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Incorporating rainfall
uncertainty into
catchment modelling

J G Ndiritu

A framework for incorporating areal rainfall uncertainties into catchment modelling is presented
and demonstrated through the daily streamflow simulation of the Mooi River catchment using
the Australian Water Balance Model (AWBM). The framework is an extension of the typical
hybrid manual-automatic model calibration-validation in which uncertainties are imposed as
perturbations (disturbances) on the rainfall time series. The differences in areal rainfall obtained
from different rain-gauge densities are used to generate the perturbations, and their variability
is found to reduce as areal rainfall magnitude increases. The applied probability distributions

of perturbations are therefore obtained for specified ranges of rainfall magnitude. The effect

of incorporating uncertainties is assessed by finding out the impact of imposing perturbations
on the validation performance of the rainfall-runoff modelling. This is done by carrying out 100
rainfall-runoff calibration-validation runs with perturbed and with unperturbed rainfall and
comparing the 100 generated validation period runoff time series with the observed (historical)
runoff series. With perturbations applied, the 5-95 percentile bounds from the resulting 100
streamflow ensembles contain 52% of the observed time series for the validation period.
Without perturbations, only 25% of the observed flows fall within the bounds. The framework
has the potential for practical use, but this would require a more rigorous identification of

appropriate distributions of the perturbations.

INTRODUCTION

Areal rainfall is recognised as a major con-
tributor to uncertainty in catchment model-
ling (Kavetski et al 2006a,b; Sawunyama
2008; Hughes et al 2011), although it is not
formally incorporated into hydrological
analysis in southern Africa (Sawunyama
2008) and many other regions of the world.
While improving rainfall measurement is
considered vital for well-informed decision-
making in water resources management
(Hughes et al 2011), many regions of the
world may not have the resources to install
and maintain the required data networks
(Sawunyama 2008). Even if this were pos-
sible, areal rainfall estimation for the practi-
cally installable rain-gauge density is still
likely to be substantially uncertain. Remote-
sensing approaches require validation using
rain-gauge measurements (Sawunyama
2008) and are therefore unlikely to reduce
these uncertainties to insignificant levels.
The need to formally incorporate rainfall
uncertainty into catchment modelling is
therefore essential. Bayesian approaches have
recently been applied for the incorporation
of uncertainties of rainfall and other vari-
ables and have generally been assessed as
effective (Kavektsi et al 2006a,b; Ajami et al
2007; Vrugt et al 2009; Kuczera et al 2006,
2010; Balin et al 2010). Their complexity and
high computational requirements, however,

pose serious challenges to their application
in practice. Sawunyama (2008) investigated
the effect of rainfall uncertainties by obtain-
ing areal rainfalls from different rain-gauge
densities (by systematically omitting some
valid stations from areal rainfall estimation)
and comparing the modelled streamflow
sequences using these different rainfall sta-
tion configurations. Rainfall uncertainty was
found to be more significant for mountain-
ous areas and the main recommendation was
to improve rainfall measurement density in
order to reduce uncertainty.

This paper presents an approach for
incorporating rainfall uncertainties into
catchment modelling within the typical
hybrid manual-automatic calibration
framework. The rainfall multiplier approach
of quantifying uncertainty (Kavektsi et a/
2006 a, b), which has been found suitable in
a recent field study (McMillan et al 2011), is
applied. The framework obtains the multipli-
ers randomly from probability distributions
derived from the rainfall data. The current
approach also incorporates parameter uncer-
tainty, with the prior parameter distributions
taken as uniform distributions within the
specified lower and upper bounds, and the
posterior as the distribution of the parameter
values obtained from the randomly initial-
ised calibration runs. This is in contrast
with the more complex Bayesian approaches
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(Kavetski et al 20064, b) that update para-
meter distributions within a single computa-
tion run. The framework is assessed by the
split-sample method and a control experi-
ment in which no disturbances (multipliers)
are applied. The effect of rainfall uncertain-
ties on the optimisation effort required in
calibration is assessed by comparing the
validation performance obtained from two
levels in rigour of optimisation.

