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INTRODUCTION
Changes in the material and/or geometric 
properties of a structural or mechanical 
system, including the changes in the bound-
ary conditions and system connectivity, are 
defined as ‘damage’ that adversely affects 
the current or future performance of that 
system. Implicit in this definition is a com-
parison between two different states of the 
system (Farrar & Doebling 1999).

Structural health monitoring (SHM) is a 
procedure targeted at providing accurate and 
real-time information about the performance 
and health state of a structure. SHM includes 
an approach to the process of characteris-
ing and detecting damage of engineering 
structures. The objective of SHM is to 
monitor the in situ behaviour of a structure 
accurately and efficiently, to evaluate its 
performance under various service loads, to 
discover areas subject to damage or weaken-
ing, and to determine the health or condition 
of the structure (Czichos 2013). In the area 
of SHM, the term ‘damage’ in mechanical 
structures can be understood intuitively as 
denoting a defect or failing that impairs the 
functional behaviour and working conditions 

of engineering structures. The modification 
to material properties or structural physical 
parameters can also be considered as damage 
(Tadeusz et al 2013).

The main damage detection approaches 
may have some limitations. For example, the 
mode shape approach is only sensitive in the 
case where the measurement point is close to 
the node points (see Figure 4) for a particular 
mode (Liang & Chan 2009).

Salawu and Williams (1995) conducted 
modal tests of a full-scale bridge before and 
after rehabilitation, and determined that 
the variation in natural frequencies of the 
bridge was not only due to structural repairs, 
although both modal assurance criterion 
(MAC) and the coordinate modal assurance 
criterion (COMAC) performed well to indi-
cate the location of the repairs.

Doebling and Farrar (1996) pointed 
out that the frequency shift method has 
considerable practical limitations for civil 
structures, because it is insensitive to dam-
age unless when there is severe damage or 
an accurate measurement is applied. On the 
other hand, the frequency response function 
approach is insensitive to the damage unless 
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In recent years, damage detection, as determined by variations in the dynamic characteristics or 
response of structures, has received considerable attention in the literature. This paper proposes 
a new damage identification technique that identifies damage location. A methodology termed 
the Two-Points Condensation Technique (TPC) is presented. It uses identification of stiffness 
matrix terms to assess damage, based on the incomplete measurement of captured vibration 
test data. This study identifies damage using free vibration test data in the time domain. Most 
other techniques used at present are based on data in the frequency domain. The TPC method 
uses a set of matrices by reducing the structural system to a two-degrees-of-freedom system 
and then compares the identified coefficients of the stiffness matrices with the coefficients of 
the theoretically condensed stiffness matrices. The damage location is obtained by observing 
the change in value of the stiffness coefficients of the two-degrees-of-freedom systems. For 
the computation, an optimisation uses a program written in MATLAB code. The code can be 
executed both under the MATLAB and Octave environments. The TPC technique is applied to 
experimental data obtained from a steel beam model structure after introducing a thickness 
change in one element. Two case studies are considered. In both cases, the method accurately 
detects the damage, and determines its location. In addition, the results illustrate that observing 
changes in the stiffness matrix coefficients can be a useful tool for monitoring structural health. 
As the procedure proposed here is in a time domain, to eliminate time-consuming calculations 
this procedure is suitable for structures that are not continuously monitored, but are monitored 
within scheduled time periods.
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severe damage has occurred or accurate 
measurement of vibration was done. The 
inverse method is at present still only being 
investigated theoretically (Friswell 2008).

For the curvature/strain modes approach, 
Pandey et al (1991) demonstrated that the 
damage to beam structures can be identi-
fied using mode shape curvature. Chance et 
al (1994) found the measured strain mode 
shape to be much more feasible for damage 
localisation. But recording strain over the 
whole structure is not yet feasible with cur-
rent technology; therefore, a new methodol-
ogy and equipment are needed.

Stubbs et al (1992) presented the pioneer-
ing work on using modal strain energy for 
damage localisation. However, when the 
damage is located in a structural element 
that is not sensitive to the modal parameter 
changes, the modal strain energy approach 
cannot detect the damage in such an element 
in a structure. On the other hand, for the 
dynamic flexibility approach based on higher 
vibration modes rather than lower modes, a 
large number of dynamic modes are needed 
to find a stiffness matrix estimation or its 
changes, and mainly the higher modes need 
to be measured. However, measuring the 
higher frequency response is very difficult 
to do because of practical limitations (Sinou 
2009). From a testing standpoint, exciting 
the higher frequency response of a structure 
requires more energy to produce a measur-
able response at these higher frequencies 
than at the lower frequencies. Koh et al 
(2006) demonstrated a method called con-
densed model identification for identification 
of full stiffness matrices for damage assess-
ment based on incomplete measurement. 
They used three types of reduction methods, 
namely static condensation, dynamic con-
densation, and System Equivalent Reduction 
Expansion Process (SEREP) methods.

