The two-points condensation
technique (TPC) for
detection of structural
damage due to vibration

AN Al-Qayyim, B O Caglayan

In recent years, damage detection, as determined by variations in the dynamic characteristics or
response of structures, has received considerable attention in the literature. This paper proposes
a new damage identification technique that identifies damage location. A methodology termed
the Two-Points Condensation Technique (TPC) is presented. It uses identification of stiffness
matrix terms to assess damage, based on the incomplete measurement of captured vibration
test data. This study identifies damage using free vibration test data in the time domain. Most
other techniques used at present are based on data in the frequency domain. The TPC method
uses a set of matrices by reducing the structural system to a two-degrees-of-freedom system
and then compares the identified coefficients of the stiffness matrices with the coefficients of
the theoretically condensed stiffness matrices. The damage location is obtained by observing
the change in value of the stiffness coefficients of the two-degrees-of-freedom systems. For

the computation, an optimisation uses a program written in MATLAB code. The code can be
executed both under the MATLAB and Octave environments. The TPC technique is applied to
experimental data obtained from a steel beam model structure after introducing a thickness
change in one element. Two case studies are considered. In both cases, the method accurately
detects the damage, and determines its location. In addition, the results illustrate that observing
changes in the stiffness matrix coefficients can be a useful tool for monitoring structural health.
As the procedure proposed here is in a time domain, to eliminate time-consuming calculations
this procedure is suitable for structures that are not continuously monitored, but are monitored

within scheduled time periods.

INTRODUCTION

Changes in the material and/or geometric
properties of a structural or mechanical
system, including the changes in the bound-
ary conditions and system connectivity, are
defined as ‘damage’ that adversely affects
the current or future performance of that
system. Implicit in this definition is a com-
parison between two different states of the
system (Farrar & Doebling 1999).

Structural health monitoring (SHM) is a
procedure targeted at providing accurate and
real-time information about the performance
and health state of a structure. SHM includes
an approach to the process of characteris-
ing and detecting damage of engineering
structures. The objective of SHM is to
monitor the in situ behaviour of a structure
accurately and efficiently, to evaluate its
performance under various service loads, to
discover areas subject to damage or weaken-
ing, and to determine the health or condition
of the structure (Czichos 2013). In the area
of SHM, the term ‘damage’ in mechanical
structures can be understood intuitively as
denoting a defect or failing that impairs the
functional behaviour and working conditions

of engineering structures. The modification
to material properties or structural physical
parameters can also be considered as damage
(Tadeusz et al 2013).

The main damage detection approaches
may have some limitations. For example, the
mode shape approach is only sensitive in the
case where the measurement point is close to
the node points (see Figure 4) for a particular
mode (Liang & Chan 2009).

Salawu and Williams (1995) conducted
modal tests of a full-scale bridge before and
after rehabilitation, and determined that
the variation in natural frequencies of the
bridge was not only due to structural repairs,
although both modal assurance criterion
(MAC) and the coordinate modal assurance
criterion (COMAC) performed well to indi-
cate the location of the repairs.

Doebling and Farrar (1996) pointed
out that the frequency shift method has
considerable practical limitations for civil
structures, because it is insensitive to dam-
age unless when there is severe damage or
an accurate measurement is applied. On the
other hand, the frequency response function
approach is insensitive to the damage unless
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severe damage has occurred or accurate
measurement of vibration was done. The
inverse method is at present still only being
investigated theoretically (Friswell 2008).

For the curvature/strain modes approach,
Pandey et al (1991) demonstrated that the
damage to beam structures can be identi-
fied using mode shape curvature. Chance et
al (1994) found the measured strain mode
shape to be much more feasible for damage
localisation. But recording strain over the
whole structure is not yet feasible with cur-
rent technology; therefore, a new methodol-
ogy and equipment are needed.

