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Modelling of the fracture
process zone to improve
the crack propagation
criterion in concrete

S Shahbazpanahi, A A A Ali, F N Aznieta, A Kamgar, N Farzadnia

Modelling of tension cracking in quasi-brittle materials, such as concrete, plays an important
role in improving the reliability and load-bearing capacity of the structure. In this study fracture
mechanics is used to model tensile cracks with strain softening behaviour in concrete. An
interface element, which considers the softening zone in terms of a stiffness matrix, is applied
to simulate the cohesive zone model (CZM) as well as the stress-free region. To estimate the
nodal force caused by shear stress, a new constitutive model is proposed based on previous
experimental results. An improved Griffith-type energy approach is employed such that it can
model the propagation of a discrete crack based on an accurate stiffness matrix. This model
improves the analysis of discrete crack propagation and is more accurate than other existing
models. To validate the model, three benchmark beams are simulated, namely a plain concrete
beam with initial notch, a notched reinforced concrete beam and a beam with simple supports.
The simulation results are admissible compared to the results reported recently in the literature.

INTRODUCTION

The mechanical behaviour of ductile materi-
als is different from that of quasi-brittle
materials. Cracks grow in ductile materials
such as metals due to the intersection and
coalescence of micro-voids, while in quasi-
brittle materials such as concrete, cracks
propagate when the aggregates interlock or
when micro-crack bridging occurs (Yang &
Liu 2008).

In fracture mechanics a crack is assumed
to start when there is a notch or a stress con-
centration in the tension zone. Linear elastic
fracture mechanics (LEFM) was first used
to study crack propagation during World
War II (Esfahani 2007). Later some studies
used LEFM to analyse crack propagation in
concrete. However, Kaplan (1961) found that
LEFM could not be applied to crack prob-
lems in normal concrete sizes.

The first model based on nonlinear
fracture mechanics in concrete was proposed
by Hillerborg et al (1976). It was shown that
there is a region called the fracture process
zone (FPZ) in front of the real crack tip,
which is responsible for crack closure (see
Figure 1). This significant and relatively large
zone contains micro-cracks in matrix—aggre-
gate, gel pores, shrinkage cracks, bridging
and branches of cracks that are located ahead
of the macro-cracks. Since a significant
amount of energy is stored in the FPZ, a
crack can have stable growth before the peak
load. In addition, the existence of the FPZ

accounts for the strain softening behaviour
in the stress-crack opening curve that is
observed after peak load. In this region
interlocking crack surfaces contribute to a
gradual decline in stress and prevent sudden
failure (Esfahani 2007). The dimension of
the FPZ depends on the size of the structure
and the length of the initial crack, as well

as on the loading and material properties

of the concrete. The length of the FPZ is of
special interest as compared with its width.
The effective modulus of elasticity is reduced
when the crack moves from undamaged
regions into the FPZ.

The so-called Griffith energy approach
can be used to describe the crack propaga-
tion criterion in the fracture process at the
crack tip. This approach states that the ener-
gy release rate, defined as the amount of the
energy stored in the FPZ which is required
to form the crack, must be sufficiently larger

Elastic

Figure 1 Normal and shear stress in the FPZ
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than the critical fracture energy. Hence to
study the crack state, the crack propagation
criterion can be defined in terms of the
energy release rate.

To simulate the FPZ, Hillerborg et al
(1976) used cohesive stress, which is a func-
tion of crack opening. In the FPZ cohesive
stress reaches its maximum at the tip of the
crack, which is equal to the tensile strength
f;» and in the critical opening of the crack
w, it declines to zero. The area under the
stress-opening curve is defined as the energy
release rate. The cohesive zone model (CZM)
was applied by Hillerborg to model the FPZ
in normal-size structures using either the
nodal force release method or the technique
of interface element with zero initial thick-
ness (Ingraffea et al 1984). Since the length
of the FPZ, Ly is of special interest compared
to its width, the interface element with zero
thickness is preferred (Yang & Liu 2008).

To model the FPZ, Bazant and Oh (1983)
used dummy bands in which micro-cracks
were uniformly distributed. This model,
called the crack band model (CBM), was
simulated using a layer continuum element
in the finite element method. As the CBM
depends on the width of the element, it was
suggested to model only Mode I fracture
(Rots & Brost 1987).

