Investigating the bottom free surface nappe (ogee profile) across a sharp-crested weir caused by the flow in an asymmetrical approach channel

S J van Vuuren, G L Coetzee, C P R Roberts

The shape of an ogee spillway is based on the shape of the lower nappe of water flowing over an aerated sharp-crested weir. At the design discharge, this shape minimises the possibility of sub-atmospheric pressure occurring on the spillway and maximises the discharge across the spillway. The formulae that are currently in use to approximate the ogee profile consider only two-dimensional flow parameters, being the depth of flow over the spillway crest, the inclination of the upstream wall face, and the pool depth upstream of the spillway. The current formulae for the ogee shape, does not consider the influence of three-dimensional flow. The most significant three-dimensional flow parameters that could affect the shape of the lower nappe are the flow velocity distribution upstream of the spillway, the orientation or angle of the water approaching the spillway, the asymmetrical cross-section of the approach channel, and the curvature of the dam wall. This paper reflects the influence of asymmetrical flow in the approach channel. The investigation was based on a physical model constructed at the Department of Water and Sanitation (DWS). The inclination of the model’s sidewalls of the upstream approach channel was varied to cause a change in the symmetricity, while the lower nappe profile was routinely measured. It was found that the flow in the asymmetrical approach channel caused a variation from the theoretical estimated ogee profile. A comparison between the measured nappe profile and the currently used formulae was investigated. It can be concluded that the symmetricity of the approach channel influences the shape of the bottom nappe, which differs from the shape as proposed by the current ogee formulae. It is recommended that three-dimensional flow should be examined when designing an ogee spillway.

LIST OF SYMBOLS

\[S_f \] symmetry factor of the approach channel

\[v_o \] mean velocity in the approach channel (m/s)

INTRODUCTION

The ogee spillway relationship (USBR 1987, Hager 1987) is used to define the geometric profile of the spillway section of a dam or hydraulic structure. The ogee relationship describes the bottom nappe associated with the flow over a sharp-crested weir. The current relationship accommodates the influence of the unit discharge, the angle of inclination of the upstream wall face, as well as the relationship of upstream pool depth to the total upstream energy at the apex of the structure. In cases where the discharge flow rate exceeds the design flow rate, the nappe

Technical Paper
and precise spillway profile to reduce the possibility of cavitation damage to the spillway depression. This will be achieved by careful selection of the spillway's free-surface profile, which is usually done during the design stage. The free-surface profile of the ogee spillway will be influenced by the two-dimensional characteristics of the flow, namely the available energy (i.e. depth and velocity of water flowing over the spillway crest), the angle of inclination of the upstream wall face, and the height of the spillway above the natural ground level (USBR 1987; USCE 1970; Vischer & Hager 1999). This approximation of coplanar (two-dimensional) flow neglects the three-dimensional flow parameters which are occurring immediately upstream of the spillway.

Research indicated that the vertical displacement of a flow particle at the crest’s origin is equal to the vertical distance between the highest point of the nappe and the elevation of the ogee crest (Chow 1959). Figure 1 depicts this position, which is recognised as the turning point of the curvature. The experiments done by Rajaratnam et al (1968) (referenced by Vischer & Hager, Dam Hydraulics, Ministry of Science and Technology 2007) indicated that the value of C' can be empirically estimated by Equation 1 and the horizontal distance (f) to this coordinate measured from the crest can be estimated by Equation 2. The experiments done by Rajaratnam et al (1968) were actually for a confined weir.

$$C' = 0.112 \times H_d - \frac{0.4v^2}{2g} \quad (1)$$

$$f' = 0.250 \times H_d - \frac{0.4v^2}{2g} \quad (2)$$

A wealth of literature sources are available on the approximation of the ogee profile for spillway design, and several endeavours have been made in developing a two-dimensional relationship that would be able to mathematically describe the most desirable shape of the ogee curve. These relationships exclude the asymmetry of valleys and the asymmetry of the topographical approach channels that influence the flow pattern and velocity distribution upstream of the spillway, leading to an insufficient design of the ogee spillway (Van Vuuren et al 2011).

