 
N
Σ

j
Γij cj � (5)

Member reliability adjustment
The characteristic internal force Fk and 
resistance Gk values used in the design of 
a member reflect conservative upper and 
lower bounds on these design parameters, 
respectively. For simplicity, F and G are 
assumed to be normally distributed with 
means F  and G , and coefficients of varia-
tion ζF and ζG.

Now suppose that the resistance 
capacity of a member with reliability β0 
is adjusted by a factor x, that is G1 = G0x. 
A relation is required for the new reliability 
β1 of the adjusted member.

Figure 1 illustrates geometrically the 
derivation of x in terms of β0 and β1 that 
follows. The vertical axis is scaled by the 
ratio of coefficients of variation to indicate 
values of FζG/ζF. This ensures that the 
contours of the bi-variate normal density 
distribution fN(G, F) are circular, so that 
lines β0 and β1 are normal to the failure 
boundary (F = G), which is inclined at:

tan θ = 
FζG/ζF

G
 = 

ζG

ζF
� (6)

According to its multidimensional geo-
metrical interpretation (Rackwitz & 
Fiessler 1978), β0 is the distance (in units of 
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Figure 1 �Geometrical representation of the derived scaling relationship between β0 and β1 
(Equation 10)

failure region
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standard deviation) from the mean to the 
point on the failure boundary where the 
multivariate probability density function is 
a maximum.

For G = G  fixed, the marginal reliability 
index is then:

β 0́ = G  – F  
ζF F 

 = 
1

ζF 
⎛
⎜
⎝
G 
F 

 – 1 ⎛
⎜
⎝
� (7)

If the member resistance capacity is now 
adjusted, the mean shifts, and

β 1́ = Gx – F  
ζF F 

 = xβ 0́ + x – 1
ζF

� (8)

Defining the total coefficient of variation as 
ζT = √ζ 2

G + ζ 2
F , it is clear from the geometry 

that:

cos θ = 
β0

β 0́
 =  

β1

β 1́
 = 

ζF
ζT

� (9)

so that the new relationship is:

β1 = xβ0 + x – 1
ζT

� (10)

which can be rearranged to give:

x = 
β1 + 1/ζT

β0 + 1/ζT
� (11)

Member cost adjustment
Let the resistance G of member i be scaled 
by factor x. Given this linear scaling of 
resistance, it will be assumed that the 
effect on member cost ci can be repre-
sented as:

cix = cixm� (12)

where m is a constant.
For example, in simple tensile failure, 

where the member resistance is related to 
the yield stress σy via the section area A as:

Gtension = σyA� (13)

increasing G by a factor x would imply 
increasing the cross-sectional area and 
thus the volume by the same factor. If cost 
is taken to be proportional to member 
mass, this type of failure would imply 
m = 1.

Failure in bending of a square or cir-
cular sectioned member implies moment 
resistance:

Gmom ∝ σyA3/2� (14)

Scaling G by a factor x now implies 
increasing the volume by a factor of x2/3. 
For cost proportional to member mass, this 
therefore gives m = 2/3. Sections of more 
complex geometry can only be approxi-
mately represented via Equation 12.

The empirical relations used in design 
against buckling failure (e.g. SANS 
10162:2011) cannot be directly adapted to 
conform with Equation 12. However, if 
buckling failure is described by the Euler 
equation, resistance of a square or circular 
sectioned member implies:

Gbuckle ∝ I/L2 ∝ A2/L2� (15)

so that increasing G by a factor x implies 
an increase in the volume by a factor x1/2, 
that is m = 1/2.

Although only exact for a few special 
cases, the preceding discussion suggests 
that m values can be expected to range 
between 0.5 and 1.0 for basic member 
failure modes.

Marginal benefit of increasing 
member reliability
Let the G resistance of all members of type 
u in the structure be scaled by a factor x, 
resulting in new member reliabilities of β1x 
and failure probabilities pfx .

Changes in the expected benefit will 
result only from changes in the unit cost 
and failure probability of members of type 
u. The contribution to the total cost and 
risk from members of type u is:

Cu = Σ
i∈u

cixm = Cu0xm� (16)

Ru = Σ
i∈u

pfx ⎛⎜
⎝
di +

N
Σ

j
Γij cj xj

m
 

⎛
⎜
⎝
� (17)

where xj = x for j ∈ u and xj = 1 otherwise.
With increasing x, Cu increases linearly, 

while Ru decreases asymptotically to zero 
as the probability of failure pfx decreases.