Pokharkar and Shrikhande (2010) used 
the same Koh et al (2006) approach with the 
mass-invariant constraint for the identifica-
tion of condensed models in different time 
windows. Both studies used the input and 
output data to develop mathematical models 
to characterise the input-output behaviour 
of an unknown system by means of experi-
mental data, which was acceleration within 
their studies.

For all the above-mentioned methods, 
input and output data are needed to identify 
the location and severity of damage, while the 
present study indicates the damage and its 
location for incomplete measurement using 
the output data only. The present method 
requires fewer sensors than the above-
mentioned methods. The method is also a 
useful tool in that it evaluates the structure 
using real-time acceleration measurements.

The two-points condensation (TPC) 
technique reduces the whole structure 
stiffness matrix to a set of two-degrees-
of-freedom matrices. The identified stiff-
ness matrices Kc are compared with the 
undamaged reduced stiffness matrices Kr. 
By observing the changes in the stiffness 
matrix coefficients of the two-degree-of-
freedom systems, the damage location 
can be obtained. In the TPC technique, 
the identified stiffness matrix Kc can be 
obtained by optimising the equation of 
motion using the measured test data. The 
stiffness matrix of the undamaged structure 
Kr is obtained by reducing the theoretical 
stiffness matrix of the structure.

In this study, the theoretical stiffness 
matrix Ko is generated using data from the 
design drawings of the structure. SEREP is 
used to condense the matrices required in 
the TPC technique. To verify the efficiency 
of the technique, two cases are studied:

■■ For the first case, the influence of the 
position of the vibration sensors relative 
to the damage location is studied.

■■ For the second case, the sensitivity of the 
technique to the size of the damage is 
studied.

TWO-POINTs CONDENSATION 
(TPC) TECHNIQUE
The TPC technique is an analytical method 
that detects structural damage by observing 
the value of changes in the stiffness matrix 
coefficients. The technique compares the 
reduced theoretical stiffness matrix Kr 
with the identified stiffness matrix Kc. For 
modelling the beam in the MATLAB/Octave 
environment, the consistent mass matrix and 
the Euler–Bernoulli beam element stiffness 
matrix are used (Reddy 2006).

The theoretical stiffness matrix Ko is 
obtained using the as-built drawings of a 

Figure 1 The main steps of the TPC technique
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structure. The reduced theoretical stiffness 
Kr is generated by condensing the theoretical 
stiffness matrix Ko to a two-degrees-of-
freedom (2-DOF) stiffness matrix. The selec-
tion of these degrees of freedom corresponds 
to the vibration acceleration measurement 
sensor locations.

In this technique the SEREP method is 
used to reduce the stiffness and mass matrix 
to 2-DOFs. The SEREP condensation has the 
best computational performance and leads 
to smaller errors in the identification of stiff-
ness values (Koh et al 2006).

The TPC technique calculates the 
identified stiffness matrix Kc by finding 
the optimal solution of the equations of 
motion, which should correspond to the 
real system properties (the mode shapes and 
frequencies).

Mr{ü}2×1 + [Cr]2×2{u̇}2×1 + [Kr]2×2 {u}2×1 = 0� (1)

Where:
	Kr	=	� The stiffness matrix of the reduced 

system
	Mr	=	� The mass matrix of the reduced system
	Cr	=	� The damping matrix of the reduced 

system
	 ü	=	 The acceleration vector
	 u̇	=	 The velocity vector
	 u	=	 The displacement vector.

In this technique, the input data includes the 
reduced mass matrix Mr and initial stiffness 
matrix Kr in addition to the corresponding 
vectors of acceleration ü, velocity u̇, and dis-
placement u. The first and second measured 
modal frequencies are part of the input data 
and are used to calculate the damping coeffi-
cients and control the solution of finding the 
identified (reduced) stiffness matrix.

The technique uses the theoretical mass 
matrix of the structure because it does not 
generally change (Pokharkar & Shrikhande 
2010). The damping matrix C is calculated 
according to Rayleigh damping. The damp-
ing matrix is optimised due to the stiffness 
updating. The optimisation solver minimises 
the function given in Equation 2, which is 
based on the equation of motion.

q = �sum [0 – [[Mr]{ü} + [α[Mr] + β[K]]{u̇} 
+ [K]{u}]]2� (2)

Where α and β are the damping coefficients 
(see “Damping matrix” section below). This 
technique uses the multi-objective function 
solver to find the optimal solution of the 
function given in Equation 2. MATLAB code 
was developed to analyse the beam based on 
the steps outlined in Figure 1.