Methods defining the geometry of the ogee spillway’s crest are governed by the relative

Table 1 Methods for approximation of the ogee curve

<table>
<thead>
<tr>
<th>Approximation of the ogee curve based on:</th>
<th>Experimental methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ven te Chow (1st principles) (Chow 1959)</td>
<td>United States Bureau of Reclamation (USBR 1987)</td>
</tr>
<tr>
<td>Brink Velocity (Wahl et al 2008)</td>
<td>United States Army Corps of Engineers (USACE 1970)</td>
</tr>
<tr>
<td>Ven te Chow (modified) (Chow 1959)</td>
<td>United States Army Corps of Engineers (USACE (b) 1987)</td>
</tr>
<tr>
<td>Montes (Chanson 2004)</td>
<td>CE-05016 (Ministry of Science and Technology 2007)</td>
</tr>
</tbody>
</table>

Table 1 Methods for approximation of the ogee curve

Figure 1 Position of the turning point of the curvature at the maximum elevation of the ogee profile

This study evaluated the existing ogee relationship, considering in particular the three-dimensional flow parameters resembling an asymmetrical approach channel.

The physical model was set up in accordance with ASTM Designation: D 5242–92 (Standard Test Method for Open-Channel Flow Measurement of Water with Thin Plate Weirs (ASTM International 2001) and ISO 1438: Hydrometry – Open channel flow measurement using thin-plate weirs (ISO 2008). Froude similarity was selected with an undistorted scale of 1:10 for the physical model.

THEORETICAL CONSIDERATION

Research on the projectile movement of a free-falling jet of water revealed that the shape of the lower nappe of a jet of water flowing over a ventilated sharp-crested weir resembled the shape of an ogee spillway (Chow 1959; Hager 1987; Knapp et al 1970; Melshheimer & Murphy 1970; Ministry of Science and Technology 2007; Murphy 1973; USACE (a) 1987; USACE (b) 1987; USBR 1987; Wahl et al 2008). However, both the numerical relationships for the flow over a sharp-crested weir and the principle for the projectile movement of a free-falling jet of water describing this shape only consider the two-dimensional characteristics of the flow, namely the available energy (i.e. depth and velocity of water flowing over the spillway crest), the angle of inclination of the upstream wall face, and the height of the spillway above the natural ground level (USBR 1987; USCE 1970; Vischer & Hager 1999). This approximation of coplanar (two-dimensional) flow neglects the
Table 2 Various scenarios executed with allocated notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description of approach channel</th>
<th>Total discharge (ℓ/s)</th>
<th>Unit discharge (ℓ/s/m)</th>
<th>Head (Hd) (mm)</th>
<th>Equivalent ogee head (Heg) (mm)</th>
<th>Symmetry factor (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario A</td>
<td>Symmetrical (baseline)</td>
<td>71.929</td>
<td>59.890</td>
<td>105.10</td>
<td>93.35</td>
<td>0.500</td>
</tr>
<tr>
<td>Scenario B</td>
<td>Asymmetrical, sidewall inclined at 45°</td>
<td>72.678</td>
<td>60.514</td>
<td>116.65</td>
<td>105.28</td>
<td>0.146</td>
</tr>
<tr>
<td>Scenario C</td>
<td>Asymmetrical, sidewall inclined at 60°</td>
<td>72.609</td>
<td>60.457</td>
<td>116.05</td>
<td>104.74</td>
<td>0.084</td>
</tr>
</tbody>
</table>

Figure 2. Generic upstream cross-sectional view of the asymmetrical approach channel with sidewall inclined at various angles

The symmetrical approach channel, used as baseline scenario, was compared with the asymmetrical approach layouts that were conducted at various sidewall inclinations. The various scenarios executed were labelled as indicated in Table 2.

For each of the scenarios conducted a separate datasheet was set up in which the XYZ-coordinates of the lower nappe profile were populated. The stage depth measured in stilling columns by two OTT-point gauges was averaged and converted to the design head of an equivalent ogee structure. Equation 1 as defined by Rajaratnam et al. (1968) was applied to calculate the equivalent ogee design head. The measured ogee profile for each of the scenarios was plotted in a three-dimensional XYZ surface plot against the theoretical ogee profile (USACE 1970).

RESULTS AND DISCUSSION

The experimental results produced by the asymmetrical approach channel generated seven ogee curves for each channel configuration, representing the three-dimensional shape of the asymmetrical bottom nappe. In the case of the symmetrical base line recordings, the ogee curve was measured at five increments along the crest of the sharp-crested weir, representing the three-dimensional shape of the symmetrical bottom nappe. These measured curves were representing the shape of the nappe that extends from the left boundary, centre and up to the right boundary of the nappe. The positions of the curves were chosen to ensure that all the scenarios could be analysed individually and later compared with the other scenarios. Each point measured was recorded as a three-dimensional XYZ coordinate.

These measurements were depicted in a two-dimensional XZ-plot in Figure 4, and were compared with the theoretical ogee profile by the USBR (1987), USACE (1970), Hager (1987) and Ministry of Science and Technology (CE-05016) (2007).