METHODOLOGY

Figure 1 presents the framework for incorpo-
rating rainfall uncertainty for the common
streamflow simulation problem and could
be easily adapted to other catchment model-
ling problems (water quality, groundwater,
sediment generation, etc). The areal rainfall
obtained by any appropriate method (e.g.
Thiessen polygons) is perturbed by multipli-
ers obtained randomly from a probability
distribution derived from the rainfall data.
An areal rainfall r, for period ¢ thus becomes
r, x m,, where m, is the multiplier for period
t. The number of perturbed rainfall sequen-
ces that need to be generated (ensemble size)
is selected and a population of perturbed
rainfall sequences is thus obtained. Each of
these is used, together with other required
inputs, for multiple calibrations of the model.
An understanding of the model structure,
the catchment characteristics, previous
experience and other information is used to
establish the starting parameter ranges and
the parameter range limits for the calibra-
tion. Where the uncertainties regarding

the realistic parameter values are large, the
starting ranges will be set more widely. The
ranges therefore effectively act as quanti-
fiers of parameter uncertainty and define
the prior distribution of the parameters.
Depending on the purpose of the modelling,
an appropriate objective function is also
selected for the calibration.

Each calibration run (for each perturbed
rainfall sequence) provides an “optimal”
parameter set and a population of optimal
parameters is finally obtained. An assess-
ment of this population and the calibrated
streamflow time series makes it clear how
realistic the modelling is and helps to iden-
tify any unexpected behaviour. This may
then require adjustment of the parameter
range limits and could also provide leads
to aspects of significant catchment pro-
cesses that were ignored or not recognised
(Ndiritu 2009b). After the practically imple-
mentable changes have been made (and the
calibration runs repeated if need be), each
of the “optimal” parameter sets is used
with a perturbed rainfall series (and other
required inputs) for a period that was not
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Figure 1 Framework for incorporating rainfall uncertainties

applied to calibrate the model. The result is
a population of validation streamflow time
series. A comparison between the observed
validation time series and the generated
population of validation streamflows shows
how suitable the framework is for the spe-
cific problem.

APPLICATION OF FRAMEWORK
The uncertainty framework was applied

to daily streamflow modelling of the Mooi
River catchment in South Africa using the
Australian Water Balance Model (AWBM)
and multiplicative perturbations (multipli-
ers) of rainfall derived from ratios of areal
rainfall obtained from various rain-gauge
densities. The widely applied SCE-UA
optimiser (Duan et al 1992) was selected for
calibration and maximising the coefficient
of efficiency as the objective function. The
ensemble (population) size was subjectively
selected as 100.

The catchment

The Mooi River headwaters up to river-
gauging station V2H002 were included in
the analysis and were delineated into three
sub-catchments: up to gauging stations
V2HO005 and V2H007, and the incremental
area from these two to V2H002. Figure 2
shows the location of the catchment in
South Africa, the three sub-catchments
and the four rain-gauging stations used

to obtain areal rainfall. Daily evaporation
measurements were obtained from station
V7E003A located outside the catchment.
Flow and evaporation data were obtained
from the Department of Water Affairs’
(DWA) website (http://www.dwa.gov.za/
hydrology), while rainfall was obtained
from a rainfall database and extraction
facility (Lynch 2003; Kunz 2009). The
period 3 November 1973 to 19 August 1976
was used for calibration and that from 20
August 1976 to 7 June 1979 for validation.
The selection was based on the need to
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have a continuous dataset with minimal

human impacts.

The catchment model

The AWBM model (Boughton 2004) is widely
used for daily rainfall-runoff modelling in
Australia and for flood hydrograph predic-
tion when applied in hourly time steps. An
approach for estimating runoff for ungauged
catchments in Australia using the AWBM
model has also been developed (Boughton &
Chiew 2007). Makungo et al (2010) applied
the AWBM to the Nzhelele catchment of
Limpopo Province, South Africa. The AWBM
was selected on the basis of its robust struc-
ture and successful application. The ACRU
model (Schulze 1989) is widely applied for
daily catchment modelling in South Africa,
but is data-intensive and has not been set up
for hybrid manual-automatic calibration.
ACRU was therefore not an optimal choice for
this study, although it is possible to adapt the
rainfall uncertainty framework for application
with ACRU. The AWBM model (Figure 3)
assumes that the catchment consists of three
stores of different depths C1, C2 and C3
which respectively occupy different propor-
tions of the catchment, indicated as partial
areas Al, A2 and A3 in Figure 3. At each
time period, runoff is generated as the sum

of the excess (overflow) from each store. The
runoff is then divided into surface runoff and
baseflow in proportions determined by the
baseflow index (BFI). The surface runoff and
the baseflow at the catchment outlet are each
subjected to linear attenuation and are then
summed to give the flow at the catchment
outlet. Boughton (2004) provides more details
of the AWBM model.