Stubbs et al (1992) presented the pioneer-
ing work on using modal strain energy for
damage localisation. However, when the
damage is located in a structural element
that is not sensitive to the modal parameter
changes, the modal strain energy approach
cannot detect the damage in such an element
in a structure. On the other hand, for the
dynamic flexibility approach based on higher
vibration modes rather than lower modes, a
large number of dynamic modes are needed
to find a stiffness matrix estimation or its
changes, and mainly the higher modes need
to be measured. However, measuring the
higher frequency response is very difficult
to do because of practical limitations (Sinou
2009). From a testing standpoint, exciting
the higher frequency response of a structure
requires more energy to produce a measur-
able response at these higher frequencies
than at the lower frequencies. Koh et al
(2006) demonstrated a method called con-
densed model identification for identification
of full stiffness matrices for damage assess-
ment based on incomplete measurement.
They used three types of reduction methods,
namely static condensation, dynamic con-
densation, and System Equivalent Reduction
Expansion Process (SEREP) methods.

Pokharkar and Shrikhande (2010) used
the same Koh et al (2006) approach with the
mass-invariant constraint for the identifica-
tion of condensed models in different time
windows. Both studies used the input and
output data to develop mathematical models
to characterise the input-output behaviour
of an unknown system by means of experi-
mental data, which was acceleration within
their studies.

For all the above-mentioned methods,
input and output data are needed to identify
the location and severity of damage, while the
present study indicates the damage and its
location for incomplete measurement using
the output data only. The present method
requires fewer sensors than the above-
mentioned methods. The method is also a
useful tool in that it evaluates the structure
using real-time acceleration measurements.
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Figure 1 The main steps of the TPC technique

The two-points condensation (TPC)
technique reduces the whole structure
stiffness matrix to a set of two-degrees-
of-freedom matrices. The identified stiff-
ness matrices K, are compared with the
undamaged reduced stiffness matrices K,.
By observing the changes in the stiffness
matrix coefficients of the two-degree-of-
freedom systems, the damage location
can be obtained. In the TPC technique,
the identified stiffness matrix K, can be
obtained by optimising the equation of
motion using the measured test data. The
stiffness matrix of the undamaged structure
K, is obtained by reducing the theoretical
stiffness matrix of the structure.

In this study, the theoretical stiffness
matrix K, is generated using data from the
design drawings of the structure. SEREP is
used to condense the matrices required in
the TPC technique. To verify the efficiency
of the technique, two cases are studied:

B For the first case, the influence of the
position of the vibration sensors relative
to the damage location is studied.

B For the second case, the sensitivity of the
technique to the size of the damage is
studied.

TWO-POINTS CONDENSATION
(TPC) TECHNIQUE
The TPC technique is an analytical method
that detects structural damage by observing
the value of changes in the stiffness matrix
coefficients. The technique compares the
reduced theoretical stiffness matrix K,
with the identified stiffness matrix K. For
modelling the beam in the MATLAB/Octave
environment, the consistent mass matrix and
the Euler—Bernoulli beam element stiffness
matrix are used (Reddy 2006).

The theoretical stiffness matrix K, is
obtained using the as-built drawings of a
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structure. The reduced theoretical stiffness
K, is generated by condensing the theoretical
stiffness matrix K, to a two-degrees-of-
freedom (2-DOF) stiffness matrix. The selec-
tion of these degrees of freedom corresponds
to the vibration acceleration measurement
sensor locations.

In this technique the SEREP method is
used to reduce the stiffness and mass matrix
to 2-DOFs. The SEREP condensation has the
best computational performance and leads
to smaller errors in the identification of stiff-
ness values (Koh et al 2006).

The TPC technique calculates the
identified stiffness matrix K, by finding
the optimal solution of the equations of
motion, which should correspond to the
real system properties (the mode shapes and
frequencies).

M iy, + [Claalitlyyg + Ky 9y =0 (1)

Where:
K. = The stiffness matrix of the reduced
system

M, = The mass matrix of the reduced system

C, = The damping matrix of the reduced
system

ii = The acceleration vector

&t = The velocity vector

u = The displacement vector.

In this technique, the input data includes the
reduced mass matrix M, and initial stiffness
matrix K, in addition to the corresponding
vectors of acceleration #, velocity #, and dis-
placement «. The first and second measured
modal frequencies are part of the input data
and are used to calculate the damping coeffi-
cients and control the solution of finding the
identified (reduced) stiffness matrix.