The measured ogee profile was plotted as a red surface in a three-dimensional XYZ-plot in Figure 5. Overlapping the measured ogee surface plot in Figure 5 is the theoretical ogee profile by the USACE (1970) depicted by the green surface.

EXPERIMENTAL SETUP AND PROCEDURE

A physical model of a sharp-crested weir was constructed at the Department of Water Affairs and Sanitation’s Hydraulic Laboratory, South Africa. The model provided the opportunity to:

- provide the model with the correct dimensions and specifications in order to ensure that equations provided by the current literature are valid and that international credibility is achieved (ASTM International 2001; ISO 2008)
- provide an undisturbed, uniform approach flow pattern across the weir, and vary the flow rate to enable the investigation of different stages versus flow rate scenarios, as well as measuring the stage of the approach flow accurately
- measure the profile of the underlying nappe of water flowing over the sharp-crested weir.

Three configurations of the physical model were investigated as reflected in Table 2, the first being the symmetrical layout with vertical sidewall, used as baseline reference for the other configuration. The other layouts comprised one having an inclined sidewall of 45° and the other an inclined sidewall of 60°. Six sheets of plywood were attached to steel frames and these were lowered into the approach channel of the physical model. The plywood sidewalls could vary between angles that ranged from 45° to 90°. This allowed the symmetry of the approach channel to be changed to an asymmetrical approach channel with one sidewall either being sloped at 45° or 60°. The total length of the sidewall measured 7.2 m. The cross-sectional view of the variable approach channel is depicted in Figure 2.
toward the side of the inclined sidewall, unlike
was noticed that the ogee profile was greater
In the two-dimensional plot of scenario B it
contraction and resistance was a maximum.
the centre of the weir and overestimate the
approximations of the ogee profile tend to
increased flow rate exists in the centre of the
symmetrical approach channel, and that an
flow resistance at this location.
The result was that the theoretical
approximations of the ogee profile tend to
underestimate the measured ogee profile
at the centre of the weir and overestimate the
ogee profile at the boundaries where flow
contraction and resistance was a maximum.
Overestimation of the ogee profile is not as
critical as underestimation. The overestima-
tion of the ogee profile at the boundaries will
simply imply that a positive hydrostatic
pressure is present in these regions on the
spillway. However, underestimating the ogee
profile may cause a more detrimental effect,
which may lead to cavitation of the surface of
the spillway if significant sub-atmospheric
pressures are experienced. Long-term expo-
sure to extensive sub-atmospheric conditions
may cause failure of the spillway structure.

Scenario A: Symmetrical
approach channel (baseline)
It can be seen in the two-dimensional plot of
scenario A that the ogee profile in the centre
of the nappe was greater than those measured
at the outer boundaries. This trend can be
visualised in more detail in the final results in
which the surface plot of the measured nappe
was depicted in an XYZ plot. The reason for
this outcome can be explained due to the
fact that the ogee profile was measured for a
symmetrical approach channel, and that an
increased flow rate exists in the centre of the
structure, resulting in minimal contraction
and flow resistance at this location.
The result was that the theoretical
approximations of the ogee profile tend to
underestimate the measured ogee profile
at the centre of the weir and overestimate the
ogee profile at the boundaries where flow
contraction and resistance was a maximum.
Overestimation of the ogee profile is not as
critical as underestimation. The overestima-
tion of the ogee profile at the boundaries will
simply imply that a positive hydrostatic
pressure is present in these regions on the
spillway. However, underestimating the ogee
profile may cause a more detrimental effect,
which may lead to cavitation of the surface of
the spillway if significant sub-atmospheric
pressures are experienced. Long-term expo-
sure to extensive sub-atmospheric conditions
may cause failure of the spillway structure.

Scenario B: Asymmetrical approach
channel with sidewall inclined at 45°
In the two-dimensional plot of scenario B it
was noticed that the ogee profile was greater
toward the side of the inclined sidewall, unlike
in scenario A where the greatest ogee profile
occurred in the centre of the flow, due to the
symmetry of the approach channel. The
greatest ogee profile tends to lie between the
600 mm and 800 mm measuring location. The
inclined sidewall was installed to the right of
the approach channel. The centreline tends to
be moved off-centre in the direction where the
inclined sidewall had been installed.
The result was that the theoretical
approximations of the ogee profile tend to
underestimate the measured ogee profile
between the 600 mm and 800 mm mark mea-
sured along the crest, and again overestimate
the ogee profile at the boundaries similar to
the symmetrical approach channel layout.