The model applied in this study also
included lags for both surface runoff and
baseflow, and a coefficient for scaling open-
water evaporation to effective catchment
evapotranspiration, giving a total of 12
parameters for each sub-catchment. The
partial areas A1, A2 and A3 are expressed as
proportions of the total area and therefore
sum to unity. Only two of the three therefore
need to be calibrated and 11 parameters
were calibrated for each sub-catchment.
These are shown in the first two columns of
Table 1. Although the recession constants
can be obtained directly from the data, it
was decided to calibrate them, as an effective
calibrator would have no difficulty obtaining
these parameters for a well-structured
model. Table 1 shows the starting parameter
ranges and the range limits that were used
in this study based on the understanding
of the model structure, literature sources
(Boughton 2004, Boughton & Chiew 2007)
and past experience of modelling the Mooi
River catchment.
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Figure 2 Mooi River catchment to river gauging station V2H002
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Figure 3 Structure of the AWBM model (Boughton 2004)

Table 1 Starting parameter ranges and parameter range limits

Starting range Range limit
Parameter Description Units
Lower Upper Lower Upper
C1l Storage depth for store 1 mm 7 13 0.1 20
C2 Storage depth for store 2 mm 70 130 20 200
Cc3 Storage depth for store 3 mm 290 310 200 600
Al Partial area for store 1 - 0.1 0.16 0.01 0.2
A2 Partial area for store 2 - 0.4 0.5 0.01 0.7
BFI Baseflow index - 0.4 0.6 0.01 0.99
Ks Surface runoff recession constant - 0.4 0.6 0.01 0.99
Kb Baseflow recession constant - 0.85 0.95 0.01 0.99
Ke Evaporation coefficient - 0.3 0.6 0.2 0.99
LagS Lag for surface runoff days 1 1 0 2
LagB Lag for baseflow days 2 2 0 3

Probability distribution of
multiplicative perturbations

Some studies have assumed that the mul-
tiplicative perturbations (multipliers) can
be obtained from a log-normal distribution

(Kavetski et al 2006b; Thyer et al 2009)
and this has been largely supported by an
experimental study (McMillan et a/ 2011),
although the log-normal distribution did
not capture the upper-end tail of the data
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adequately. McMillan et al (2011) therefore
proposed trials with other distributions as
well. No other field data-based studies on
multiplier distributions were found in the
literature, and assuming that distributions
fitting well in one region will do the same in
another may also not be justifiable. For the
current study, plausible values of multipli-
ers were determined by computing ratios

of daily areal rainfall values obtained from
different rain-gauge densities for the study
catchment. Thiessen polygons were used to
obtain the areal rainfalls and this was con-
fined to the days with non-zero rainfalls at
all stations. It is expected that the multiplier
values should depend on the magnitude of
the areal rainfall as larger rainfall storms
cover bigger areas and less variable rainfall
would therefore be recorded at the different
rain gauges. The observed variation of the
multipliers with the areal rainfall (obtained
at the highest rain-gauge density) is pre-
sented as Figure 4 and it reveals the expected
reduction in multiplier variability as areal
rainfall increases. Figure 4 also reveals that
very large variations of areal rainfall could be
obtained by simply omitting one or two rain
gauges. It was decided to incorporate the
observed reduction in multiplier variability
in generating the perturbations by obtaining
probability distributions for different ranges
of areal rainfall magnitude. After some

trial runs, the rainfall ranges selected were:
< 3, 3-10, 10-20, 20—40 and > 40 mm. The
multipliers within each range were ranked
and plotted in order of magnitude, with the
rank transformed into a percentage (non-
exceedance probability), akin to the plotting
of flow-duration curves. This resulted in
the cumulative density plots presented in
Figure 5. The multiplier to apply for a given
areal rainfall was then randomly obtained
from the respective probability distribution,
based on the rainfall magnitude.

Experimental set-up

In order to evaluate the impact of incor-
porating rainfall perturbations, a control
experiment consisting of 100 randomly
initialised calibrations of the catchment
with the unperturbed rainfall data was
included. It was also decided to assess the
effect of incorporating uncertainties on the
required level of optimisation for calibra-
tion because it was considered likely that
perturbing data could reduce the effective-
ness and therefore the need for high levels
of optimisation. The optimiser selected for
this study, the SCE-UA (Duan et al 1992),
is widely used and has been found to be
effective and efficient (Ndiritu 2009a). The
SCE-UA generates a population of solutions
(parameter values) and divides these into a

Journal of the South African Institution of Civil Engineering + Volume 55 Number 3 October 2013