The technique uses the theoretical mass
matrix of the structure because it does not
generally change (Pokharkar & Shrikhande
2010). The damping matrix C is calculated
according to Rayleigh damping. The damp-
ing matrix is optimised due to the stiffness
updating. The optimisation solver minimises
the function given in Equation 2, which is
based on the equation of motion.

q = sum [0 — [[M)G} + [alM,] + BIK] ]}
+ [K1{u}]]? )

Where a and 8 are the damping coefficients
(see “Damping matrix” section below). This
technique uses the multi-objective function
solver to find the optimal solution of the
function given in Equation 2. MATLAB code
was developed to analyse the beam based on
the steps outlined in Figure 1.

The comparison of the identified stiffness
matrices K, and reduced theoretical stiffness

matrices K, is used to locate the damage.
Large changes in the stiffness coefficients
of the 2-DOF matrices indicate the location
of the damage. The changes in the stiffness
matrix are shown in Equation 3.

AK, = [Akiz‘ Ak ] 3)
i Ak

Where:
AK;_; = the change matrix of the set of nodes
iandj

Ak;; = the difference in the coefficients of
the K, matrix and the K, matrix at
position (i, i)

Akij = the difference in the coefficients of
the K, matrix and the K, matrix at
position (i, /)

Akﬁ = the difference in the coefficients of
the K, matrix and the K, matrix at
position (j, i)

Akjj = the difference in the coefficients of
the K, matrix and the K,. matrix at
position (j, ).

When large changes are observed by com-
paring Ak; with Ak, the location of the
damage can be determined. If Ak, is greater
than A/(j]-, it means that the damage is located
near to the node i.

Analytical reduction of system
matrices using SEREP method

From an analytical approach standpoint, the
finite element method assumes that a contin-
uous structure can be discretised by describ-
ing it as an assembly of finite elements, each
with a number of boundary points that are
commonly referred to as nodes. The main
problem to overcome in SHM and damage
detection is the typical mismatch of the
selected number of degrees of freedom of an
analytical and an experimental representa-
tion of a structural dynamic system.

For damage detection, the concept of
model reduction (or, alternatively, model
expansion) plays an important role. Using
condensation or expansion, it is possible to
compare a large analytical set of DOFs to a
relatively small set of experimental DOFs.
Reduction and expansion also play a very
important role with regard to model updat-
ing. Consequently, the set of the tested DOFs
requires reducing the number of DOFs of a
large model without losing any information
or characteristics of the dynamic system in
the modelling process.

The SEREP condensation method parti-
tions the degrees of freedom into a set of
slave DOFs and master DOFs. The DOFs are
arranged to place the slave DOFs as the first
s coordinates, while the remaining master
DOFs are the last m coordinates (Friswell

& Motiershead 1995). Here the coordinates
represent the location of sub-matrices in the
original matrix.

The reduction of the stiffness matrix
is thus accomplished by identifying those
degrees of freedom to be condensed or
reduced as slave degrees of freedom, and to
express them in terms of remaining master
degrees-of-freedom.

The dynamic equations of equilibrium
for an undamped #n degree-of-freedom model
may be written as:

M UE) + K U(t) = Ft) (4)

Where: U(¢) and U(¢) are the acceleration and
displacement response vectors. The displace-
ment response vector U(¢) in Equation 4 can
be expressed as shown in Equation 5 using
the mode superposition method:

U(t) = @ () (5)

in which @ is the complete eigenvector matrix
of the full model, and g(¢) is the modal coor-
dinate vector. It is well known that the com-
putation of the complete eigenvector matrix

is not required for a large model. Therefore,
modal truncation is usually used in the mode
superposition technique (Qu 2004). If p eigen-
vectors of the full model are used in the mode
superposition, Equatioin 5 is rewritten as:

U() = ®,q,,(0) 6

With the arrangement of the total degrees of
freedom, Equation 6 may be partitioned as:

) = { L0 } [ B a0 )

uo | Lo,

This is equivalent to two equations (8 and 9):

U, (0 = ®,,q,() ®

U(0) = D g, (0 )

Equation 8 provides a description of the
displacement responses at the master DOFs
in terms of the eigenvector matrix at these
DOFs. The sub-matrix ®,,,, is generally not a
square matrix. Since the number of knowns
in Equation 8 are greater than the number of
unknowns, Equation 8 can be put into a nor-
mal form by transforming this equation as:
Y,(0) = (I)Lpum(t) (10)
Substituting Equation 8 into Equation 10
produces:

Y, = ®L ®, .q,0 11)
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in which qp(t) is an approximate solution of
qp(t) (O’Callahan et al 1989). Although the
square coefficient matrix of qp(z) will in gen-
eral be of full rank and possess an inverse,
the determining of the inverse of this matrix
using standard methods may encounter
some numerical difficulty, and singular-value
decomposition solution is usually required.
Symbolically ¢,,(¢) could be solved from
Equation 11 as:

a0 = Y07, @, 1!

mp@Pomp (12)

Substituting Equation 10 into Equation 12
produces the general form of the solution of
the modal coordinates in terms of physical
coordinates and modal matrix as:

G,(0) = @3, U,,0) 13
Where @7, is the generalised inverse of
matrix @, and is defined as:
@@:¢%ﬂ®m¢%rl (14)

Equation 13 represents the “best” solution
of the p variables given in Equation 8. For
convenience, the solution ép(t) of Equation 8
can be approximated by qp(t), (Qu 2004):

4,(0) = ©F,, U, (0 (15)
Substituting Equation 15 into Equation 9
leads to:

Uye) = ©,07,,U,,0) (16)
R=0,07 (17)

When the dynamic condensation matrix

is available (Equation 17), the coordinate
transformation matrix 7 may be given by the
following (Kammer 1987):

™[0,05,)
CDqu)jnp

(18)

The coordinate transformation matrix is
obtained by substituting Equation 15 into
Equation 7:

L) = { U0 } = Tu, (19)
Uyt

N

Where:

T:q>®g—{®m®h} (20)

p np
q)sp(D;’lp
Using the coordinate transformation in
Equation 20, the reduced system matrices are
given by:

20

24 |

Amplification

@1 Wy Wy

vy

Frequency

Figure 2 The half-power bandwidth method for finding damping ratios

K. = TTKT 1)

M, = TTMT 22)
Due to its significant numerical computa-
tional advantages, the SEREP condensation
method is often used in commercial FEM
packages.

Damping matrix
Udwadia (2009) discusses non-proportional
damping in linearly damped vibrating
systems in which the stiffness and damping
matrices are not restricted to being symmet-
ric and positive-definite in simple systems
with two-degrees-of-freedom; they conclude
that if the system has an active element, as
commonly arises in the active control of a
structure, the stability is more difficult to
physically interpret, and their approximation
by damping matrices that commute with the
stiffness matrices needs to be carried out
with considerable care and caution. In this
study, as there is no active element, propor-
tional damping is taken into consideration.
The damping matrix is calculated using
Rayleigh damping where the damping is
defined as being proportional to the mass
and the stiffness of the structure (Chopra
2012):

C,=aM, + K, (23)

The damping ratio for the #*h mode of such

a system is:
a1

Sn:——+ﬁwn (24)
2w 2

The coefficients « and 5 can be determined
from damping ratios of the ith and jth modes
respectively: §; and Ej respectively. Expressing
Equation 24 for these two modes in matrix
form leads to:

ey 2la1-3)

These two algebraic equations can be

(25)

solved to determine the coefficients a

and . Seeing that the damping matrix

is proportional to the mass and stiffness
matrices, the change in the damping matrix
due to the change in the stiffness is taken
into account.

The damping ratios ¢; and 51 for the
first mode and second mode are calcu-
lated using the half-power bandwidth
method using Equation 26 (Silva &
Clarence 2000):

Wy — W

26 = (26)

wn

The angular frequency w, for each

mode is obtained by using a Fast Fourier
Transform technique (FFT) (Monson
1996). By plotting the Fourier amplitude
spectra of the signals recorded, the
frequencies associated with the modes of
vibration of the structure are located at
the corresponding vibration amplitude
peak values.

As shown in Figure 2, the angular fre-
quencies w, and w; are obtained by finding
the corresponding angular frequencies for
the amplitude that is equal to the amplitude
at w, divided by V2.
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Figure 4 A-plate welded to a simply-supported steel beam for damage detection

Signal integration

To obtain the velocity and displacement
required for the equation of motion, the
trapezoidal rule for numerical integration is
applied to acceleration data, where:

New area = area so far + increment of the area

The increment of the area is the trapezoidal
approximation, i.e. the half sum of the paral-
lel sides times the perpendicular distance
(Leis 2011), as illustrated in Figure 3.