These trends are schematically illustrat-
ed in Figure 2. As a result of these opposing 
trends, an x value xopt exists where Cu + Ru 
is a minimum, i.e. where Ψ is a maximum.

At xopt the member design represents 
an optimal balance between safety and 
economy (see Equation 2). If the member 
group is under-designed (with respect 
to Ψ), the benefit can be increased by 
making members more reliable, so that 
xopt > 1; if the member group is over-
designed, members can be more affordable 
and xopt < 1.

The extent to which a member group 
is over- or under-designed is quantified 
via the effect of spending (or saving) on Ψ. 
This ‘marginal benefit’ ψ is given by:

ψ = 
dΨ

dCu x=1
 = 

1

mCu0
 
dΨ

dx x=1
� (18)

Under-designed members require addition-
al spending, and so ψ > 0; over-designed 
members imply too much has been spent, 
so ψ < 0.

Comparison of ψ among member types 
in a structure indicates where in a design 
the greatest change in Ψ can be affected 
for a unit amount of expenditure/savings. 
In addition ψ = 0, implies that the member 
type design is optimal. This special sce-
nario is described by βopt, the value of β0 
for which xopt = 1.

R
an

ds

0 1.0 x

slope ∝ marginal benefit

tangent at x = 1.0

xopt

Cu + Ru

Cu

Figure 2 �An illustration of the tradeoff between increasing cost Cu and decreasing risk Ru as 
members of type u are strengthened by a factor x (not to scale; m = 1)

Ru
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Optimal reliability of an 
independent member
Consider now a single, independent mem-
ber designed to reliability β0 with cost c 
and liability d. Given coefficients of varia-
tion ζG and ζF for the resistance and inter-
nal forces, what is the optimal reliability of 
the member βopt?

If member resistance is increased by 
a factor x, the reliability becomes β1 with 
failure probability p1, and the expected 
benefit is:

Ψ = I –xmc – p1c [d/c + xm]� (19)

At maximum expected benefit, x = xopt 
and dΨ/dx = 0. At the point of optimal 
marginal benefit where ψ = 0 and xopt = 1, 
the design reliability is also optimal, so 
that β0 = β1 = βopt, and p1 = popt. Taking 
dΨ/‌dx = 0 and setting xopt = 1 yields:

1 + popt + 
d/c + 1

m
 ṕ opt = 0� (20)

where, from the density function of 
the standard normal distribution (e.g. 
McQuarrie, 2003):

popt = 
1

2
 1 + erf ⎛⎜

⎝
– 

βopt

√2
⎛
⎜
⎝
 � (21)

ṕ opt = 
dp

dx x=xopt

 

 = 
βopt + 1/ζT

– √2π
 exp ⎛⎜

⎝
– 

β2
opt

√2
⎛
⎜
⎝
 � (22)

If d/c ≫ 1, the relation becomes:

1 + popt +  
d/c

m
 ṕ opt = 0� (23)

With βopt known, the required adjustment 
to the design resistance is then:

xadjust = 
βopt + 1/ζT

β0 + 1/ζT

� (24)

Equation 20 provides an implicit relation-
ship for βopt of an independent member in 
terms of d/c, ζT, and m. As can be seen in 
Figure 3, the dominant factor determin-
ing the value of βopt is the liability-cost 
ratio d/c.

This dependence implies two important 
concepts. Firstly, for the same member cost, 
a greater failure liability requires a greater 
member reliability. That is, a greater risk 
warrants higher safety levels. Secondly, for 

a given failure liability, greater member cost 
results in lower optimal member reliability. 
That is, increased safety is more affordable 
for less expensive members.

The relationship is not exact for 
members forming part of a structure, as 
the risk includes the cost of dependent 
members (see Equation 17). Nonetheless, 
if di ≫ ΣjΓijcj the coefficient of ṕ opt 
would again tend to (d/c)/m. Therefore, 
Equation 20 can be used for members that 
are part of structures as well, provided that 
the liability due to member failure exceeds 
the cost of repair by a sufficient margin for 
the latter to be negligible.