Frequency

80

70 4

60

50

o
o
I

+
+
+
o
4 o
& X
X o 4
X xo
+ +
X
X +°X +o++
o, " x
of x ¥
+

Multiplier
+ V2HO005 (1 station/3 stations) 0 V2HO007 (2 stations/3 stations)
X V2HO002 (1 station/3 stations)

Figure 4 Variation of multiplier values with areal rainfall

Multiplier

1
20 40 60 80 100

Percentage greater

X <3 mm X 3-10 mm X 10-20 mm X 20-40 mm X > 40 mm

Figure 5 Cumulative density plots of multipliers for specified ranges of areal rainfall

39




number of complexes. Each complex evolves
independently, using the downbhill simplex
method for a set number of evolutions. The
complexes are then shuffled to exchange
valuable information among them and a
new set of independent evolutions (epoch)
commences. This process repeats until the
set convergence criteria are achieved. The
default SCE-UA optimisation parameters as
specified by Duan et al (1994) were applied
here and the level of optimisation was varied
by setting the two parameters that Duan et
al (1994) did not specify, namely the number
of complexes to use and the convergence cri-
terion to apply. The higher optimisation level
applied 10 complexes and the convergence
criterion was specified as an improvement
of less than 10% in the best solution (objec-
tive function value) of the current epoch in
comparison with the best solution from the
epoch two steps before (the one before the
previous epoch). For the lower optimisation
level, five complexes were applied and con-
vergence was specified as an improvement of
less than 10% in the best solution from the
current epoch in comparison with the best
one from the previous epoch.

A set of 100 calibration runs with and
without perturbations was therefore carried
out at the higher and the lower levels of
optimisation. The analysis reported in the
next section thus compares results from the
following four experiments: (i) higher opti-
misation effort with perturbations; (ii) higher
optimisation effort with no perturbations;
(iii) lower optimisation effort with perturba-
tions; and (iv) lower optimisation effort with
no perturbations. The lower level took 110
minutes (on a standard desktop PC), while
the higher level of optimisation took 11
hours (six times longer).

RESULTS AND DISCUSSION

Table 2 provides the mean and standard
deviations of the 100 values obtained for the
three sub-catchments. All the parameter
values were found to be realistic. The mean
parameter values from the four experiments
are very close and mostly within 95-105% of
the grand average (average parameter from
all four experiments), as seen in Figure 6.
Figure 6 also presents plots of the coeffi-
cients of variation (mean/standard deviation)
of the parameters. It is observed that the
coefficients of variation of only the evapora-
tion coefficient (Ke) consistently increase
with the inclusion of rainfall uncertainties.
This happens for sub-catchment V2H005
and V2HO0O07 but not for V2H002. The mean
and coefficient of variation for the surface
lag (Lag$S) is also notably higher for V2H002
than for the other sub-catchments and a
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Table 2 Mean and standard deviation of parameters from 100 calibration runs for sub-catchments
VH2005, V2H007 and V2H002