Optimisation technique
Multi-objective optimisation is a math-
ematical optimisation technique used to
optimise more than one objective function
simultaneously. In this study, a multi-
objective optimisation technique is used to
optimise the equation of motion used in the
TPC technique.

The problem of reducing a set of
nonlinear functions Fj(x) subject to a set

of goals F; is addressed by the MATLAB/
Octave code developed. The maximum
of F(x) — F; is minimised by the unscaled
goal attainment problem. The algorithm
coded is used to find x to minimise the
maximum of [(F;(x) — F;)/wi], where the
weighting variables w; are a given positive
value. The solution is controlled by the
given lower and upper limits of the solution,
where lower limit < x < upper limit
(Edward et al 2011). The TPC technique
finds the best stiffness value to satisfy the
function given in Equation 2, as well as the
corresponding frequencies. The initial inputs
are as follows:
1. The reduced theoretical stiffness matrix.
2. The reduced mass matrix.
3. The acceleration, velocity and displace-
ment vectors.
4. The first mode and second modal
frequencies.
5. The damping ratios of the first two modal
frequencies.

6. To determine the upper limit and lower
limit of the solution, it is assumed for this
study that the stiffness degradation is
between 140% and 80%, respectively.

7. A goal function value of zero is used in
order to get the optimal value of K in the
function given in Equation 2.

8. Weighting function values of unity are
used in this study.

The technique uses the reduced theoretical

stiffness matrix as a starting point where the

solver finds the best stiffness matrix values
that satisfy the equation of motion and the
associated modal frequencies.

The output of the solution process is the
identified (optimised) stiffness matrix. K, is
then used for comparison purposes to locate
the damage.

EXPERIMENTAL STUDY

The structural system used in this study is
a simply-supported steel beam with a span
of 2.3 m. The cross-section of the beam is a
rectangular section of 100 mm by 21.9 mm.
The material properties of the beam are

as follows:

Mass density = 7 850 kg/m?
Young’s modulus E = 205.9 GPa

The experimental setup is shown in Figure 4.

Damage in the form of stiffness degrada-
tion is introduced into the beam by welding a
plate (100 mm x 500 mm) with a thickness of
3.8 mm at a distance of 450 mm from the left
beam support. The material properties of the
plates are the same as the material properties
of the beam. The change in thickness leads to
change in the stiffness of a part of the beam.

For modelling the beam in the MATLAB/
Octave environment, the consistent mass
matrix and the Euler—Bernoulli beam ele-
ment stiffness matrix are used (Reddy 2006).
In order to apply the technique, the beam
is divided into five segments, as shown
in Figure 5(a). The damaged segment is
located between points 2 and 3, as shown in
Figure 5(b).

The DOFs considered in the model are
vertical displacements and rotations at each
node. The DOFs (6, 0,, 05, 8,, 65 and 6;)
refer to the rotations, where the DOFs (v,, v,
v, and v;) refer to the vertical displacements.

For the damaged beam prototype, four
accelerometers are placed at points 2, 3, 4
and 5 of the beam, as shown in Figure 5(c).
The mass of each accelerometer including
the clamping apparatus is 0.88 kg. These
masses are added to the global mass matrix
of the system as lumped masses at the nodes
where the accelerometers are located. It is
essential to collect sufficient data to establish
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Figure 5 (a) An undamaged steel beam model A-B with five elements, (b) the damaged steel beam model A-B with five elements, (c) the simply-
supported steel beam model specimen with accelerometers placed on the beam

Table 1 The reduced stiffness and mass matrices using SEREP

Table 2 Differences between the damaged and the theoretical

) - undamaged stiffness matrices for the sample steel beam
DOFs that K Theoretical reduced Theoretical reduced
is reduced to | stiffness matrix (N/m) x 104 mass matrix (Kg) Identified changes in . .
DOmat € | sifiness matrxuing | Theartic) canges e
vy — ] [ 6.700 73.715] [ 1.817 0‘075] TPC technique (AK%) :
27 V4 —
3715 2850 0075 1.744 vy — v, [28.13 16.63] [27‘37 19‘13]
27" 16.63 10.71 1913 10.19
vy — v [ 3.778 —2.694] [ 2.297 1.056]
277 -2.694 3778 1.056  2.313 s - v] [25.19 13.19] [24.39 14.18]
27" 1319  4.43 1418  4.24
e - v,] [ 8.721 —8.479] [ 2.366 —1.062]
37V -8472  9.021 ~1062 2218 Vs — v [2o51 18%] [2459 195
37" 18.96 15.30 19.86 14.58
(Vo — v] [ 3.062 74‘137] [ 1.861 *0‘089] 1899 10.57 18.06 11.70
377 —42137 7447 ~0.0897 1.831 v3 - vsl 1057 539 1170 517

the correct mass matrix by visual inspec-
tion of the model and to use the applicable
shop drawings.

