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INTRODUCTION

Areal rainfall is recognised as a major con-

tributor to uncertainty in catchment model-

ling (Kavetski et al 2006a,b; Sawunyama 

2008; Hughes et al 2011), although it is not 

formally incorporated into hydrological 

analysis in southern Africa (Sawunyama 

2008) and many other regions of the world. 

While improving rainfall measurement is 

considered vital for well-informed decision-

making in water resources management 

(Hughes et al 2011), many regions of the 

world may not have the resources to install 

and maintain the required data networks 

(Sawunyama 2008). Even if this were pos-

sible, areal rainfall estimation for the practi-

cally installable rain-gauge density is still 

likely to be substantially uncertain. Remote-

sensing approaches require validation using 

rain-gauge measurements (Sawunyama 

2008) and are therefore unlikely to reduce 

these uncertainties to insignificant levels. 

The need to formally incorporate rainfall 

uncertainty into catchment modelling is 

therefore essential. Bayesian approaches have 

recently been applied for the incorporation 

of uncertainties of rainfall and other vari-

ables and have generally been assessed as 

effective (Kavektsi et al 2006a,b; Ajami et al 

2007; Vrugt et al 2009; Kuczera et al 2006, 

2010; Balin et al 2010). Their complexity and 

high computational requirements, however, 

pose serious challenges to their application 

in practice. Sawunyama (2008) investigated 

the effect of rainfall uncertainties by obtain-

ing areal rainfalls from different rain-gauge 

densities (by systematically omitting some 

valid stations from areal rainfall estimation) 

and comparing the modelled streamflow 

sequences using these different rainfall sta-

tion configurations. Rainfall uncertainty was 

found to be more significant for mountain-

ous areas and the main recommendation was 

to improve rainfall measurement density in 

order to reduce uncertainty.

This paper presents an approach for 

incorporating rainfall uncertainties into 

catchment modelling within the typical 

hybrid manual–automatic calibration 

framework. The rainfall multiplier approach 

of quantifying uncertainty (Kavektsi et al 

2006 a, b), which has been found suitable in 

a recent field study (McMillan et al 2011), is 

applied. The framework obtains the multipli-

ers randomly from probability distributions 

derived from the rainfall data. The current 

approach also incorporates parameter uncer-

tainty, with the prior parameter distributions 

taken as uniform distributions within the 

specified lower and upper bounds, and the 

posterior as the distribution of the parameter 

values obtained from the randomly initial-

ised calibration runs. This is in contrast 

with the more complex Bayesian approaches 
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(Kavetski et al 2006a, b) that update para-

meter distributions within a single computa-

tion run. The framework is assessed by the 

split-sample method and a control experi-

ment in which no disturbances (multipliers) 

are applied. The effect of rainfall uncertain-

ties on the optimisation effort required in 

calibration is assessed by comparing the 

validation performance obtained from two 

levels in rigour of optimisation.

METHODOLOGY

Figure 1 presents the framework for incorpo-

rating rainfall uncertainty for the common 

streamflow simulation problem and could 

be easily adapted to other catchment model-

ling problems (water quality, groundwater, 

sediment generation, etc). The areal rainfall 

obtained by any appropriate method (e.g. 

Thiessen polygons) is perturbed by multipli-

ers obtained randomly from a probability 

distribution derived from the rainfall data. 

An areal rainfall rt for period t thus becomes 

rt × mt, where mt is the multiplier for period 

t. The number of perturbed rainfall sequen-

ces that need to be generated (ensemble size) 

is selected and a population of perturbed 

rainfall sequences is thus obtained. Each of 

these is used, together with other required 

inputs, for multiple calibrations of the model. 

An understanding of the model structure, 

the catchment characteristics, previous 

experience and other information is used to 

establish the starting parameter ranges and 

the parameter range limits for the calibra-

tion. Where the uncertainties regarding 

the realistic parameter values are large, the 

starting ranges will be set more widely. The 

ranges therefore effectively act as quanti-

fiers of parameter uncertainty and define 

the prior distribution of the parameters. 

Depending on the purpose of the modelling, 

an appropriate objective function is also 

selected for the calibration.