The non-local continuum approach is
another method that uses the width and the
length of the interface element for modelling
the FPZ. This approach, however, uses too
many degrees of freedom, and for this very
reason it is not computationally affordable
(Ingraffea et al 1984).

From a finite element point of view, to
model the FPZ the stiffness of the element
should be properly chosen. In practice, com-
pared to undamaged zones, the FPZ has a dif-
ferent stiffness due to micro-cracking, bridg-
ing and branching processes, which provide
the energy required for the crack growth. In
the softening zone, although some resistance
is observed, the stress drops dramatically.
Parallel use of the constitutive model of the
CBM and the cohesive model may lead to a
better simulation of the FPZ behaviour in
terms of elastic branching and the softening
zone. In addition, in order to estimate the
nodal force, an accurate constitutive model
for normal and shear stresses is needed.

To estimate the crack propagation state
in the finite element model, either of two
methods are used: the strength-based or
the energy-based approach. To achieve
higher accuracy, the energy-based approach
is often used to simulate the CZM. The
energy approach criterion depends on the
stiffness matrix, the displacement and the
crack geometry (Wua et al 2011). Therefore
the crack propagation criterion should be

modified based on the new stiffness matrix
in the FPZ.

In addition, when the FPZ has fully
propagated and reaches its maximum length,
a stress-free length appears in front of the
notch (or macro-crack) behind the FPZ (Wua
et al 2011). This stress-free length has not
been considered in previous research (Bocca
et al 1991; Xie & Gersle 1995; Prasada &
Krishnamoorthy 2002; Yang & Liu 2008; Shi
2009; Ooi & Yang 2011; Guo et al 2012).

When modelling cracks, another issue
to deal with is the direction of the crack.
The initial direction of the propagation is
mostly unknown. Numerous reports have
proposed the use of approximate re-meshing
algorithms as the crack starts to grow
(Xie & Gersle 1995). In these algorithms, a
significant number of nodes are created for
re-meshing and a large stiffness matrix is
created. In this approach, the computational
complexity is relatively high. An alterna-
tive method is the so-called inter-element
boundaries technique, which identifies the
crack path (Alfaiate et al 1997).

This paper proposes a new constitutive
model for the stiffness matrix to model the
FPZ. Based on the new stiffness element,
Griffith differential energy is improved to
predict the propagation criterion. This work
uses the method presented by Alfaiate et al
(1997) instead of re-meshing. In this method,
the crack propagation direction is identified
by following the inter-element boundaries.
The proposed approach is capable of model-
ling the mixed mode of the crack, which
is described by the stress versus the crack
opening displacement curve. Three examples
are modelled to validate the criterion: a plain
concrete beam with a notch shear crack,

a notched reinforced concrete beam and a
reinforced concrete beam with simple sup-
port are analysed and compared to recent
experimental results and previous modelling.

NUMERICAL MODEL

Stiffness of interface element

As mentioned earlier, the FPZ has a sof-
tening behaviour due to the interlock of
aggregates and micro-cracks. Thus different
stiffness characteristics are used in the finite
element method to model the FPZ. A single
four-node interface element with linear
variation of the crack opening displacement
(COD) is shown in Figure 2. To model the
mixed mode, the relationship between the
stress and the displacement is represented by
matrix D, which is given as:
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where D, and D,, are the normal and
tangential stiffness respectively, and D,,
represents the additional stiffness due to the
interaction between the shear and the nor-
mal stiffness in the fracture mechanism.

To estimate the normal stiffness, the normal
stress versus COD curve was used. Figure 3
illustrates the concrete COD due to normal
stress.

The total opening can be separated into
two components:

dw =dw, + dw, 2)

where dw, and dw; are the opening elastic
and the opening softening, respectively.

The softening parameter is defined as:

_do

S-_49
dw,

®)
This parameter is in fact the slope of stress
in the softening portion of the curve and its
value is negative. If E, and E are the slope of
the elastic zone and the slope of the soften-
ing zone at the ith iteration of the nonlinear
solution respectively, we can write:

do E/

dw—dws_ 1+£s_i

“)

e

Eq (4) implies that the softening parameter
changes due to changes in E,/. On the
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other hand, the normal stiffness can be
expressed as:

D, =—— (5)

where the L is the interface element length.
From Eq (4) and (5) we obtain the following:

i
1 +£9—
Ee
=L ©®)

nn i
Es

From the study done by Yoshikawa et al
(1989), shear stiffness and the additional
stiffness due to the interaction between
the shear and normal stiffnesses are rep-
resented as a linear function of the normal
stiffness as:

Dtt = /’[ﬁDnn (7)
D, = ﬁth ®)

where y and f8 are a frictional coefficient

and dilatency factor respectively. Although
these two parameters are functions of the
normal stiffness, in this paper, for the sake of
simplicity, they are assumed to be constant.
The stiffness of the interface element K in
the softening zone is given by:

K, = /BTD BdA ©9)

where B is the strain-displacement matrix
used to model the interface element (Desai et
al 1984), dA is the differential element of the
crack surface area, and the 7 is transpose.