The comparison of the identified stiffness 
matrices Kc and reduced theoretical stiffness 

matrices Kr is used to locate the damage. 
Large changes in the stiffness coefficients 
of the 2-DOF matrices indicate the location 
of the damage. The changes in the stiffness 
matrix are shown in Equation 3.

∆Ki–j = ∆kii	 ∆kij
∆kji	 ∆kjj

� (3)

Where:
	∆Ki–j	=	�the change matrix of the set of nodes 

i and j
	 ∆kii	=	�the difference in the coefficients of 

the Kc matrix and the Kr matrix at 
position (i, i)

	 ∆kij	=	�the difference in the coefficients of 
the Kc matrix and the Kr matrix at 
position (i, j)

	 ∆kji	=	�the difference in the coefficients of 
the Kc matrix and the Kr matrix at 
position (j, i)

	 ∆kjj	=	�the difference in the coefficients of 
the Kc matrix and the Kr matrix at 
position (j, j).

When large changes are observed by com-
paring ∆kii with ∆kjj, the location of the 
damage can be determined. If ∆kii is greater 
than ∆kjj, it means that the damage is located 
near to the node i.

Analytical reduction of system 
matrices using SEREP method
From an analytical approach standpoint, the 
finite element method assumes that a contin-
uous structure can be discretised by describ-
ing it as an assembly of finite elements, each 
with a number of boundary points that are 
commonly referred to as nodes. The main 
problem to overcome in SHM and damage 
detection is the typical mismatch of the 
selected number of degrees of freedom of an 
analytical and an experimental representa-
tion of a structural dynamic system.

For damage detection, the concept of 
model reduction (or, alternatively, model 
expansion) plays an important role. Using 
condensation or expansion, it is possible to 
compare a large analytical set of DOFs to a 
relatively small set of experimental DOFs. 
Reduction and expansion also play a very 
important role with regard to model updat-
ing. Consequently, the set of the tested DOFs 
requires reducing the number of DOFs of a 
large model without losing any information 
or characteristics of the dynamic system in 
the modelling process.

The SEREP condensation method parti-
tions the degrees of freedom into a set of 
slave DOFs and master DOFs. The DOFs are 
arranged to place the slave DOFs as the first 
s coordinates, while the remaining master 
DOFs are the last m coordinates (Friswell 

& Motiershead 1995). Here the coordinates 
represent the location of sub-matrices in the 
original matrix.

The reduction of the stiffness matrix 
is thus accomplished by identifying those 
degrees of freedom to be condensed or 
reduced as slave degrees of freedom, and to 
express them in terms of remaining master 
degrees-of-freedom.

The dynamic equations of equilibrium 
for an undamped n degree-of-freedom model 
may be written as:

M ü(t) + K U(t) = F(t)� (4)

Where: ü(t) and U(t) are the acceleration and 
displacement response vectors. The displace-
ment response vector U(t) in Equation 4 can 
be expressed as shown in Equation 5 using 
the mode superposition method:

U(t) = Φ q(t)� (5)

in which Φ is the complete eigenvector matrix 
of the full model, and q(t) is the modal coor-
dinate vector. It is well known that the com-
putation of the complete eigenvector matrix 
is not required for a large model. Therefore, 
modal truncation is usually used in the mode 
superposition technique (Qu 2004). If p eigen-
vectors of the full model are used in the mode 
superposition, Equatioin 5 is rewritten as:

U(t) = Φpqp(t)� (6)

With the arrangement of the total degrees of 
freedom, Equation 6 may be partitioned as:

U(t) = 


Um(t)
Us(t)




 = Φmp

Φsp
qp(t)� (7)

This is equivalent to two equations (8 and 9):

Um(t) = Φmpqp(t)� (8)

Us(t) = Φspqp(t)� (9)

Equation 8 provides a description of the 
displacement responses at the master DOFs 
in terms of the eigenvector matrix at these 
DOFs. The sub-matrix Φmp is generally not a 
square matrix. Since the number of knowns 
in Equation 8 are greater than the number of 
unknowns, Equation 8 can be put into a nor-
mal form by transforming this equation as:

Yp(t) = ΦT
mpUm(t)� (10)

Substituting Equation 8 into Equation 10 
produces:

Yp(t) = ΦT
mpΦmpq̌p (t)� (11)
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in which q̌p(t) is an approximate solution of 
qp(t) (O’Callahan et al 1989). Although the 
square coefficient matrix of q̌p(t) will in gen-
eral be of full rank and possess an inverse, 
the determining of the inverse of this matrix 
using standard methods may encounter 
some numerical difficulty, and singular-value 
decomposition solution is usually required. 
Symbolically q̌p(t) could be solved from 
Equation 11 as:

q̌p(t) = Yp(t)[ΦT
mpΦmp]–1� (12)