Scenario C: Asymmetrical approach
channel with sidewall inclined at 60°
Similar to scenario B the two-dimensional plot
of scenario C reflected that the ogee profile
was greater towards the side of the inclined
sidewall. The greatest ogee profile tends to
lie at the 800 mm measuring location. This
indicated that the ogee nappe was moved off-
centre even more than in the case when the
inclination of the sidewall was 45°. This 60°
angle sidewall was steep and extended closely
to the boundary of the 1200 mm mark of the
sharp-crested weir so that this could have
caused the sharp-crested weir not to function
as a fully-contracted weir anymore. This may
be the reason for the higher velocities present
in this region (less flow resistance), thus result-
ing in the ogee profile to be the greatest at this
location. The result was that the theoretical
approximations of the ogee profile tended
to underestimate the measured ogee profile
between the 400 mm and 1000 mm mark
as measured along the crest, and again over-
estimated the ogee profile at the boundaries
similar to the symmetrical approach channel
layout. High flow velocities present in this
region can be observed in Figure 3 where the
flow pattern can be clearly visualised.
This confirms the hypothesis that an
asymmetrical approach channel influences
not only the geometric shape of the ogee
profile, but also the symmetry of flow
across the hydraulic structure. The cen-
treline tends to be moved off-centre in the
direction where the inclined sidewall had
been installed.

It is therefore proposed that a symmetri-
city factor (S_{f}) be used to estimate the severity
of the asymmetry of the approach chan-
el. This will allow for future classification of
the approach channels into different catego-
ries depending on the severity of the asym-
metry. The proposed relationship for the
symmetry factor is given in Equation 3.
The symmetry factors for scenarios A to
C are given in Table 2.

\[
S_{f} = \frac{A_{c}}{A_{t}}
\]

In the case of a symmetrical approach
channel, the symmetry factor (S_{f}) would
therefore be equal to 0.5, and values less than
0.5 would indicate that an asymmetrical
approach channel is perceptible. The clas-
sification of the symmetry factor needs
further investigation and will be published in
a forthcoming paper.

CONCLUSIONS AND
RECOMMENDATIONS
The change in the symmetry of the
approach channel has unambiguously
proved to alter the shape of the ogee
profile. This alteration is appreciated in the
following ways:
- The profile of the nappe differs along the
length of the weir. From the experiments
conducted it was also revealed that the
side of the weir with the inclined sidewall
caused the profile of the nappe to be
higher than at the opposite side.
- When comparing the asymmetrical
approach channel's ogee profile with the
baseline/symmetrical nappe profile, the
profile of the asymmetrical approach
channel configuration was increased at
the vicinity of the inclined wall.
- If an ogee spillway were to be designed
considering only the two-dimensional
flow parameters, problems would arise
if the cross-section is asymmetrical. The
profile would tend to be higher than
expected towards the inclined sidewall.
Figure 4 Measured ogee profile for different scenarios and compared with various other approximations.
Figure 5 Measured ogee profile (red profile) for different scenarios and compared with the USACE (1970) approximation (green profile)
of the structure, yet lower than expected on the opposite side. This may cause the dual problem of potential separation from the spillway structure causing cavitation damage due to sub-atmospheric pressure, and sub-optimal discharge on the opposite side, respectively.

The deduction of the comparison of measured profiles with the theoretically calculated ogee profiles produced diverse results:

i. The USBR (1987), USACE (1970), Hager (1987) and Ministry of Science and Technology (CE-05016) (2007) ogee approximations corresponded well with the geometry of the measured ogee profiles, although these curves had a tendency to underestimate the actual ogee profile at the position on the crest where the effective resistance to flow is a minimum.

ii. The downstream approximation made by Hager (1987) of the ogee curve appeared to overestimate the projection of the nappe profile in the downstream region of the ogee. This demonstrated that the formula was conservative and that the probability of sub-atmospheric pressure occurring in this region is minimised.

It is recommended that further studies be carried out (by making use of physical modelling) to assess the effect of the angle of the approach channel relative to the ogee spillway, as well as the curvature of the crest on the geometric shape of the ogee profile.

Results obtained from this study, as well as the studies proposed above, should be compared with a numerical simulation using a CFD analysis. It is absolutely imperative and critical to include the effect of three-dimensional flow when designing an ogee spillway. This is also indicative of the necessity of physical modelling during the design process, as theoretical curves do not necessarily provide optimal and safe solutions. A design guideline should be developed that would assist design engineers to design suitable, efficient and safe ogee spillways by considering parameters such as the asymmetry of the approach channel.

ACKNOWLEDGEMENTS

We would like to thank the Water Research Commission for their valued contribution to this study, as well as the Department of Water and Sanitation for the use of their hydraulic laboratory.

REFERENCES