APPLICATION TO TEST 
STRUCTURES
The theory developed in the preceding sec-
tion is now applied to two different exam-
ple test structures. First, a determinate 
steel truss, where failure of any member 
compromises the entire structure, so that 
the failure liability is the same for all mem-
bers. Second, a three-storey reinforced con-
crete frame, in which the failure liability of 
a member depends on its position within 
the structure.

The primary aim of this reliability 
analysis is to explore the potential spread 
of optimal member reliabilities βopt within 
a structure. In addition, the extent of 
strengthening required to upgrade mem-
bers in a structure from design reliability 
β0 to optimal βopt is of interest, together 
with the most effective modification by 
which the expected benefit of an existing 
design can be increased.

To perform the analysis, coefficients of 
variation ζ for applied loads and member 
resistance capacities must be assigned. 
Table 1 summarises the range of values 
suggested in the literature. To conform with 
values used in the calibration of limit-states 
design codes (Holický et al 2010; Holický & 
Retief 2005; Kemp et al 1987; Milford 1988), 
ζG

steel = 0.10 and ζG
concrete = 0.20, together 

with imposed loads ζF = 0.25, were used in 
the test examples.

As failure modes are not specified, it 
will be assumed that the cost adjustment 
relation (Equation 12) is linear, that is 
m = 1 and cix = xci. As noted in Figure 3, 
the effect of this assumption on βopt values 
is expected to be minor.

Finally, the analysis requires dΨ/dx to 
be evaluated, but direct values of Ψ are not 
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Figure 3 �Optimal reliability βopt of an independent member; main plot determined for ζT = 0.32; 
inset for d/c = 105

m = 1
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determined. The revenue I earned from use 
of the structure is therefore not needed, 
and will not be set.

Determinate steel truss bridge
The first test structure is a Pratt-type 
determinate truss (Figure 4), in which fail-
ure of any member results in failure of the 
entire structure.

In the current analysis only the primary 
support trusses are considered, with the 
lateral bracing and the bridge deck exclud-
ed. These trusses support a deck of width 
sufficient to accommodate a single vehicle 
lane, so that only one vehicle would use the 
bridge at a given time. It is further assumed 
that connections are significantly stronger 
than the members, so that only member 
reliability needs to be considered.

The bridge is designed assuming a 
travelling design load of two 150 kN point 
loads 5 m apart (TMH7:1981). Sections are 
designed according to the SANS 10162:2011 
specification, with sections of similar 

Table 1 �Values for the coefficient of variation 
of loads ζF and material strength ζG 

reported in the literature

Loads ζG

Dead 0.1a,b

Imposed 0.20–0.25a,b,c

Wind 0.25–0.52a,b,c

Materials ζF

Steel 0.10–0.13d,e

Reinforced concrete 0.20–0.25f,g

a – Holický & Retief 2005;  b – Ellingwood 1982; 
c – Retief & Dunaiski 2010;  d – Kemp et al 1987;  
e – Galambos 1990;  f – Holický et al 2010;  
g – MacGregor 1983

Figure 4 �Test structure made up of a Pratt-type truss; the five member types (numbered) are 
identified by the line colours
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Table 2 Section design and reliability analysis parameters for the truss test structure

Member design

Member
type

Fcompr(max)
(kN)

Ftension(max)
(kN)

Areq
(mm2)

Asection
(mm2)

Section
(circular 
hollow)

1 430 – 2 260 2 270 165.1 × 4.5

2 – 470 1 470 2 270 165.1 × 4.5

3 510 – 2 050 2 270 165.1 × 4.5

4 135 330 1 360 1 370 101.6 × 4.5

5 165 200 1 030 1 370 101.6 × 4.5

Structure-level reliability parameters

ζF = 0.25 ζG = 0.10 ζT = 0.26 m = 1 τ = 50 years

Member-level reliability parameters

Member type
Number of 
members

c d d/c

1 2 R 1.5k R 2.0m 1.33 × 103

2 6 R 1.2k† R 2.0m 1.67 × 103

3 4 R 1.0k R 2.0m 2.00 × 103

4 4 R 0.75k R 2.0m 2.67 × 103

5 5 R 0.5k R 2.0m 4.00 × 103

Total: R 19.7k

† �20% additional cost for fabrication necessary to allow erection of the bridge deck, based on the 
number of joints along the bottom chord and the manufacturing cost fraction
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Figure 5 Analysis results for the truss test structure; independent single member trend determined using m = 1 and ζT = 0.26
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loading grouped into five member types for 
ease of construction. Analysis results and 
section design are summarised in Table 2.