Each calibration run (for each perturbed 

rainfall sequence) provides an “optimal” 

parameter set and a population of optimal 

parameters is finally obtained. An assess-

ment of this population and the calibrated 

streamflow time series makes it clear how 

realistic the modelling is and helps to iden-

tify any unexpected behaviour. This may 

then require adjustment of the parameter 

range limits and could also provide leads 

to aspects of significant catchment pro-

cesses that were ignored or not recognised 

(Ndiritu 2009b). After the practically imple-

mentable changes have been made (and the 

calibration runs repeated if need be), each 

of the “optimal” parameter sets is used 

with a perturbed rainfall series (and other 

required inputs) for a period that was not 

applied to calibrate the model. The result is 

a population of validation streamflow time 

series. A comparison between the observed 

validation time series and the generated 

population of validation streamflows shows 

how suitable the framework is for the spe-

cific problem.

APPLICATION OF FRAMEWORK

The uncertainty framework was applied 

to daily streamflow modelling of the Mooi 

River catchment in South Africa using the 

Australian Water Balance Model (AWBM) 

and multiplicative perturbations (multipli-

ers) of rainfall derived from ratios of areal 

rainfall obtained from various rain-gauge 

densities. The widely applied SCE-UA 

optimiser (Duan et al 1992) was selected for 

calibration and maximising the coefficient 

of efficiency as the objective function. The 

ensemble (population) size was subjectively 

selected as 100.

The catchment

The Mooi River headwaters up to river-

gauging station V2H002 were included in 

the analysis and were delineated into three 

sub-catchments: up to gauging stations 

V2H005 and V2H007, and the incremental 

area from these two to V2H002. Figure 2 

shows the location of the catchment in 

South Africa, the three sub-catchments 

and the four rain-gauging stations used 

to obtain areal rainfall. Daily evaporation 

measurements were obtained from station 

V7E003A located outside the catchment. 

Flow and evaporation data were obtained 

from the Department of Water Affairs’ 

(DWA) website (http://www.dwa.gov.za/

hydrology), while rainfall was obtained 

from a rainfall database and extraction 

facility (Lynch 2003; Kunz 2009). The 

period 3 November 1973 to 19 August 1976 

was used for calibration and that from 20 

August 1976 to 7 June 1979 for validation. 

The selection was based on the need to 

Figure 1 Framework for incorporating rainfall uncertainties
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have a continuous dataset with minimal 

human impacts.

The catchment model

The AWBM model (Boughton 2004) is widely 

used for daily rainfall-runoff modelling in 

Australia and for flood hydrograph predic-

tion when applied in hourly time steps. An 

approach for estimating runoff for ungauged 

catchments in Australia using the AWBM 

model has also been developed (Boughton & 

Chiew 2007). Makungo et al (2010) applied 

the AWBM to the Nzhelele catchment of 

Limpopo Province, South Africa. The AWBM 

was selected on the basis of its robust struc-

ture and successful application. The ACRU 

model (Schulze 1989) is widely applied for 

daily catchment modelling in South Africa, 

but is data-intensive and has not been set up 

for hybrid manual–automatic calibration. 

ACRU was therefore not an optimal choice for 

this study, although it is possible to adapt the 

rainfall uncertainty framework for application 

with ACRU. The AWBM model (Figure 3) 

assumes that the catchment consists of three 

stores of different depths C1, C2 and C3 

which respectively occupy different propor-

tions of the catchment, indicated as partial 

areas A1, A2 and A3 in Figure 3. At each 

time period, runoff is generated as the sum 

of the excess (overflow) from each store. The 

runoff is then divided into surface runoff and 

baseflow in proportions determined by the 

baseflow index (BFI). The surface runoff and 

the baseflow at the catchment outlet are each 

subjected to linear attenuation and are then 

summed to give the flow at the catchment 

outlet. Boughton (2004) provides more details 

of the AWBM model.

The model applied in this study also 

included lags for both surface runoff and 

baseflow, and a coefficient for scaling open-

water evaporation to effective catchment 

evapotranspiration, giving a total of 12 

parameters for each sub-catchment. The 

partial areas A1, A2 and A3 are expressed as 

proportions of the total area and therefore 

sum to unity. Only two of the three therefore 

need to be calibrated and 11 parameters 

were calibrated for each sub-catchment. 