Sub-catchment V2H005
Higher Higher Lower Lower
optimisation with | optimisation with | optimisation with | optimisation with
Parameter | Units uncertainty no uncertainty uncertainty no uncertainty
Mean | Stddev | Mean | Stddev | Mean | Stddev. | Mean | Stddev
C1 mm 9.57 1.58 9.75 1.54 10.0 1.61 9.68 1.79
C2 mm 76.8 151 78.05 13.17 82 17.38 80.6 16.16
C3 mm 299.5 5.39 299.7 5.37 300.1 6.15 301.4 5.49
Al - 0.15 0.014 0.15 0.012 0.15 0.019 0.15 0.016
A2 - 0.49 0.027 0.5 0.02 0.48 0.026 0.49 0.025
BFIL - 0.62 0.043 0.59 0.049 0.6 0.052 0.59 0.05
Ks - 0.61 0.043 0.61 0.042 0.61 0.041 0.59 0.042
Kb - 0.93 0.022 0.92 0.018 0.93 0.025 0.923 0.024
Ke - 0.49 0.058 0.45 0.025 0.50 0.065 0.45 0.033
LagS days 1 0 1 0 1 0 1 0
LagB days 2 0 1.99 0.1 2 0 2.01 0.1
Sub-catchment V2H007
Higher Higher Lower Lower
optimisation with | optimisation with | optimisation with | optimisation with
Parameter | Units uncertainty no uncertainty uncertainty no uncertainty
Mean | Stddev | Mean | Stddev | Mean | Stddev | Mean | Stddev
C1 mm 9.67 1.59 9.72 1.39 9.94 1.63 9.77 1.87
C2 mm 100.6 16.1 100.5 15.48 99.9 17.55 97.8 14.96
C3 mm 296 4.86 295.5 4.68 297.3 6.078 297.6 6.26
Al - 0.14 0.015 0.14 0.016 0.14 0.018 0.14 0.016
A2 - 0.47 0.029 0.47 0.024 0.46 0.034 0.47 0.029
BFI - 0.54 0.042 0.5 0.036 0.53 0.05 0.5 0.043
Ks - 0.53 0.05 0.52 0.044 0.54 0.046 0.51 0.043
Kb - 0.94 0.02 0.92 0.017 0.94 0.023 091 0.022
Ke - 0.38 0.034 0.35 0.017 0.38 0.044 0.35 0.018
LagS days 1 0 1 0 1 0 1 0
LagB days 2 0 1.99 0.1 1.99 0.1 2.01 0.101
Incremental sub-catchment V2H002
Higher Higher Lower Lower
optimisation with | optimisation with | optimisation with | optimisation with
Parameter | Units uncertainty no uncertainty uncertainty no uncertainty
Mean | Stddev | Mean | Stddev | Mean | Stddev | Mean | Stddev
C1 mm 9.92 1.58 9.98 1.65 10.23 1.90 10.07 1.71
C2 mm 99.4 15.57 97.8 13.82 99.4 1743 97.65 15.64
C3 mm 299.3 5.85 299.3 5.33 299.7 6.31 301.1 5.96
Al - 0.13 0.017 0.13 0.016 0.13 0.016 0.14 0.018
A2 - 0.46 0.028 0.45 0.025 0.45 0.029 0.46 0.029
BFI - 0.48 0.045 0.48 0.046 0.49 0.061 0.49 0.059
Ks - 0.54 0.05 0.53 0.048 0.52 0.061 0.52 0.054
Kb - 0.86 0.027 0.87 0.024 0.87 0.025 0.87 0.028
Ke - 0.4 0.073 0.4 0.066 0.41 0.089 0.4 0.067
LagS days 1.17 0.378 1.22 0.416 1.19 0.394 1.11 0.316
LagB days 2 0 1.99 0.1 2 0 2 0
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Figure 6 Comparison of the averages and coefficients of variation of the 100 parameter values obtained from four experiments. H & U indicate
higher optimisation with uncertainty, L & U lower optimisation with uncertainty, H higher optimisation without uncertainty and L lower
optimisation without uncertainty
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probable explanation for these differences

is offered later in this section. The effect

of rainfall uncertainty on parameter Ke
could be attributed to the direct impact of
perturbations on rainfall on the computed
net rainfall (rainfall — Ke x evaporation). The
observed dependence of only one parameter
on rainfall uncertainty is consistent with the
finding by Kuczera et al (2006) who found
that only two out of the seven parameters

of the LogSPM model were dependent on
rainfall uncertainty.

Figure 7 shows the probability den-
sity plots and normal distribution fits for
parameters Ke and A2 for sub-catchment
V2HO005. Although the differences in vari-
ability were not substantial for parameter
A2, the plot in Figure 7 helps to illustrate
the ability of the calibration to search for
and obtain optimal parameters beyond the
starting range specified in Table 1. This table
specifies the starting range as 0.4—0.5 for
A2, whereas a substantial proportion of the
optimal parameters for A2 in Figure 7 locate
beyond 0.5. From Figure 7 it is observed that
applying perturbations leads to a notably
larger spread in variability for parameter
Ke at both optimisation levels, whereas the
effect on the variability of A2 was only slight.
Incorporating uncertainties shifted the loca-
tion of the distribution of Ke, but the average
Ke values for all four experiments were still
reasonably close.