Substituting Equation 10 into Equation 12 
produces the general form of the solution of 
the modal coordinates in terms of physical 
coordinates and modal matrix as:

q̌p(t) = Φ+
mpUm(t)� (13)

Where Φ+
mp is the generalised inverse of 

matrix Φmp and is defined as:

Φ+
mp = ΦT

mp [ΦmpΦT
mp]–1� (14)

Equation 13 represents the “best” solution 
of the p variables given in Equation 8. For 
convenience, the solution q̌p(t) of Equation 8 
can be approximated by qp(t), (Qu 2004):

qp(t) = Φ+
mpUm(t)� (15)

Substituting Equation 15 into Equation 9 
leads to:

Us(t) = ΦspΦ+
mpUm(t)� (16)

R = ΦspΦ+
mp� (17)

When the dynamic condensation matrix 
is available (Equation 17), the coordinate 
transformation matrix T may be given by the 
following (Kammer 1987):

T = I
ΦspΦ+

mp
� (18)

The coordinate transformation matrix is 
obtained by substituting Equation 15 into 
Equation 7:

U(t) = 


Um(t)
Us(t)




 = T um(t)� (19)

Where:

T = Φp Φ g
mp = 



ΦmpΦ+
mp

ΦspΦ+
mp




� (20)

Using the coordinate transformation in 
Equation 20, the reduced system matrices are 
given by:

Kr = TTKT� (21)

Mr = TTMT� (22)

Due to its significant numerical computa-
tional advantages, the SEREP condensation 
method is often used in commercial FEM 
packages.

Damping matrix
Udwadia (2009) discusses non-proportional 
damping in linearly damped vibrating 
systems in which the stiffness and damping 
matrices are not restricted to being symmet-
ric and positive-definite in simple systems 
with two-degrees-of-freedom; they conclude 
that if the system has an active element, as 
commonly arises in the active control of a 
structure, the stability is more difficult to 
physically interpret, and their approximation 
by damping matrices that commute with the 
stiffness matrices needs to be carried out 
with considerable care and caution. In this 
study, as there is no active element, propor-
tional damping is taken into consideration.

The damping matrix is calculated using 
Rayleigh damping where the damping is 
defined as being proportional to the mass 
and the stiffness of the structure (Chopra 
2012):

Cr = αMr + βKr� (23)

The damping ratio for the nth mode of such 
a system is:

ξn = 
α

2
 

1

ωn

 + 
β

2
 ωn� (24)

The coefficients α and β can be determined 
from damping ratios of the ith and jth modes 
respectively: ξi and ξj respectively. Expressing 
Equation 24 for these two modes in matrix 
form leads to:

1

2 
1/ωi	 ωi
1/ωj	 ωj

 


α
β




 = 



ξi
ξj




� (25)

These two algebraic equations can be 
solved to determine the coefficients α 
and β. Seeing that the damping matrix 
is proportional to the mass and stiffness 
matrices, the change in the damping matrix 
due to the change in the stiffness is taken 
into account.

The damping ratios ξi and ξj for the 
first mode and second mode are calcu-
lated using the half-power bandwidth 
method using Equation 26 (Silva & 
Clarence 2000):

2ξ = 
ω2 – ω1

ωn

� (26)

The angular frequency ωn for each 
mode is obtained by using a Fast Fourier 
Transform technique (FFT) (Monson 
1996). By plotting  the Fourier amplitude 
spectra of the signals recorded, the 
frequencies associated with the modes of 
vibration of the structure are located at 
the corresponding vibration amplitude 
peak values.

As shown in Figure 2, the angular fre-
quencies ω2 and ω1 are obtained by finding 
the corresponding angular frequencies for 
the amplitude that is equal to the amplitude 
at ωn divided by √2.

Figure 2 The half-power bandwidth method for finding damping ratios 
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Signal integration
To obtain the velocity and displacement 
required for the equation of motion, the 
trapezoidal rule for numerical integration is 
applied to acceleration data, where:

New area = area so far + increment of the area

The increment of the area is the trapezoidal 
approximation, i.e. the half sum of the paral-
lel sides times the perpendicular distance 
(Leis 2011), as illustrated in Figure 3.

Optimisation technique
Multi-objective optimisation is a math-
ematical optimisation technique used to 
optimise more than one objective function 
simultaneously. In this study, a multi-
objective optimisation technique is used to 
optimise the equation of motion used in the 
TPC technique.