In material nonlinearity, the matrix D,
changes with different levels of loading,
particularly after the peak load, where the
stiffness matrix is of interest. The method of
nonlinearity is an incremental-iterative tech-
nique. In this method, the stiffness matrix

is updated at the beginning of each load
increment. Small displacements are assumed
to implement the nonlinear solution (Prasada
& Krishnamoorthy 2002). Based on small
displacements, at each step of the loading
the tangential stiffness method is used at
the ith iteration (i = j + 1) of the nonlinear
solution by using the jth displacements of
the interface element. To estimate the slope
of the softening zone, an initial displace-
ment, w,, and the elastic slope, E,, are used
(Gerstle & Xie 1992). Corresponding to the
initial displacement, the residual force is
calculated linearly, and then the correction
of the displacement to the trial value is
calculated. The stiffness matrix is updated
by accumulating the corrections of the
displacements. This iterative procedure is
continued until the residual force converges
to zero. The stress distribution at all nodes

Proposed
/ constitutive
Tma

Yoshikawa
et al (1989)

>

¢ CSD

Figure 4 Proposed shear stress vs crack sliding

is automatically implemented in the finite
element program.

The vector of the cohesive forces in the
nodes is given by:

F = /BTodA (10)

where ;= [o7]T is the stress vector due to
the proposed constitutive model for normal
and shear stresses in the FPZ. By using
Gaussian integration, employing linear shape
functions, and setting the determinant of the
Jacobian matrix equal to L/2, the stiffness

of the interface element and nodal cohesive
forces can be obtained.

The normal stress, g, is obtained from
Petersson’s constitutive law (1981) according
to the on the interface element. For shear
stress, 7, Bazant and Gambarova (1980)
assumed that opening displacement takes
place prior to the occurrence of the slip.
However, in the present study, based on the
shear stress versus the crack sliding displace-
ment (CSD) curve obtained by Yoshikawa

et al (1989), it is proposed that when the
normal stiffness is in the elastic zone, the
tangential stiffness value is very large and
constant. However, when the normal stress
in the softening part decreases, the tangen-
tial stiffness starts to reduce (Figure 4). It
seems more logical to assume that sliding
starts when the normal stress begins to
decrease.

To estimate the maximum shear stress,
T,.a the initial slip, Sy, and the critical slip
S, shown in Figure 4, the following method
is used. Previous experimental results have
shown that the relationship between the
slide and opening and displacements can
be approximated as a linear relationship
(Paulay & Loeber 1974). The relationship
between COD and CSD is assumed to be
given by:

5,=a(d,-5,) (11)

where §, and J,, are the slide and opening
displacements respectively, the parameter
a is greater than one, and §,,” is a constant.
Based on Eq (11), the values of S and S,
(Figure 4) are assumed as a(w, — 6,) and
a(w, - 6,) respectively. In addition, from

Eq (7) the maximum shear stress, 7, . is

given by:

T = 0= 8 (12)
uBD,,

Crack propagation criterion
The Griffith criterion for crack propagation is:

51] 6 > O, Crack does not propagate
—_—= —(U— W+ ES) = (), Critical condition
0A  6A < 0, Crack propagates (13)

where II, U, W and E; are the total potential
energy, the strain energy, the work done by
applying the load, and the surface dissipated

energy respectively. Note that i—‘f is given by

(Xie & Gerstle 1995):

T T
W _ /S[[‘SLNT N uTﬂ]tdg .
0A 0A

5A
T T
1, (;LANT " MT%]de (14)

Here u and N are the nodal displacement
vector and the shape function matrix respec-
tively, the parameter ¢ is the surface load on
the surface S, and b is the body force in the

volume V. We can also write % as:

LA

A

T
U pr s uTﬁ—M]ai»dA @15)
A SA)Y

where matrix M is the linear shape function
matrix which depends on the crack opening
displacement and is related to the geometry
of the crack (Xie & Gerstle 1995).