These are shown in the first two columns of 

Table 1. Although the recession constants 

can be obtained directly from the data, it 

was decided to calibrate them, as an effective 

calibrator would have no difficulty  obtaining 

these parameters for a well-structured 

model. Table 1 shows the starting parameter 

ranges and the range limits that were used 

in this study based on the understanding 

of the model structure, literature sources 

(Boughton 2004, Boughton & Chiew 2007) 

and past experience of modelling the Mooi 

River catchment.

Probability distribution of 

multiplicative perturbations

Some studies have assumed that the mul-

tiplicative perturbations (multipliers) can 

be obtained from a log-normal distribution 

(Kavetski et al 2006b; Thyer et al 2009) 

and this has been largely supported by an 

experimental study (McMillan et al 2011), 

although the log-normal distribution did 

not capture the upper-end tail of the data 

Figure 2 Mooi River catchment to river gauging station V2H002
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Figure 3 Structure of the AWBM model (Boughton 2004)
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Table 1 Starting parameter ranges and parameter range limits

Parameter Description Units
Starting range Range limit

Lower Upper Lower Upper

C1 Storage depth for store 1 mm 7 13 0.1 20

C2 Storage depth for store 2 mm 70 130 20 200

C3 Storage depth for store 3 mm 290 310 200 600

A1 Partial area for store 1 – 0.1 0.16 0.01 0.2

A2 Partial area for store 2 – 0.4 0.5 0.01 0.7

BFI Baseflow index – 0.4 0.6 0.01 0.99

Ks Surface runoff recession constant – 0.4 0.6 0.01 0.99

Kb Baseflow recession constant – 0.85 0.95 0.01 0.99

Ke Evaporation coefficient – 0.3 0.6 0.2 0.99

LagS Lag for surface runoff days 1 1 0 2

LagB Lag for baseflow days 2 2 0 3
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adequately. McMillan et al (2011) therefore 

proposed trials with other distributions as 

well. No other field data-based studies on 

multiplier distributions were found in the 

literature, and assuming that distributions 

fitting well in one region will do the same in 

another may also not be justifiable. For the 

current study, plausible values of multipli-

ers were determined by computing ratios 

of daily areal rainfall values obtained from 

different rain-gauge densities for the study 

catchment. Thiessen polygons were used to 

obtain the areal rainfalls and this was con-

fined to the days with non-zero rainfalls at 

all stations. It is expected that the multiplier 

values should depend on the magnitude of 

the areal rainfall as larger rainfall storms 

cover bigger areas and less variable rainfall 

would therefore be recorded at the different 

rain gauges. The observed variation of the 

multipliers with the areal rainfall (obtained 

at the highest rain-gauge density) is pre-

sented as Figure 4 and it reveals the expected 

reduction in multiplier variability as areal 

rainfall increases. Figure 4 also reveals that 

very large variations of areal rainfall could be 

obtained by simply omitting one or two rain 

gauges. It was decided to incorporate the 

observed reduction in multiplier variability 

in generating the perturbations by obtaining 

probability distributions for different ranges 

of areal rainfall magnitude. After some 

trial runs, the rainfall ranges selected were: 

< 3, 3–10, 10–20, 20–40 and > 40 mm. The 

multipliers within each range were ranked 

and plotted in order of magnitude, with the 

rank transformed into a percentage (non-

exceedance probability), akin to the plotting 

of flow-duration curves. This resulted in 

the cumulative density plots presented in 

Figure 5. The multiplier to apply for a given 

areal rainfall was then randomly obtained 

from the respective probability distribution, 

based on the rainfall magnitude.

Experimental set-up

In order to evaluate the impact of incor-

porating rainfall perturbations, a control 

experiment consisting of 100 randomly 

initialised calibrations of the catchment 

with the unperturbed rainfall data was 

included. It was also decided to assess the 

effect of incorporating uncertainties on the 

required level of optimisation for calibra-

tion because it was considered likely that 

perturbing data could reduce the effective-

ness and therefore the need for high levels 

of optimisation. The optimiser selected for 

this study, the SCE-UA (Duan et al 1992), 

is widely used and has been found to be 

effective and efficient (Ndiritu 2009a). The 

SCE-UA generates a population of solutions 

(parameter values) and divides these into a 

Figure 4 Variation of multiplier values with areal rainfall
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number of complexes. Each complex evolves 