The problem of reducing a set of 
nonlinear functions Fi(x) subject to a set 

of goals Fi
* is addressed by the MATLAB/

Octave code developed. The maximum 
of Fi(x) – Fi

* is minimised by the unscaled 
goal attainment problem. The algorithm 
coded is used to find x to minimise the 
maximum of [(Fi(x) – Fi

*)/‌wi], where the 
weighting variables ‌wi are a given positive 
value. The solution is controlled by the 
given lower and upper limits of the solution, 
where lower limit ≤ x ≤ upper limit 
(Edward et al 2011). The TPC technique 
finds the best stiffness value to satisfy the 
function given in Equation 2, as well as the 
corresponding frequencies. The initial inputs 
are as follows:
1.	 The reduced theoretical stiffness matrix.
2.	 The reduced mass matrix.
3.	 The acceleration, velocity and displace-

ment vectors.
4.	 The first mode and second modal 

frequencies.
5.	 The damping ratios of the first two modal 

frequencies.

6.	 To determine the upper limit and lower 
limit of the solution, it is assumed for this 
study that the stiffness degradation is 
between 140% and 80%, respectively.

7.	 A goal function value of zero is used in 
order to get the optimal value of K in the 
function given in Equation 2.

8.	 Weighting function values of unity are 
used in this study.

The technique uses the reduced theoretical 
stiffness matrix as a starting point where the 
solver finds the best stiffness matrix values 
that satisfy the equation of motion and the 
associated modal frequencies.

The output of the solution process is the 
identified (optimised) stiffness matrix. Kc is 
then used for comparison purposes to locate 
the damage.

EXPERIMENTAL STUDY
The structural system used in this study is 
a simply-supported steel beam with a span 
of 2.3 m. The cross-section of the beam is a 
rectangular section of 100 mm by 21.9 mm. 
The material properties of the beam are 
as follows:

Mass density = 7 850 kg/m3

Young’s modulus E = 205.9 GPa

The experimental setup is shown in Figure 4. 
Damage in the form of stiffness degrada-

tion is introduced into the beam by welding a 
plate (100 mm × 500 mm) with a thickness of 
3.8 mm at a distance of 450 mm from the left 
beam support. The material properties of the 
plates are the same as the material properties 
of the beam. The change in thickness leads to 
change in the stiffness of a part of the beam.

For modelling the beam in the MATLAB/
Octave environment, the consistent mass 
matrix and the Euler–Bernoulli beam ele-
ment stiffness matrix are used (Reddy 2006). 
In order to apply the technique, the beam 
is divided into five segments, as shown 
in Figure 5(a). The damaged segment is 
located between points 2 and 3, as shown in 
Figure 5(b).

The DOFs considered in the model are 
vertical displacements and rotations at each 
node. The DOFs (θ1, θ2, θ3, θ4, θ5 and θ6) 
refer to the rotations, where the DOFs (v2, v3, 
v4 and v5) refer to the vertical displacements.

For the damaged beam prototype, four 
accelerometers are placed at points 2, 3, 4 
and 5 of the beam, as shown in Figure 5(c). 
The mass of each accelerometer including 
the clamping apparatus is 0.88 kg. These 
masses are added to the global mass matrix 
of the system as lumped masses at the nodes 
where the accelerometers are located. It is 
essential to collect sufficient data to establish 

Figure 3 The bilinear transform of an integrator
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the correct mass matrix by visual inspec-
tion of the model and to use the applicable 
shop drawings.

The motion of the beam is initiated 
by using a pullback-quick release method 
by tying a rope to the middle of the beam 

span and then cutting it after having pulled 
it downwards.

Figures 6(a) and 6(b) show the accelera-
tion data captured during the test, as well 
as the velocity and displacement signals 
obtained by integrating the acceleration 

signals obtained from the four channels 
using the trapezoidal method. The accelera-
tion data is collected at a sampling rate of 
500 Hz.

To apply the damage detection algorithm 
developed, as described in this paper, the 

Table 1 The reduced stiffness and mass matrices using SEREP

DOFs that K 
is reduced to

Theoretical reduced 
stiffness matrix (N/m) × 104

Theoretical reduced 
mass matrix (Kg)

[v2 – v4] 	 6.700
	–3.715  

	–3.715
	 2.850

	 1.817
	 0.075  

	 0.075
	 1.744

[v2 – v5] 	 3.778
	–2.694  

	–2.694
	 3.778

	 2.297
	 1.056  

	 1.056
	 2.313

[v3 – v4] 	 8.721
	–8.472  

	–8.479
	 9.021

	 2.366
	–1.062  

	–1.062
	 2.218

[v3 – v5] 	 3.062
	–4.2137  

	–4.137
	 7.447

	 1.861
	–0.0897 

	–0.089
	 1.831

Table 2 �Differences between the damaged and the theoretical 
undamaged stiffness matrices for the sample steel beam