In this study, the effect of the soften-
ing strain energy is considered in order to
determine the strain energy release rate. The
strain energy release rate is assumed to be
the same in both mixed mode and Mode I
(Bocca et al 1991). The rate of change in the
strain energy in the interface element with
respect to area is expressed as:
ou_ 6 ;g r (O[T
e Effa de dV—fgfa dedv  (16)
where o and ¢ are normal stress and strain
respectively. On the other hand, the strain
energy density W, is written as:

Wd = [ o de = [ oF (dee + deS)

= I ol [;—fdss + dss] (17)
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where €¢ and &° are the elastic strain and
the softening strain respectively. The rate of
change in the strain energy density is:

%:if [l—i ol des
A

A

:[1_£]5!0_Td€55_85

E, S¢S SA
S
= [1—£] or % (18)
E, 0A
Substituting Eq (18) into Eq (16) yields:
S
5_U:[1—£]faT‘Sidv (19)
JA E, JA

Using the chain rule in partial differentia-
tion, we obtain:

S
be>  8(Bu) OB +5MB

= - =— Ut — (20)
A  6A A SA

Thus, using Eq (20), we write Eq (19) as:

5_1’[ 1= i] f JT%B + 0T5—B u]dV (21)
A E, A SA
Thus:
T
su_ [1 - i] J [5_”3] DBu dV +
SA E,) " oA
ou \T
I [6_A u] D,Bu dV) (22)

Substituting Eq (14), Eq (15) and Eq (22) into
Eq (13) and rearranging the terms, we obtain
the following:

au__ou
0A 0A

+ [ NTeds + [, NTb dv]f
(8] 32
u [L = tds+ [ | pav
[1 - i] f [6—B]TDsBqu +
E)" \sA
oM
(&

The first bracket is the equilibrium equation

{[1 - Eﬁe] | BTD BaViu + | MoT dA

ul

e

TaTdA ] (23)

and is equal to zero. The body forces and
surface load are small and can be ignored
(second bracket). Hence, using the fact that
(Xie & Gerstle 1995):

L1k, (24)

T
6—3] DBudV = 2u

T|
Ju oA

Eq (23) will be:

o l[1 - i]uT(S—K&u - uTJ.(Sﬂ ol dA (25)
0A 2 E,) 0A A

In the finite difference method, in order

to estimate the first part of Eq (25), only
crack-tip stiffness elements can be used by
applying crack extension (Yang & Liu 2008).
The second part can be evaluated by using a
Gaussian integration method (Xie & Gerstle
1995). Eq (25) can be applied to mixed-mode
and multiple-crack fracture problems.

Furthermore, a stress-free region appears
in front of the initial notch or macro-cracks
when the FPZ length is fully propagated
(Wua et al 2011). It has been shown that if
the crack-opening displacement reaches 3.6
G_/f;, the stress-free region appears in front
of the initial notch. G, is the area under the
curve (fracture energy) in Figure 1. Thus the
stress-free region length is 0.08 times the
ligament length, approximately % — &, where
h and a are the depth of the beam and the
length of the initial notch respectively. In
finite element methods the length of the
stress-free region is formulated by:

a,o=nxL (26)

where 7 is the number of elements that fail
behind the crack. When the FPZ is fully
propagated, 7 elements will be set to zero
behind the crack and the crack will grow
along the respective elements upon appropri-
ate identification of the cracking direction in
each step, as described in the next section.

Crack propagation direction
One of the most important aspects in discrete
cracking is the direction of propagation. In
this investigation, the crack is assumed to
follow the existing inter-element boundaries
and no re-meshing algorithm is needed
to decrease the computational complex-
ity (Alfaiate et al 1997). This method has
a simple algorithm. It is assumed that the
directions of maximum principal tensile
stresses, which were automatically known in
the program at each step, were perpendicular
to the crack propagation direction (Xie &
Gerstle 1995). Thus the angle (y) is recognised
(Figure 5). Crack propagation follows one of
the inter-elements (AB) or (AC). It is assumed
that the crack will not stop or intersect
the main element and that the direction of
propagation is perpendicular to the maximum
tensile principal stress (Figure 5). There are
two possible cases for the crack path: if the
orientation angle (y) is less than 45°, the
path of growth is (AC), otherwise it will be
(AB). The stiffness matrix, nodal forces and
displacements of the interface element are
changed from the local system to the global
system by using the transformation matrix.
Although the crack paths are non-smooth,
the ones found with this method are in good
agreement with the correct crack path.