Figure 8 shows the 5-95 percentile range
obtained from the 100 ensembles of valida-
tion time series for the four experiments for
sub-catchment V2H005 and also includes
plots of the observed streamflows for the
same period (portrayed as circles). It is found
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Table 3 Percentage of observed flows that locate within the 5-95 percentile bounds. H & U
indicate higher optimisation with uncertainty, L & U lower optimisation with uncertainty,
H higher optimisation without uncertainty and L lower optimisation without uncertainty

Flow-duration percentile range Overall
Siilb- Experiment S
catchment P =) g 2 S 2 3 2 2 £ S 1
= ) | i I ] i ] I | 0-100
| =) =) =) =) =) = =) = =)
= — Q A F I ) = @ 1=
H&U 69 72 71 80 72 65 45 40 33 16 56.3
L&U 69 80 72 83 78 69 55 42 32 14 59.4
V2H005
H 38 41 33 40 34 27 13 21 15 3 26.5
U 38 48 46 51 43 35 17 23 18 4 32.3
H&U 66 52 55 65 63 81 77 42 27 11 53.9
L&U 74 61 70 74 66 82 81 46 26 11 59.1
V2H007
H 29 19 31 35 35 24 13 17 11 5 21.9
U 36 20 34 38 37 28 17 20 19 6 25.5
H&U 54 45 52 40 44 42 26 35 26 9 37.3
L&U 58 49 54 52 54 61 37 37 28 9 43.9
V2H002
H 30 21 32 30 18 20 15 20 13 4 20.3
U 33 25 36 27 22 24 16 21 14 4 22.2

that perturbing the rainfall obtains much
wider ranges than if this is not done. A more
detailed analysis of the effect of rainfall
uncertainties is done by obtaining the
percentages of the observed flows locating
within the 5-95% bounds for different mag-
nitudes of observed flows. The percentages
obtained using 10 classes of flow magnitude
defined by the 10th percentiles of the respec-
tive flow-duration curves are presented

in Table 3 and Figure 9. For all three sub-
catchments, including rainfall uncertainty
obtains a much larger percentage of the flows

within the 5-95% bounds for all flow levels,
with an overall increase from 25 to 52%.
The proportion of observed flows within
the percentiles is found to reduce as flow
reduces, probably because the applied objec-
tive function (maximising the coefficient of
variation) favours the replication of higher
rather than lower flows. It could also be an
indication of an inadequacy of the AWBM
model structure in simulating low flows. In
addition, Table 3 and Figure 9 reveal that
the lower optimisation effort obtains slightly
higher percentages of observed flows within
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Figure 8 Validation 5-95 percentile plots and observed flows for sub-catchment V2H005
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Figure 9 Percentage of observed flows that locate within the 5-95 percentile bounds. H & U indicate higher optimisation with uncertainty, L & U
lower optimisation with uncertainty, H higher optimisation without uncertainty, and L lower optimisation without uncertainty

the 5-95% bounds than the higher level for
the entire range of flows. Careful selection of
the optimisation effort to apply is therefore
needed, as an exceedingly high optimisation
may over-fit on the calibration dataset, while
simultaneously losing the overall fitness of
the parameter set.

A probable explanation of the distinct
differences in the results obtained for
sub-catchment V2H002 in comparison
with those for V2H005 and V2HO007 is
now offered. For V2H002, the variability of
parameter Ke is found to be independent
of rainfall uncertainty (Figure 6), while the
average value and the coefficient of vari-
ation of the lag for surface runoff (Lags)
is found to be considerably higher than
for V2H005 and V2HO007 (Table 2). The
observed average Lag$S value ranged from
1.11 to 1.22 days for V2H002, meaning that
some calibration runs optimised this to
1 day and some to 2 days since LagS was
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specified to vary at a daily time step. For
V2HO005 and V2HO007, Table 2 shows that
the LagS value optimised to 1 day for all 100
runs. Sub-catchment V2HO002 is the most
downstream of the three sub-catchments
and is expected to generally steep more
gently than the other two; consequently it
would have slower surface runoff processes.
Since V2HO002 is also the longest of the
three sub-catchments, it is probable that a
considerable portion of the surface runoff
takes longer than 1 day to reach river gauge
V2H002, but would reach it within 2 days,
while most surface runoff may be reaching
gauges V2HO005 and V2H007 within 1 day.
Since the calibration constrained Lag$ to
optimise to a daily value, the variability in
LagS became artificially larger as it has to
take a value of either 1 or 2 days, whereas
the more realistic lag time lies in-between.
Confining Lags$ to a daily time could also
have caused inaccuracy in the streamflow

simulation that perhaps (i) confounded the
impact of rainfall uncertainties on Ke, (ii)
led to the observed higher variability of

the other parameters for V2H002 than for
V2HO005 and V2HO007 (coefficient of vari-
ation of 0.089 compared with 0.074), and
(iii) led to the lower validation performance
for V2HO0O02 as seen in Table 3 and Figure 9.
Catchment modelling is mostly carried out
at single time steps but the reasoning here,
while not proven, gives credence to variable
time interval catchment modelling (Hughes
& Sami 1994) which seems to have gone
dormant in research and practice.