independently, using the downhill simplex 

method for a set number of evolutions. The 

complexes are then shuffled to exchange 

valuable information among them and a 

new set of independent evolutions (epoch) 

commences. This process repeats until the 

set convergence criteria are achieved. The 

default SCE-UA optimisation parameters as 

specified by Duan et al (1994) were applied 

here and the level of optimisation was varied 

by setting the two parameters that Duan et 

al (1994) did not specify, namely the number 

of complexes to use and the convergence cri-

terion to apply. The higher optimisation level 

applied 10 complexes and the convergence 

criterion was specified as an improvement 

of less than 10% in the best solution (objec-

tive function value) of the current epoch in 

comparison with the best solution from the 

epoch two steps before (the one before the 

previous epoch). For the lower optimisation 

level, five complexes were applied and con-

vergence was specified as an improvement of 

less than 10% in the best solution from the 

current epoch in comparison with the best 

one from the previous epoch.

A set of 100 calibration runs with and 

without perturbations was therefore carried 

out at the higher and the lower levels of 

optimisation. The analysis reported in the 

next section thus compares results from the 

following four experiments: (i) higher opti-

misation effort with perturbations; (ii) higher 

optimisation effort with no perturbations; 

(iii) lower optimisation effort with perturba-

tions; and (iv) lower optimisation effort with 

no perturbations. The lower level took 110 

minutes (on a standard desktop PC), while 

the higher level of optimisation took 11 

hours (six times longer).

RESULTS AND DISCUSSION

Table 2 provides the mean and standard 

deviations of the 100 values obtained for the 

three sub-catchments. All the parameter 

values were found to be realistic. The mean 

parameter values from the four experiments 

are very close and mostly within 95–105% of 

the grand average (average parameter from 

all four experiments), as seen in Figure 6. 

Figure 6 also presents plots of the coeffi-

cients of variation (mean/standard deviation) 

of the parameters. It is observed that the 

coefficients of variation of only the evapora-

tion coefficient (Ke) consistently increase 

with the inclusion of rainfall uncertainties. 

This happens for sub-catchment V2H005 

and V2H007 but not for V2H002. The mean 

and coefficient of variation for the surface 

lag (LagS) is also notably higher for V2H002 

than for the other sub-catchments and a 

Table 2  Mean and standard deviation of parameters from 100 calibration runs for sub-catchments 