Estimated costs and liabilities for each 
member group are given in Table 2. Costs 
are assumed to be R16k/tonne, based on a 
cost breakdown of 40% material, 40% fabri-
cation and transport, and 20% construction 
and labour (McNamara 2017). Taking both 
primary support trusses into account, the 
total cost of the structure is calculated to 
be R39.4k.

To determine the associated liability, 
the legal damages due to injury/death 
of individuals using the structure must 
be accounted for. Given the size of the 
bridge, it is unlikely that more than one 
vehicle would be on the bridge if it were 
to fail. Damages should then be expected 
to be payable for two persons, at a sum of 
R2.0m. This value is based on an assess-
ment of reasonable damages for injury/
death in the context of South African law, 
performed by Koch (2011); occupants are 
assumed to be one breadwinner and one 
non-breadwinner.

Starting from the assumption that the 
structure is of sound design, i.e. every 
member satisfies a minimum design reli-
ability β0, the optimal reliability value 
βopt for each member type is determined 
numerically by finding the β0 value for 
which dΨ/dx = 0 at x = 1. From this, the 
required resistance adjustment factor 
xadjust is determined using Equation 24, 
and marginal benefit ψ as defined in 
Equation 18.

Results of the analysis are shown in 
Figure 5. As seen in Figure 5(a), member 

reliabilities (βopt) that maximise the 
expected benefit correspond closely to the 
independent member values predicted from 
their liability-cost ratios (d/c values), as 
determined using Equation 23.

The range of xadjust values needed 
to adjust members to βopt falls between 
1.2 and 0.9 (Figure 5(b)) for reasonable 
design reliability values β0 associated 

with structural design (3.0 to 4.5, see 
Introduction).

Marginal benefit derived from improv-
ing any member with reliability β0 towards 
its βopt value is shown in Figure 5(c). 
Marginal benefit decreases with increasing 
β0, becoming negative for β0 > βopt. At a 
given β0, the marginal benefit is higher for 
more affordable members, corresponding 
to an increase in ψ with d/c values.

Multi-storey reinforced 
concrete building
The second test structure is a three-
storey frame building constructed from 
reinforced concrete, consisting of a series 
of slab-beam-columns, and supported 
by square footing shallow foundations 
(Figure 6).

The structure is analysed assuming an 
imposed load of 4 kN/m2 on each floor 
and a peak wind speed pressure of 1.3 kPa, 
as specified by SANS 10160:2011. The six 
reinforced concrete member types are 
designed according to SANS 10100:2000. 
Analysis results and section design are 
summarised in Table 3.

Estimated costs and liabilities for the 
member groups are also given in Table 3. 
Costs are determined using a unit cost of 
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Figure 6 Test structure of a three-storey frame; the six member types are labelled

Table 3 �Section design and reliability analysis parameters for the three-storey frame test structure

Member design (30 MPa concrete)

Member type
FM1(max)

(kNm)
FM2(max)

(kNm)
Fcompr(max)

(kN)
Dimensions

(mm)
Reinforcing

slab 21 –38 – 300 × 8 0002 Y10-150

beam 160 –180 – 400 × 500 3Y25 B&T

foot 520 – 1 240 500 × 2 7002 Y16-150

top column 50 50 360 400 × 400 8Y12

middle column 110 140 760 450 × 450 12Y20

bottom column 390 0 1 240 500 × 500 12Y32

Structure-level reliability parameters

ζF = 0.25 ζG = 0.20 ζT = 0.32 m = 1 τ = 50 years

Member-level reliability parameters

Member type
Number of 
members

c d d/c

slab 3 R100k R10m 1.00 × 102

beam 12 R7k R10m 1.43 × 103

foot 4 R15k R30m 2.00 × 103

top column 4 R4k R10m 2.50 × 103

middle column 4 R5k R20m 4.00 × 103

bottom column 4 R6k R30m 5.00 × 103

Total: R504k
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R6k/m3 (Robberts & Marshall 2010, adjust-
ed for inflation), based on a breakdown of 
35% concrete, 35% reinforcing steel, 15% 
formwork and 15% labour. The total cost of 
the structure is calculated to be R504k.