In comparison with the manual rainfall-
runoff model calibration approach (the
predominant approach in southern Africa)
which obtains single parameter values fairly
subjectively, the framework applied here
obtains a population of realistic parameter
sets, while incorporating areal rainfall
uncertainty. As revealed in the previous

Journal of the South African Institution of Civil Engineering + Volume 55 Number 3 October 2013




paragraph, this approach also enables
inferences about the observed behaviour

of parameters and modelling performance
which can be directly related to catchment
processes and how these have been modelled.
Using a similar approach, Ndiritu (2009b)
was able to infer the impact of dambos (com-
plex shallow wetlands) in the Kafue Basin on
Pitman model parameters — an endeavour
that manual calibration had failed to achieve.
This framework is therefore likely to be more
suitable than manual calibration for designs
that need to incorporate uncertainty and
reliability of performance comprehensively.
The framework also has the potential to
complement the more physically based
parameter uncertainty quantification devel-
oped recently in South Africa for the Pitman
model (Hughes et al 2011).

CONCLUSIONS AND
RECOMMENDATIONS
A framework for incorporating rainfall
uncertainties in catchment modelling
has been presented and applied to a daily
streamflow simulation problem of the Mooi
River catchment in South Africa using the
AWBM model. In the absence of any field
data-based guideline for quantifying rain-
fall uncertainties, the ratios of areal daily
rainfalls obtained from various rain-gauge
densities were used to obtain probable values
of multiplicative perturbations. A reasonable
probability distribution of perturbations was
then conceived from these and it was found
that very large variations of areal rainfall
can be obtained by omitting one or two rain
gauges. This underlines the need to formally
incorporate rainfall uncertainty into water
resources assessment.

The impact of rainfall uncertainties
was assessed by making 100 randomly
initialised calibration-validation runs, with
and without including rainfall uncertainties,
and comparing the resulting distribution
of parameter values and the proportion of
observed flows falling in the 5-95 percentile
bounds of the flows simulated in validation.
Applying rainfall uncertainties is found not
to impact on the average parameter values
and to increase significantly the variability
of only the evaporation coefficient Ke of
the AWBM model — the only parameter
directly associated with rainfall. All the
other parameters are for modelling surface
and subsurface processes, and the independ-
ence of the probability distributions of their
calibrated values from rainfall uncertainty is
considered to be an indication that the mod-
elling represented the main catchment com-
ponents and processes realistically. This also
indicates that including rainfall uncertainty

in calibration did not prevent a realistic

quantification of parameter uncertainty,

although the framework did not include an
explicit procedure to enable this as is done
in the more complex and computation-
intensive Bayesian approaches (Kavetski et
al 20064a, b). The framework applied here
could therefore be a credible and practical
alternative to these approaches, provided
the modelling captures the main catchment
processes adequately.

Applying rainfall uncertainties was found
to double the proportion of observed flows
within the 5-95 percentile bounds from an
average of 25 to 52% in validation, indicat-
ing that rainfall input uncertainty is indeed
highly significant. Two levels of optimisation
effort were applied and the lower optimisa-
tion level obtained slightly better percent-
ages of the observed flows within the 5-95
percentile bounds, highlighting the need for
careful selection of the optimisation effort to
apply in model calibration.

Further work needs to consider the
following:

B Are multiplicative perturbations the most
appropriate for quantifying areal rainfall
uncertainties, and does the approach
applied here make the best use of the data
and other information available? Ongoing
analysis indicates that linear perturba-
tions hold much promise.

B How can computational efficiency be
maximised/optimised for uncertainty
analysis? The SCEM-UA (Vrugt et al
2003), a later development of the SCE-
UA calibrator applied here, could be
considered.

B How does the choice of the ensemble size
and objective function for calibration
impact on the uncertainty analysis?

B How would this framework fit into the
current water resources planning and
management decision-support structures?

B How can the framework be adapted for
prediction in ungauged basins and to
climate change/variability analysis?

REFERENCES

Ajami, N K, Duan, Q & Sorooshian, S. 2007 An inte-
grated hydrologic Bayesian multimodel combina-
tion framework: Confronting input, parameter and
model structural uncertainty in hydrologic predic-
tion. Water Resources Research, 43, W01403, 2,
doi:10.1029/2005WR004745.

Balin, D, Lee, H & Rode, M 2010. Is point uncertain
rainfall likely to have a great impact on distributed
complex hydrological modeling? Water Resources
Research, 46, W11520, doi:10.1029/2009WR007848.