VH2005, V2H007 and V2H002

Sub-catchment V2H005

Parameter Units

Higher 
optimisation with 

uncertainty

Higher 
optimisation with 

no uncertainty

Lower 
optimisation with 

uncertainty

Lower 
optimisation with 

no uncertainty

Mean Std dev Mean Std dev Mean Std dev. Mean Std dev

C1 mm 9.57 1.58 9.75 1.54 10.0 1.61 9.68 1.79

C2 mm 76.8 15.1 78.05 13.17 82 17.38 80.6 16.16

C3 mm 299.5 5.39 299.7 5.37 300.1 6.15 301.4 5.49

A1 – 0.15 0.014 0.15 0.012 0.15 0.019 0.15 0.016

A2 – 0.49 0.027 0.5 0.02 0.48 0.026 0.49 0.025

BFI – 0.62 0.043 0.59 0.049 0.6 0.052 0.59 0.05

Ks – 0.61 0.043 0.61 0.042 0.61 0.041 0.59 0.042

Kb – 0.93 0.022 0.92 0.018 0.93 0.025 0.923 0.024

Ke – 0.49 0.058 0.45 0.025 0.50 0.065 0.45 0.033

LagS days 1 0 1 0 1 0 1 0

LagB days 2 0 1.99 0.1 2 0 2.01 0.1

Sub-catchment V2H007

Parameter Units

Higher 
optimisation with 

uncertainty

Higher 
optimisation with 

no uncertainty

Lower 
optimisation with 

uncertainty

Lower 
optimisation with 

no uncertainty

Mean Std dev Mean Std dev Mean Std dev Mean Std dev

C1 mm 9.67 1.59 9.72 1.39 9.94 1.63 9.77 1.87

C2 mm 100.6 16.1 100.5 15.48 99.9 17.55 97.8 14.96

C3 mm 296 4.86 295.5 4.68 297.3 6.078 297.6 6.26

A1 – 0.14 0.015 0.14 0.016 0.14 0.018 0.14 0.016

A2 – 0.47 0.029 0.47 0.024 0.46 0.034 0.47 0.029

BFI – 0.54 0.042 0.5 0.036 0.53 0.05 0.5 0.043

Ks – 0.53 0.05 0.52 0.044 0.54 0.046 0.51 0.043

Kb – 0.94 0.02 0.92 0.017 0.94 0.023 0.91 0.022

Ke – 0.38 0.034 0.35 0.017 0.38 0.044 0.35 0.018

LagS days 1 0 1 0 1 0 1 0

LagB days 2 0 1.99 0.1 1.99 0.1 2.01 0.101

Incremental sub-catchment V2H002 

Parameter Units

Higher 
optimisation with 

uncertainty

Higher 
optimisation with 

no uncertainty

Lower 
optimisation with 

uncertainty

Lower 
optimisation with 

no uncertainty

Mean Std dev Mean Std dev Mean Std dev Mean Std dev

C1 mm 9.92 1.58 9.98 1.65 10.23 1.90 10.07 1.71

C2 mm 99.4 15.57 97.8 13.82 99.4 17.43 97.65 15.64

C3 mm 299.3 5.85 299.3 5.33 299.7 6.31 301.1 5.96

A1 - 0.13 0.017 0.13 0.016 0.13 0.016 0.14 0.018

A2 - 0.46 0.028 0.45 0.025 0.45 0.029 0.46 0.029

BFI - 0.48 0.045 0.48 0.046 0.49 0.061 0.49 0.059

Ks - 0.54 0.05 0.53 0.048 0.52 0.061 0.52 0.054

Kb - 0.86 0.027 0.87 0.024 0.87 0.025 0.87 0.028

Ke - 0.4 0.073 0.4 0.066 0.41 0.089 0.4 0.067

LagS days 1.17 0.378 1.22 0.416 1.19 0.394 1.11 0.316

LagB days 2 0 1.99 0.1 2 0 2 0
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Figure 6  Comparison of the averages and coefficients of variation of the 100 parameter values obtained from four experiments. H & U indicate 

higher optimisation with uncertainty, L & U lower optimisation with uncertainty, H higher optimisation without uncertainty and L lower 

optimisation without uncertainty
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probable explanation for these differences 

is offered later in this section. The effect 

of rainfall uncertainty on parameter Ke 

could be attributed to the direct impact of 

perturbations on rainfall on the computed 

net rainfall (rainfall – Ke × evaporation). The 

observed dependence of only one parameter 

on rainfall uncertainty is consistent with the 

finding by Kuczera et al (2006) who found 

that only two out of the seven parameters 

of the LogSPM model were dependent on 

rainfall uncertainty.

Figure 7 shows the probability den-

sity plots and normal distribution fits for 

parameters Ke and A2 for sub-catchment 

V2H005. Although the differences in vari-

ability were not substantial for parameter 

A2, the plot in Figure 7 helps to illustrate 

the ability of the calibration to search for 

and obtain optimal parameters beyond the 

starting range specified in Table 1. This table 

specifies the starting range as 0.4–0.5 for 

A2, whereas a substantial proportion of the 

optimal parameters for A2 in Figure 7 locate 

beyond 0.5. From Figure 7 it is observed that 

applying perturbations leads to a notably 

larger spread in variability for parameter 

Ke at both optimisation levels, whereas the 

effect on the variability of A2 was only slight. 

Incorporating uncertainties shifted the loca-

tion of the distribution of Ke, but the average 

Ke values for all four experiments were still 

reasonably close.

Figure 8 shows the 5–95 percentile range 

obtained from the 100 ensembles of valida-

tion time series for the four experiments for 

sub-catchment V2H005 and also includes 

plots of the observed streamflows for the 

same period (portrayed as circles). It is found 

that perturbing the rainfall obtains much 

wider ranges than if this is not done. A more 

detailed analysis of the effect of rainfall 

uncertainties is done by obtaining the 

percentages of the observed flows locating 

within the 5–95% bounds for different mag-

nitudes of observed flows. The percentages 

obtained using 10 classes of flow magnitude 

defined by the 10th percentiles of the respec-

tive flow-duration curves are presented 

in Table 3 and Figure 9. For all three sub-

catchments, including rainfall uncertainty 

obtains a much larger percentage of the flows 

within the 5–95% bounds for all flow levels, 

with an overall increase from 25 to 52%. 