In contrast to the truss example, this 
structure has a unique set of supported 
members associated with each individual 
member. Failure of a given member is 
assumed to compromise only its supported 
members (as described via the matrix Γ). 
For example, failure of a beam would 
compromise its supported slab, but leave its 
supporting column unaffected. Failure of a 
column would compromise the members it 
supports: two beams, their supported slab, 
and recursively the column on the next 
level up with all the members it supports. 
The number of compromised members 
due to failure of a column will therefore 
increase towards the base of the structure: 
if a ground floor column fails, all columns 
and their associated beams and slabs above 
it will no longer have sufficient support; if 
a column in the topmost storey fails, only 
two top beams together with their sup-
ported slab are compromised.

Assuming the building to be residential, 
with a normal-use occupation of 10 persons 
per storey, legal damages due to serious 
injury or death is estimated at R10m per 
floor (Koch 2011).

Starting from the assumption that 
every member in the structure satisfies a 
minimum target reliability β0, the optimal 
reliability βopt is determined numerically 
for each member type, together with the 
required resistance scaling xadjust and the 
marginal benefit ψ.

Results of the analysis are presented in 
Figure 7. Similar to the results obtained for 
the truss test structure, optimal member 

reliabilities βopt correspond closely to the 
predicted independent member values 
(Figure 7(a)). xadjust values needed to adjust 
members to βopt vary from about 1.25 
for β0 = 3.0 to 0.95 for β0 = 4.5. Marginal 
benefit again decreases with increasing βopt 
values, being negative for β0 > βopt. At a 
constant β0, members with higher d/c val-
ues have higher marginal benefit; however, 
there is no longer a simple correlation with 
member cost.

DISCUSSION

Basic trends
The close correspondence of member val-
ues to the independent member βopt values 
predicted from their d/c ratios (Figures 5(a) 
and 7(a)) indicates that the relationship for 
optimal reliability of independent members 
(Equation 20) can be applied for members 
in structures, provided that the liability d 
of the member in question is much greater 
than the cost of its supported members.

For example, in the truss test structure 
d = R2.0m for all members, which is much 
larger than the cost of repair, as the cost of 
the entire structure is R39.4k. In the frame, 
the liability of the slab is R10m, while the 
cost of repair is only the cost of the slab, 
R100k; the liability of the bottom column 
is R30m, while the cost of replacement is 
R357k. This comparison ignores demoli-
tion costs, and loss of revenue is also not 
accounted for in the model. Both these 
factors will increase the liability expenses 
by amounts comparable to or smaller than 
estimates used here.

This result suggests that knowledge 
of the cost of a member, the liability 
implications of failure, and estimates of 

the coefficients of variation can provide an 
indication of the optimal design reliability 
of a member.

For South African design standards, 
Milford (1988) recommends β0 = 3.0 for 
ductile failure modes and β0 = 4.0 for 
brittle failure modes. Ductility allows for 
load redistribution and provides time for 
remedial action to be taken prior to col-
lapse. The reliability analysis of the two 
test structures considered here assumes 
that failure leads to collapse, implying that 
either brittle failure occurs, or no remedial 
action had been taken when ductile failure 
started. In this sense, the calculated βopt 
values are broadly consistent with the 
recommended β0 value for brittle failure of 
Milford (1988).

The direct relationship between 
marginal benefit ψ and the d/c ratio of a 
member can be understood as follows. The 
marginal benefit decreases with increasing 
β0 (Figures 5(c) and 7(c)) and is zero for 
β0 = βopt. Members with higher βopt values, 
and thus higher d/c ratios, will therefore 
have higher marginal benefit values at a 
given β0 value.

This suggests a simple guideline for 
improving the expected benefit of an exist-
ing structural design: for members that are 
under-designed relative to βopt, the greatest 
impact on expected benefit is obtained by 
strengthening the member with the high-
est d/c value; for over-designed members, 
the greatest impact on expected benefit is 
obtained by reducing the size of the mem-
bers with the lowest d/c value.