Boughton, W 2004. The Australian water balance
model. Environmental Modelling & Software,

19: 943-956.

Boughton, W & Chiew, F 2007. Estimating runoff in
ungauged catchments from rainfall, PET and the
AWBM model. Environmental Modelling & Software,
22: 476-487.

Duan, Q Y, Sorooshian, S & Gupta, V 1992. Effective
and efficient global optimization for conceptual
rainfall-runoff models. Water Resources Research,
28(4): 1015-1031.

Duan, Q Y, Sorooshian, S & Gupta, V 1994. Optimal
use of the SCE-UA global optimization method for
calibrating watershed models. Journal of Hydrology,
158: 265-284.

Hughes, D A & Sami, K 1994. A semi-distributed, vari-
able time interval model of catchment hydrology
— Structure and parameter estimation procedures.
Journal of Hydrology, 155: 265—291.

Hughes, D A, Kapangaziwiri, E, Mallory, S ], Wagener,
T & Smithers, ] 2011. Incorporating uncertainty in
water resources simulation and assessment tools in
South Africa. Water Research Commission Report
No 1838/1/11.

Kavetski, D G, Kuczera G & Franks, S W 2006a.
Bayesian analysis of input uncertainty in hydrologi-
cal modeling: 1. Theory. Water Resources Research,
42, W03407, doi:10.1029/2005WR004:368.

Kavetski, D, Kuczera G & Franks, S W 2006b. Bayesian
analysis of input uncertainty in hydrological mod-
eling: 2. Application. Water Resources Research, 42,
W03408, doi:10.1029/2005WR004376.

Kuczera, G, Kavetski D, Franks, S & Thyer, M 2006.
Towards a Bayesian total error analysis of concep-
tual rainfall-runoff models: Characterising model
error using storm-dependent parameters. Journal of
Hydrology, 331: 161-177.

Kunz, R 2009. Rainfall data extraction, Version
Number 1.2, ICFR, PMB, South Africa.

Lynch, S D 2003. The development of a raster database
of annual, monthly and daily rainfall for southern
Africa. Water Research Commission Report No
1156/0/1.

Makungo, R, Odiyo, ] O, Ndiritu, ] G & Mwaka, B 2010.
Rainfall-runoff modelling approach for ungauged
catchments: A case study of Nzhelele River sub-
quaternary catchment, Physics and Chemistry of the
Earth, 35: 596—607.

McMillan, H, Jackson, B, Clark, M, Kavetski, D, &
Woods, R 2011. Rainfall uncertainty in hydrologi-
cal modelling: An evaluation of multiplicative error
models, Journal of Hydrology, 400: 83-94.

Ndiritu, ] G 2009a. Automatic calibration of the Pitman
model using the shuffled complex evolution method.
Water Research Commission Report No K8/566/1.

Ndiritu, ] 2009b. A comparison of automatic and man-
ual calibration using the Pitman model. Physics and
Chemistry of the Earth, 34: 729-740.

Sawunyama, T 2008. Evaluating uncertainty in water
resources estimation in southern Africa: A case study
of South Africa. Unpublished PhD thesis, Rhodes
University, Grahamstown, South Africa.

Schulze, R E 1989. ACRU: Background, concepts and
theory. Water Research Commission Report No

154/1/89, ACRU Report No 35.

Journal of the South African Institution of Civil Engineering « Volume 55 Number 3 October 2013 45



Thyer, M, Renard, B, Kavetski, D, Kuczera, G, Franks, Vrugt, ] A, Gupta, H 'V, Bouten, W & Sorooshian, S Vrugt, ] A, Braak, CJ F, Gupta, V H, & Robinson, B A

S W & Srikanthan, S 2009. Critical evaluation of 2003. A Shuffled Complex Evolution Metropolis 2009. Equifinality of formal (DREAM) and infor-
parameter consistency and predictive uncertainty in algorithm for optimization and uncertainty mal (GLUE) Bayesian approaches in hydrologic
hydrological modeling: A case study using Bayesian assessment of hydrologic model param- modeling? Stochastic Environmental Research
total error analysis. Water Resources Research, 45, eters, Water Resources Research, 39(8): 1201, Risk Assessment, 23: 1011-1026, doi 10.1007/
WO00B14. doi:10.1029/2008 WR006825. doi:10.1029/2002WR001642. 500477-008-0274-y.

46 Journal of the South African Institution of Civil Engineering « Volume 55 Number 3 October 2013