DOFs that K 
reduced to

Identified changes in 
stiffness matrix using 
TPC technique (ΔK%)

Theoretical changes in the 
stiffness matrix (ΔK%)

[v2 – v4] 	28.13
	16.63  

	16.63
	10.71

	27.37
	19.13  

	19.13
	10.19

[v2 – v5] 	25.19
	13.19  

	13.19
	 4.43

	24.39
	14.18  

	14.18
	 4.24

[v3 – v4] 	25.81
	18.96  

	18.96
	15.30

	24.59
	19.86 

	19.86
	14.58

[v3 – v5] 	18.99
	10.57 

	10.57
	 5.39

	18.06
	11.70  

	11.70
	 5.17

Figure 5 �(a) An undamaged steel beam model A-B with five elements, (b) the damaged steel beam model A-B with five elements, (c) the simply-
supported steel beam model specimen with accelerometers placed on the beam
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450 mm

Ra Rb

450 mm450 mm 450 mm500 mm

A B

θ1 θ2 θ3 θ4 θ5 θ6
v5v4v3v2

1 2 3 4 5 6
54321

(b) The damaged steel beam model A-B with five elements

(c) The simply-supported steel beam model specimen with accelerometers placed on the beam
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theoretical stiffness matrix Ko and mass 
matrix M of the system are reduced to 
two DOFs using the SEREP method. The 
DOFs are selected to cover all the pos-
sible combinations of vertical DOFs. The 
selected DOFs are v2 – v4, v2 – v5, v3 – v4, 
and v3 – v5. The resultant matrices for the 
condensed structural system are given in 
Figure 7.

Using the SEREP condensation method, 
the reduced stiffness and mass matrices are 
produced for each set of two DOFs, as shown 
in Table 1.

By plotting the Fourier amplitude spectra 
and using Equations 23 through 26, the 
damping matrix, frequencies and damping 
ratios are calculated. Figure 8 shows the 
Fourier amplitude spectra for the first three 

frequencies for the measured values for the 
four channels of the five-segment beam 
model. The frequency of the first mode for 
all nodes is 9.4 Hz, while the damping ratio is 
0.0185. The second mode has a frequency of 
38 Hz, and the damping ratio is 0.0681.

The identified stiffness matrix Kc, which 
is obtained as output from the optimisation, 
is compared with the reduced theoretical 

Figure 6 �(a) The recorded acceleration signals from four channels for five-element steel beam, (b) the velocity signals for five-element steel beam, 
(c) the displacement signals
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stiffness matrices Kr. The comparison is 
based on Equation 3. The results of the 
comparison between (Kc) and (Kr) are pro-
vided in Table 2. The solution is checked by 
comparing the frequencies computed from 
the analytical model to that of the physical 
structural system (see Figure 1).

The results in Table 2 show that the 
large percentage changes in coefficients of 
the stiffness matrix occur at coefficients of 
nodes that are near to the location of the 
damage.

For the condensed stiffness matrix Kv2–v4
 

using DOFs (v2 – v4), the percentage change 
in coefficient kv2v2

 is larger than the change 
in coefficient kv4v4

. This indicates that the 
damage is located near to node 2 rather than 
near to node 4. The same conclusion can 
be established from ΔK for DOFs v2 – v4, 
v2 – v5, v3 – v4, and v3 – v5 ( see Table 2 
column 1).

The effect of acceleration 
sensor positioning
For this first case study, the effect of the 
position of the sensors relative to the damage 
location is investigated. To determine the 
effect of sensor positioning, the same beam 
described above is divided into six segments 
of equal length (Figure 9).

Five accelerometers are placed at the 
intermediate points 2, 3, 4, 5 and 6. The 
damaged segment is located between points 
2 and 4, as shown in Figure 9(a). The degrees 
of freedom θ1, θ2, θ3, θ4, θ5, θ6 and θ7 refer 
to the rotations, while the degrees of free-
dom v2, v3, v4, v5 and v6 refer to the vertical 
displacements, as shown in Figure 9(b). 
The acceleration data is collected using a 

sampling rate of 500 Hz. Figure 10 shows the 
recorded vertical acceleration signals, veloc-
ity signals, and displacement signals. These 
signals are for the degrees of freedom v2, v3, 
v4, v5 and v6 respectively.

In this test, the global stiffness matrix 
is reduced to the following DOFs: ([v2 – v4], 
[v2 – v5], [v3 – v4], [v3 – v5] and [v4 – v5]). 
The initial value for the stiffness matrix 
used is the undamaged theoretical stiffness 

matrix. The damping parameters are calcu-
lated in the same way as that of the previous 
example. Table 3 shows a comparison of the 
results for the theoretical coefficients of the 
condensed stiffness matrices and the coef-
ficients calculated using the TPC technique.