The proportion of observed flows within 

the percentiles is found to reduce as flow 

reduces, probably because the applied objec-

tive function (maximising the coefficient of 

variation) favours the replication of higher 

rather than lower flows. It could also be an 

indication of an inadequacy of the AWBM 

model structure in simulating low flows. In 

addition, Table 3 and Figure 9 reveal that 

the lower optimisation effort obtains slightly 

higher percentages of observed flows within 

Figure 7 Normal probability distribution plots for parameters Ke and A2 for subcatchment V2H005
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Table 3  Percentage of observed flows that locate within the 5–95 percentile bounds. H & U 

indicate higher optimisation with uncertainty, L & U lower optimisation with uncertainty, 

H higher optimisation without uncertainty and L lower optimisation without uncertainty
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0–100

V2H005

H &U 69 72 71 80 72 65 45 40 33 16 56.3

L & U 69 80 72 83 78 69 55 42 32 14 59.4

H 38 41 33 40 34 27 13 21 15 3 26.5

U 38 48 46 51 43 35 17 23 18 4 32.3

V2H007

H &U 66 52 55 65 63 81 77 42 27 11 53.9

L & U 74 61 70 74 66 82 81 46 26 11 59.1

H 29 19 31 35 35 24 13 17 11 5 21.9

U 36 20 34 38 37 28 17 20 19 6 25.5

V2H002

H &U 54 45 52 40 44 42 26 35 26 9 37.3

L & U 58 49 54 52 54 61 37 37 28 9 43.9

H 30 21 32 30 18 20 15 20 13 4 20.3

U 33 25 36 27 22 24 16 21 14 4 22.2
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Figure 8 Validation 5–95 percentile plots and observed flows for sub-catchment V2H005
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the 5–95% bounds than the higher level for 

the entire range of flows. Careful selection of 

the optimisation effort to apply is therefore 

needed, as an exceedingly high optimisation 

may over-fit on the calibration dataset, while 

simultaneously losing the overall fitness of 

the parameter set.

A probable explanation of the distinct 

differences in the results obtained for 

sub-catchment V2H002 in comparison 

with those for V2H005 and V2H007 is 

now offered. For V2H002, the variability of 

parameter Ke is found to be independent 

of rainfall uncertainty (Figure 6), while the 

average value and the coefficient of vari-

ation of the lag for surface runoff (LagS) 

is found to be considerably higher than 

for V2H005 and V2H007 (Table 2). The 

observed average LagS value ranged from 

1.11 to 1.22 days for V2H002, meaning that 

some calibration runs optimised this to 

1 day and some to 2 days since LagS was 

specified to vary at a daily time step. For 

V2H005 and V2H007, Table 2 shows that 

the LagS value optimised to 1 day for all 100 

runs. Sub-catchment V2H002 is the most 

downstream of the three sub-catchments 

and is expected to generally steep more 

gently than the other two; consequently it 

would have slower surface runoff processes. 

Since V2H002 is also the longest of the 

three sub-catchments, it is probable that a 

considerable portion of the surface runoff 

takes longer than 1 day to reach river gauge 

V2H002, but would reach it within 2 days, 

while most surface runoff may be reaching 

gauges V2H005 and V2H007 within 1 day. 

Since the calibration constrained LagS to 

optimise to a daily value, the variability in 

LagS became artificially larger as it has to 

take a value of either 1 or 2 days, whereas 

the more realistic lag time lies in-between. 

Confining LagS to a daily time could also 

have caused inaccuracy in the streamflow 

simulation that perhaps (i) confounded the 

impact of rainfall uncertainties on Ke, (ii) 

led to the observed higher variability of 

the other parameters for V2H002 than for 

V2H005 and V2H007 (coefficient of vari-

ation of 0.089 compared with 0.074), and 

(iii) led to the lower validation performance 

for V2H002 as seen in Table 3 and Figure 9. 

Catchment modelling is mostly carried out 

at single time steps but the reasoning here, 

while not proven, gives credence to variable 

time interval catchment modelling (Hughes 

& Sami 1994) which seems to have gone 

dormant in research and practice.