The motion of the beam is initiated
by using a pullback-quick release method
by tying a rope to the middle of the beam

42

span and then cutting it after having pulled
it downwards.

Figures 6(a) and 6(b) show the accelera-
tion data captured during the test, as well
as the velocity and displacement signals

obtained by integrating the acceleration
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signals obtained from the four channels
using the trapezoidal method. The accelera-
tion data is collected at a sampling rate of
500 Hz.
To apply the damage detection algorithm
developed, as described in this paper, the




(a) The recorded acceleration signals from four channels for five-element steel beam
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Figure 6 (a) The recorded acceleration signals from four channels for five-element steel beam, (b) the velocity signals for five-element steel beam,

(c) the displacement signals

theoretical stiffness matrix K and mass Using the SEREP condensation method,
matrix M of the system are reduced to the reduced stiffness and mass matrices are
two DOFs using the SEREP method. The produced for each set of two DOFs, as shown
DOFs are selected to cover all the pos- in Table 1.

sible combinations of vertical DOFs. The By plotting the Fourier amplitude spectra
selected DOFs are vy — vy, Vo — V5, V3 — Vg, and using Equations 23 through 26, the

and vg — v5. The resultant matrices for the damping matrix, frequencies and damping
condensed structural system are given in ratios are calculated. Figure 8 shows the
Figure 7. Fourier amplitude spectra for the first three

frequencies for the measured values for the
four channels of the five-segment beam
model. The frequency of the first mode for
all nodes is 9.4 Hz, while the damping ratio is
0.0185. The second mode has a frequency of
38 Hz, and the damping ratio is 0.0681.

The identified stiffness matrix K, which
is obtained as output from the optimisation,
is compared with the reduced theoretical
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Figure 7 Reduced stiffness and mass matrices of the beam into sets of 2 DOF systems

stiffness matrices K. The comparison is
based on Equation 3. The results of the
comparison between (K) and (K,) are pro-
vided in Table 2. The solution is checked by
comparing the frequencies computed from
the analytical model to that of the physical
structural system (see Figure 1).

The results in Table 2 show that the
large percentage changes in coefficients of
the stiffness matrix occur at coefficients of
nodes that are near to the location of the
damage.

For the condensed stiffness matrix K, _,,
using DOFs (v, — v,), the percentage change

in coefficient k, ,, is larger than the change

v
in coefficient k,, , . This indicates that the
damage is located near to node 2 rather than
near to node 4. The same conclusion can

be established from AK for DOFs v, — v,,

Vo — V5, V3 — V,, and v3 — v; ( see Table 2
column 1).

The effect of acceleration

sensor positioning

For this first case study, the effect of the
position of the sensors relative to the damage
location is investigated. To determine the
effect of sensor positioning, the same beam
described above is divided into six segments
of equal length (Figure 9).

Five accelerometers are placed at the
intermediate points 2, 3, 4, 5 and 6. The
damaged segment is located between points
2 and 4, as shown in Figure 9(a). The degrees
of freedom 0, 0, 05, 6, 05, 05 and 0., refer
to the rotations, while the degrees of free-
dom vy, vg, v, v5 and v, refer to the vertical
displacements, as shown in Figure 9(b).

The acceleration data is collected using a

14 T T
4 4 4 4
A ch-1 ch-2 ch-3 ch-4 B
12 k: ) o = X |
10 + —ch-3 —
SN —ch-2
S st -
X
< — ch-4
32 i
g 6 : ch-1 —
<
|
44 [ ) —
2 4 —
0 JL - T s !
0 * * 50 * 100 150
@1 @2 @3
Frequency (Hz)

Figure 8 Fourier amplitude spectra for four channels of five-element steel beam where the first

three frequencies appear

sampling rate of 500 Hz. Figure 10 shows the
recorded vertical acceleration signals, veloc-
ity signals, and displacement signals. These
signals are for the degrees of freedom v,, vs,
vy V5 and v respectively.