This principle is illustrated in the two 
examples. In the truss, all members have 
the same liability, so that the highest d/c 
value corresponds to the least expensive 
member type. Strengthening this member 
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type would be the most affordable way 
to increase the expected benefit. In the 
frame, the columns have similar costs, but 
very different liabilities. Strengthening the 
columns with the greatest liability, i.e. the 
bottom columns, thus reduces the risk by 
the greatest amount, bringing about the 
largest increase in expected benefit.

Effect of assumptions
As shown by Equation 23, m affects 
βopt by acting as an adjustment to d/c. 
As seen in Figure 3, the effect is rela-
tively small: assuming m = 1 results in 
βopt about 2% lower than for m = 1/2. For 
the two test structures it was assumed 
that m = 1, as the nature of failure is not 
specified in either example. As shown in 
Equations 13–15, m values can be expected 
to vary between 1/2 and 1. The effect of 
m ≠ 1 would therefore be at most a 2% 
increase in the values of βopt.

The relationship for the reliability of the 
adjusted member (Equation 10) was derived 
assuming that both the internal force F 
and the member resistance G are normally 
distributed. This assumption allows the 
simple form of Equation 7 upon which 
the derivation is based. Depending on the 
nature of loading, this assumption does 
not always hold. The Gumbel distribution 
is generally used for wind loading, while 
imposed loading is often represented via a 
log-normal distribution (Retief & Dunaiski 
2010). These distributions are all positively 
skewed (asymmetrical with positive tails), 
so that transformation to normal space 
(via the Rosenblatt transformation equa-
tions, Ang & Tang 1984) would distort the 
F–G line to be concave down. The result 
would be that, for a given β0 value, the cor-
responding β1 would be somewhat smaller 
than predicted by Equation 10. βopt values 
determined in this work can therefore 
be viewed to represent upper bounds on 
the values for non-normally distributed 
parameters.

The effect of time on the value of 
money via interest rates and inflation is 
ignored in the model. This effect would 
enter the model in the revenue derived 
from the structure, and would also be 
needed if the probability of failure is not 
taken as constant during the lifetime of 
the structure. The latter would be the case 
if the lifetime was similar to the mean 
time to failure. However, for the failure 
probabilities associated with structural 
members, mean time to failure is in the 
order of 103 to 105 years, which is far 

greater than the common 50 to 100-year 
design lifetimes.

The analyses performed in this work 
focus on the member level only; system 
level reliability is not accounted for, and is 
assumed to be a cumulative, linear result 
of the individual members. Similarly, it 
is assumed that failure liabilities are the 
cumulative result of individual member 
failure liabilities. Member interaction 
effects at system level are therefore not 
accounted for. For example, redundancy 
in the structure due to ductility and load 
redistribution can limit the cumulative 
increase in liability, and thus reduce βopt 
for some members in the structure.

CONCLUSION
A model was developed for the adjusted 
reliability of a member strengthened by a 
multiplicative factor. The model allows the 
degree of strengthening required to max-
imise overall expected benefit derived from 
the structure to be determined together 
with the marginal benefit. This provides an 
indication of the greatest change in benefit 
brought about by strengthening a given 
member type.

The model was first applied to a 
single independent member to derive a 
relationship expressing the reliability βopt 
required for optimal benefit as a function 
of the liability-cost ratio d/c for the mem-
ber. Other parameters in the equation, i.e. 
the coefficients of variation and the cost 
scaling power, have only a minor effect 
on βopt.

Next the model was applied to analyse 
the reliability of members in two example 
test structures: a determinate steel truss 
and a three-storey reinforced concrete 
frame. Reliability analysis of members in 
both structures reveals that the indepen-
dent member d/c  – βopt relationship is 
applicable to members that form part of 
a structure, while marginal benefit was 
found to be greatest for members with the 
highest βopt and d/c values.

The relationship therefore provides a 
guideline for the improvement of existing 
structural designs. Structures that are 
under-designed with respect to βopt can be 
most effectively improved by strengthening 
members with the highest d/c values; over-
designed structures are most effectively 
improved by reducing member sizes with 
the lowest d/c values.

While the model provides useful trends, 
its quantitative value is limited by the 

various assumptions made. Most notable 
of these are: (a) the normal distribution 
of applied loads and material resistances, 
(b) the power-law scaling of member cost 
with resistance adjustment, (c) the focus on 
reliability solely at the member level, and 
(d) neglecting connections. Exploring each 
of these assumptions will be the focus of 
future research work.
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