In comparison with the manual rainfall-

runoff model calibration approach (the 

predominant approach in southern Africa) 

which obtains single parameter values fairly 

subjectively, the framework applied here 

obtains a population of realistic parameter 

sets, while incorporating areal rainfall 

uncertainty. As revealed in the previous 

Figure 9  Percentage of observed flows that locate within the 5–95 percentile bounds. H & U indicate higher optimisation with uncertainty, L & U 

lower optimisation with uncertainty, H higher optimisation without uncertainty, and L lower optimisation without uncertainty
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paragraph, this approach also enables 

inferences about the observed behaviour 

of parameters and modelling performance 

which can be directly related to catchment 

processes and how these have been modelled. 

Using a similar approach, Ndiritu (2009b) 

was able to infer the impact of dambos (com-

plex shallow wetlands) in the Kafue Basin on 

Pitman model parameters – an endeavour 

that manual calibration had failed to achieve. 

This framework is therefore likely to be more 

suitable than manual calibration for designs 

that need to incorporate uncertainty and 

reliability of performance comprehensively. 

The framework also has the potential to 

complement the more physically based 

parameter uncertainty quantification devel-

oped recently in South Africa for the Pitman 

model (Hughes et al 2011).

CONCLUSIONS AND 

RECOMMENDATIONS

A framework for incorporating rainfall 

uncertainties in catchment modelling 

has been presented and applied to a daily 

streamflow simulation problem of the Mooi 

River catchment in South Africa using the 

AWBM model. In the absence of any field 

data-based guideline for quantifying rain-

fall uncertainties, the ratios of areal daily 

rainfalls obtained from various rain-gauge 

densities were used to obtain probable values 

of multiplicative perturbations. A reasonable 

probability distribution of perturbations was 

then conceived from these and it was found 

that very large variations of areal rainfall 

can be obtained by omitting one or two rain 

gauges. This underlines the need to formally 

incorporate rainfall uncertainty into water 

resources assessment.

The impact of rainfall uncertainties 

was assessed by making 100 randomly 

initialised calibration-validation runs, with 

and without including rainfall uncertainties, 

and comparing the resulting distribution 

of parameter values and the proportion of 

observed flows falling in the 5–95 percentile 

bounds of the flows simulated in validation. 

Applying rainfall uncertainties is found not 

to impact on the average parameter values 

and to increase significantly the variability 

of only the evaporation coefficient Ke of 

the AWBM model – the only parameter 

directly associated with rainfall. All the 

other parameters are for modelling surface 

and subsurface processes, and the independ-

ence of the probability distributions of their 

calibrated values from rainfall uncertainty is 

considered to be an indication that the mod-

elling represented the main catchment com-

ponents and processes realistically. This also 

indicates that including rainfall uncertainty 

in calibration did not prevent a realistic 

quantification of parameter uncertainty, 

although the framework did not include an 

explicit procedure to enable this as is done 

in the more complex and computation-

intensive Bayesian approaches (Kavetski et 

al 2006a, b). The framework applied here 

could therefore be a credible and practical 

alternative to these approaches, provided 

the modelling captures the main catchment 

processes adequately.

Applying rainfall uncertainties was found 

to double the proportion of observed flows 

within the 5–95 percentile bounds from an 

average of 25 to 52% in validation, indicat-

ing that rainfall input uncertainty is indeed 

highly significant. Two levels of optimisation 

effort were applied and the lower optimisa-

tion level obtained slightly better percent-

ages of the observed flows within the 5–95 

percentile bounds, highlighting the need for 

careful selection of the optimisation effort to 

apply in model calibration.

Further work needs to consider the 

following:

 ■ Are multiplicative perturbations the most 

appropriate for quantifying areal rainfall 

uncertainties, and does the approach 

applied here make the best use of the data 

and other information available? Ongoing 

analysis indicates that linear perturba-

tions hold much promise.

 ■ How can computational efficiency be 

maximised/optimised for uncertainty 

analysis? The SCEM-UA (Vrugt et al 

2003), a later development of the SCE-

UA calibrator applied here, could be 

considered.

 ■ How does the choice of the ensemble size 

and objective function for calibration 

impact on the uncertainty analysis?

 ■ How would this framework fit into the 

current water resources planning and 

management decision-support structures?

 ■ How can the framework be adapted for 

prediction in ungauged basins and to 

climate change/variability analysis?
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