In this test, the global stiffness matrix
is reduced to the following DOFs: ([vy — v,],
vy = vsl, [v3 — vyl [v3 — vs] and [v, — vg)).
The initial value for the stiffness matrix
used is the undamaged theoretical stiffness

matrix. The damping parameters are calcu-
lated in the same way as that of the previous
example. Table 3 shows a comparison of the
results for the theoretical coefficients of the
condensed stiffness matrices and the coef-
ficients calculated using the TPC technique.
For the first result of DOFs [v, — v,],

both the nodes (2, 4) are located outside the
damaged area. Node 2 is closer than node

4 to the damage area, which explains the

Journal of the South African Institution of Civil Engineering « Volume 59 Number 2 June 2017




383.3 mm 383.3 mm 383.3 mm 383.3 mm 383.3 mm 383.3 mm

(b) Geometrical details

Figure 9 A 2.3 m steel beam specimen divided into six segments, where the damaged part is located between points 2 and 4: (a) the specimen with
sensors, (b) geometrical details

Table 3 Percentage changes in the coefficients of the reduced stiffness matrices for the measured | large change that occurs in the coefficient
and the theoretical cases for the steel beam with six segments k,,y,- The result for [v; — v,] shows the large
changes concentrated in k,,_, rather than
DOFs that K reduced t Identified changes in stiffness Theoretical changes in the 8 . V3V3
s that M reducec to matrix using TPC technique (AK%) stiffness matrix (AK%) kv4v4 because node 3 is located at the dam-
aged segment, while node 4 is outside the
23.81 15.69 22.61 16.74
vy = vyl [15.69 11.99] [16.74 11.07] damaged segment. o
The result of [v, — v;] indicates the
vy v.] [24.04 13.01] [22.63 14.21] damage at the left side of the segment; both
27V
1300 720 1421 614 nodes are, however, outside the damaged
[34'14 25'53] [33‘06 26‘80] segment. The result of [v, — v5] provides a
[v3 = val 25.53 21.31 26.80 19.80 good indication of the location of damage.
31.96 21.73 30.56 22.52 e . .
[vs — vsl [21'73 13.88] [22‘52 12‘92] Sen5|t|V|ty of the TPC technlque
for damage extent
[vy - vsl [1333 32;] [151;;? g;g] The sensitivity of the technique to indicate
' ' ' i the extent of damage is investigated by

Table 4 Percentage changes in the coefficients of the reduced stiffness matrices for the measured and the theoretical cases for the steel beam with
five segments

AK using TPC technique (%)
DIEL e 1 redmgsl Plate size Plate size Plate size Plate size Plate size
100 mm x 430 mm 100 mm x 360 mm 100 mm x 290 mm 100 mm x 230 mm 100 mm x 170 mm

v — v,] [17.56 11.14] [11.06 6.22] [ 6.46 2.95] [ 3.73 1.21] [ 1.90 0.22 ]
254 11.14 5.48 6.22 278 295 110 1.21 0.28 0.22 2*10-4.

vy — v [17‘70 9‘49] [12‘35 5‘81] [ 8.25 3.26] [ 5.56 1.79] [ 3.48 0.83]
2 5 949 2.71 5.81 146 3.26 0.67 1.79 029 0.83 0.08

Ve — ] [22‘31 17‘96] [19‘61 15‘69] [16.26 12.99] [12.99 10.31] [ 9.53 7.49]
34 1796 13.12 15.74 11.99 12.99 940 10.31 740 749 5.30

Ve — vl [18.43 12.83] [16.89 11.99] [14.58 10.46] [12.05 8.67] [ 9.12 6.53]
3 5 12.83 6.53 1199 6.30 1046 5.60 8.67 4.6 6.53  3.50
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Figure 10 Recorded acceleration signals, velocity signals and displacement signals captured at points 2 to 5 for the sample steel beam

reducing the size of the damaged area. The
same beam shown in Figure 5 is considered
here. For this case, the damage size is reduced
by cutting a piece off the plate. The width of
the plate remains the same, but the length
of the plate representing the damage is now
reduced to 430 mm, 360 mm, 290 mm,
210 mm and 170 mm, as shown in Figure 11.