For the first result of DOFs [v2 – v4], 
both the nodes (2, 4) are located outside the 
damaged area. Node 2 is closer than node 
4 to the damage area, which explains the 

Figure 7 Reduced stiffness and mass matrices of the beam into sets of 2 DOF systems  
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Kv3–v4
 = Kv3v3Kv4v3
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Figure 8 �Fourier amplitude spectra for four channels of five-element steel beam where the first 
three frequencies appear
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large change that occurs in the coefficient 
kv2v2

. The result for [v3 – v4] shows the large 
changes concentrated in kv3v3

 rather than 
kv4v4

 because node 3 is located at the dam-
aged segment, while node 4 is outside the 
damaged segment.

The result of [v4 – v5] indicates the 
damage at the left side of the segment; both 
nodes are, however, outside the damaged 
segment. The result of [v4 – v5] provides a 
good indication of the location of damage.

Sensitivity of the TPC technique 
for damage extent
The sensitivity of the technique to indicate 
the extent of damage is investigated by 

Table 3 �Percentage changes in the coefficients of the reduced stiffness matrices for the measured 
and the theoretical cases for the steel beam with six segments

DOFs that K reduced to Identified changes in stiffness 
matrix using TPC technique (ΔK%)

Theoretical changes in the 
stiffness matrix (ΔK%)

[v2 – v4] 	23.81
	15.69  

	15.69
	11.99

	22.61
	16.74  

	16.74
	11.07

[v2 – v5] 	24.04
	13.01  

	13.01
	 7.20

	22.63
	14.21  

	14.21
	 6.14

[v3 – v4] 	34.14
	25.53  

	25.53
	21.31

	33.06
	26.80  

	26.80
	19.80

[v3 – v5] 	31.96
	21.73  

	21.73
	13.88

	30.56
	22.52  

	22.52
	12.92

[v4 – v5] 	12.42
	 9.92  

	 9.92
	 7.38

	11.26
	 8.77  

	 8.77
	 6.30

Figure 9 �A 2.3 m steel beam specimen divided into six segments, where the damaged part is located between points 2 and 4: (a) the specimen with 
sensors, (b) geometrical details

(a) The specimen with sensors
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(b) Geometrical details
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Table 4 �Percentage changes in the coefficients of the reduced stiffness matrices for the measured and the theoretical cases for the steel beam with 
five segments

DOFs that K reduced to

ΔK using TPC technique (%)

Plate size  
100 mm × 430 mm

Plate size  
100 mm × 360 mm

Plate size  
100 mm × 290 mm

Plate size  
100 mm × 230 mm

Plate size  
100 mm × 170 mm

[v2 – v4] 	17.56
	11.14  

	11.14
	 5.48

	11.06
	 6.22  

	 6.22
	 2.78

	 6.46
	 2.95  

	 2.95
	 1.10

	 3.73
	 1.21  

	 1.21
	 0.28

	 1.90
	 0.22  

	 0.22
2 * 10–4

[v2 – v5] 	17.70
	 9.49  

	 9.49
	 2.71

	12.35
	 5.81  

	 5.81
	 1.46

	 8.25
	 3.26  

	 3.26
	 0.67

	 5.56
	 1.79  

	 1.79
	 0.29

	 3.48
	 0.83  

	 0.83
	 0.08

[v3 – v4] 	22.31
	17.96  

	17.96
	13.12

	19.61
	15.74  

	15.69
	11.99

	16.26
	12.99  

	12.99
	 9.40

	12.99
	10.31  

	10.31
	 7.40

	 9.53
	 7.49  

	 7.49
	 5.30

[v3 – v5] 	18.43
	12.83  

	12.83
	 6.53

	16.89
	11.99  

	11.99
	 6.30

	14.58
	10.46  

	10.46
	 5.60

	12.05
	 8.67  

	 8.67
	 4.6

	 9.12
	 6.53  

	 6.53
	 3.50
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reducing the size of the damaged area. The 
same beam shown in Figure 5 is considered 
here. For this case, the damage size is reduced 
by cutting a piece off the plate. The width of 
the plate remains the same, but the length 
of the plate representing the damage is now 
reduced to 430 mm, 360 mm, 290 mm, 
210 mm and 170 mm, as shown in Figure 11.

A 500 Hz sampling rate is used for all 
tests, and the global stiffness matrices are 
reduced to the following DOFs: ([v2 – v4], 
[v3 – v4] and [v3 – v5]. The recorded signals 
are pre-processed, and the results of five 
tests using the TPC technique are shown in 
Table 4.