A 500 Hz sampling rate is used for all
tests, and the global stiffness matrices are
reduced to the following DOFs: ([v, — v,],
[v3 — v,] and [v5 — v5]. The recorded signals
are pre-processed, and the results of five
tests using the TPC technique are shown in
Table 4.

The percentage differences of the values
of the coefficients of the stiffness matrices

46

indicate the stiffness degradation caused by
the structural damage. The bigger difference
between K;; and Kj; for any given i and j indi-
cates the damage location.

The results shown in Table 4 demonstrate
that the technique is successful to find the
location of the damage in the beam, even if
the damage is small. Investigating the results
of all tests for one set of points can indicate
the ability of the technique to reflect the
degradation in stiffness.

CONCLUSIONS

This study investigated the changes in the
stiffness due to the presence of structural
damage. Experimental studies using the

two-points condensation technique (TPC)

were described. The approach using TPC

represents a non-destructive test method
that uses vibration signal records to identify
the structural damage according to the mea-
sured changes in dynamic characteristics of
the structure.

The experimental results obtained from

a steel beam model structure demonstrate

the usefulness of the TPC technique. This

method has several advantages:

B The concept is simple and easy to apply
without using complex calculations.

B Using the TPC technique, the structure
is reduced to a 2-DOF structure; this
decreases the volume of data to be
captured and the volume of data to be
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Figure 11 Simply-supported five-segment beam configured for each case by reducing the length of
plate, where the lengths are: (a) 430 mm, (b) 360 mm, (c) 290 mm, (d) 210 mm, (e) 170 mm

dealt with at a time. Using more tests will
help to obtain more precise values for

the change in stiffness coefficients and
improve damage location.

B Accuracy is achieved in detecting the
location of the damage where the TPC
technique results have demonstrated
good agreement with actual results.

The results indicate that the TPC technique

is capable of indicating the damage location

for different sizes of damage. According to the
damage size sensitivity tests, the technique
can show stiffness degradation. Additionally,
experimental results demonstrate that the

SEREP reduction method is suitable for use

with the TPC technique. The damping effect

has to be accounted for to ensure accurate

results when applying this solution technique.
Finally, the TPC technique shows the

location of damage regardless of the place

of the acceleration sensors or the size of the

damage. The technique finds the location of

damage when the acceleration sensors are
near to the damage, as well as when they are
far from the damage.
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LIST OF ACRONYMS
COMAC Coordinate Modal Assurance
Criterion
DOF Degrees Of Freedom
FFT Fast Fourier Transform
FEM Finite Element Method
MAC Modal Assurance Criterion
SEREP System Equivalent Reduction
Expansion Process
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SHM Structural Health Monitoring @7, The generalised inverse of matrix @, Ak;; The difference in the coefficients of

TPC Two-Points Condensation ®, The angular frequency the K, matrix and the K, matrix at

Technique Damping matrix position (j, i)

Damping matrix of the reduced system Ak The difference in the coefficients of

C

CV

K Globel stiffness matrix the K, matrix and the K, matrix at
KO

LIST OF SYMBOLS Theoretical stiffness matrix position (, )

a, B Damping coefficients K, Identified stiffness matrix M Globel mass matrix
0; The rotational degrees of freedom at K, Undamaged reduced stiffness matrix M, Mass matrix of the reduced system
node i AK;_; The change matrix of the set of nodes q(t) The modal coordinate vector
v; The degrees of freedom of vertical iandj Vp(t) Approximate solution of 6p(t)
displacements at node i Ak; The difference in the coefficients of Displacement vector

¢, The damping ratio for the n™h mode

& Damping ration of mode ith

cfj: Damping ration of mode jth

® The complete eigenvector matrix of
the full model

the K, matrix and the K, matrix at
position (i, i)

. The difference in the coefficients of

the K, matrix and the K, matrix at
position (i, /)

Velocity vector

i Acceleration vector

Acceleration response vectors
Displacement response vectors
The coordinate transformation matrix

Journal of the South African Institution of Civil Engineering + Volume 59 Number 2 June 2017