The percentage differences of the values 
of the coefficients of the stiffness matrices 

indicate the stiffness degradation caused by 
the structural damage. The bigger difference 
between Kii and Kjj for any given i and j indi-
cates the damage location.

The results shown in Table 4 demonstrate 
that the technique is successful to find the 
location of the damage in the beam, even if 
the damage is small. Investigating the results 
of all tests for one set of points can indicate 
the ability of the technique to reflect the 
degradation in stiffness.

CONCLUSIONS
This study investigated the changes in the 
stiffness due to the presence of structural 
damage. Experimental studies using the 

two-points condensation technique (TPC) 
were described. The approach using TPC 
represents a non-destructive test method 
that uses vibration signal records to identify 
the structural damage according to the mea-
sured changes in dynamic characteristics of 
the structure.

The experimental results obtained from 
a steel beam model structure demonstrate 
the usefulness of the TPC technique. This 
method has several advantages:

■■ The concept is simple and easy to apply 
without using complex calculations.

■■ Using the TPC technique, the structure 
is reduced to a 2-DOF structure; this 
decreases the volume of data to be 
captured and the volume of data to be 

Figure 10 Recorded acceleration signals, velocity signals and displacement signals captured at points 2 to 5 for the sample steel beam
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dealt with at a time. Using more tests will 
help to obtain more precise values for 
the change in stiffness coefficients and 
improve damage location.

■■ Accuracy is achieved in detecting the 
location of the damage where the TPC 
technique results have demonstrated 
good agreement with actual results.

The results indicate that the TPC technique 
is capable of indicating the damage location 
for different sizes of damage. According to the 
damage size sensitivity tests, the technique 
can show stiffness degradation. Additionally, 
experimental results demonstrate that the 
SEREP reduction method is suitable for use 
with the TPC technique. The damping effect 
has to be accounted for to ensure accurate 
results when applying this solution technique.

Finally, the TPC technique shows the 
location of damage regardless of the place 
of the acceleration sensors or the size of the 
damage. The technique finds the location of 
damage when the acceleration sensors are 
near to the damage, as well as when they are 
far from the damage.
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LIST OF ACRONYMS
	COMAC	� Coordinate Modal Assurance 

Criterion
	 DOF	� Degrees Of Freedom
	 FFT	� Fast Fourier Transform
	 FEM	� Finite Element Method
	 MAC	� Modal Assurance Criterion
	 SEREP	� System Equivalent Reduction 

Expansion Process

Figure 11 �Simply-supported five-segment beam configured for each case by reducing the length of 
plate, where the lengths are: (a) 430 mm, (b) 360 mm, (c) 290 mm, (d) 210 mm, (e) 170 mm

(a) 430 mm

(b) 360 mm (c) 290 mm

(d) 210 mm (e) 170 mm
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	 SHM	� Structural Health Monitoring
	 TPC	� Two-Points Condensation 

Technique

LIST OF SYMBOLS
	 α, β	� Damping coefficients
	 θi	� The rotational degrees of freedom at 

node i
	 vi	� The degrees of freedom of vertical 

displacements at node i
	 ξn	 The damping ratio for the nth mode
	 ξi	 Damping ration of mode ith

	 ξj:	 Damping ration of mode jth

	 Φ	� The complete eigenvector matrix of 
the full model

	Φ+
mp	� The generalised inverse of matrix Φmp

	 ωn	 The angular frequency
	 C	 Damping matrix
	 Cr	� Damping matrix of the reduced system
	 K	 Globel stiffness matrix
	 Ko	 Theoretical stiffness matrix
	 Kc	 Identified stiffness matrix
	 Kr	 Undamaged reduced stiffness matrix
	∆Ki–j	� The change matrix of the set of nodes 

i and j
	 ∆kii	� The difference in the coefficients of 

the Kc matrix and the Kr matrix at 
position (i, i)

	 ∆kij	� The difference in the coefficients of 
the Kc matrix and the Kr matrix at 
position (i, j)

	 ∆kji	� The difference in the coefficients of 
the Kc matrix and the Kr matrix at 
position (j, i)

	 ∆kjj	� The difference in the coefficients of 
the Kc matrix and the Kr matrix at 
position (j, j)

	 M	� Globel mass matrix
	 Mr	� Mass matrix of the reduced system
	 q(t)	� The modal coordinate vector
	 q̌p(t)	 Approximate solution of δp(t)
	 u	 Displacement vector
	 u̇	 Velocity vector
	 ü	 Acceleration vector
	 ü(t)	 Acceleration response vectors
	 u(t)	 Displacement response vectors
	 T	 The coordinate transformation matrix