The FEAPpv program code was developed
to analyse cracks in concrete (Taylor 2009).
Four-node isoparametric elements are used
for bulk concrete, for which the material
behaviour is considered to be linear elastic.
Figure 6 shows the major steps used to solve
fracture in the beam in the present numerical
model. To model the post-peak curve of the

/—
/] B
A
. | Maximgm
Propagation |, incipal
. . princip:
direction |! .
' tensile gtress
1
1
9.
cl[4-""""° A

N ,

Figure 5 Two possible directions of propagation
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Nonlinear analysis
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Modify stiffness matrix I

Crack propagates?

Find crack path I

Next element

Collapse?

—

Remove 7 element I

Figure 6 Flowchart of fracture for interface
element

structure, displacement was assumed to be
incremented rather than the load, i.e. dis-
placement-controlled numerical analysis was
applied. The displacements were classically
those for nodes at the crack mouth on the
modelling of crack tip behaviour. The non-
linear dynamic relaxation method is imple-
mented to find the load-displacement curve.
This method is preferred to other methods
such as Newton (Gerstle & Xie 1992).

NUMERICAL EXAMPLES
Three benchmark test specimens were
analysed to validate the model. Figure 7
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illustrates the previously tested plain beam
used to simulate mixed-mode fracture (Arrea
& Ingraffea 1982). The boundary conditions
and material properties are indicated in
Figure 7.
The Young’s modulus, Poisson’s ratio, and
tensile strength of concrete were assumed
to be 24 800, 0.18 and 4 MPa respectively.
The thickness of the beam was 152 mm
and the length of the initial notch was
82 mm. The parameter values of fracture
were G, = 150 N/m, w, = 0.135 mm and
W, = 0.0001 mm. Four-node isoparametric
elements were used for the bulk concrete
with linear elastic behaviour, and plane stress
was considered as the analysis condition.
The values of parameters y, B, a and §," were
chosen as 1.16, 1.64, 0.5 and 0.1 respectively.
The initial mesh (c) is illustrated in Figure 8.
Figure 9 shows the result of the load
versus the crack mouth sliding displacement
(CMSD) curve for the beam, the experi-
ment of Arrea and Ingraffea (1982) and the
numerical model of Xie et al (1995).

The round dots represent the experi-
mental envelope by Arrea and Ingraffea
(1982), the results of Xie and Gerstle (1995)
are shown in black dashed lines and the
results of the proposed model are shown
by coloured lines. As seen in Figure 9, the
results of the proposed model show good
agreement with those of the experimental
method. Mesh (a) has 110 interface ele-
ments, mesh (b) has 225 interface elements,
and mesh (c) has 306 interface elements.
Approximate matching of the three curves
demonstrates independence of the model
from the mesh size and shows fast conver-
gence of the proposed model. It can be seen
from Figure 9 that the peak loads are close to
each other, although the mesh size changes.

In the elastic part, the results lay close
to the midpoint of the experimental results
obtained previously. However, the peak load
obtained by the numerical method is slightly

shifted below the upper limit of the envelope.

The difference between the data of the
proposed model and the experimental data

200
A e Test envelope

/ AN «={J= Mesh (c)

,/ \\ == Mesh (b)

/ N =@ Mesh (a)

/ \ - == Xieetal
Z
X
]
<
5]
=

0 T T T T
0 0.03 0.06 0.09 0.12 0.15

Deflection at midspan (mm)

Figure 9 Load deflection

m

Figure 8 Initial mesh

is inevitable since the behaviour of concrete
is assumed to be linear elastic in fracture
mechanics, but in fact it is nonlinear plastic;
compression crushing has also been ignored.
The peak load obtained by the proposed
method differs by almost 7% from that of the
experimental method. The peak load in the
numerical model is considerably different
from that of the experimental peak load.

It is seen that after the peak load, the
curves in the softening zone (up to 57 kN) are
closer to the experimental data than to the
numerical model (Xie et al 1995), which is
slightly more brittle thereafter. In the soften-
ing zone after 60 kN, the proposed model
shows more agreement with the experimental
data in terms of ductility. This may be
because the stress-free zone in the tip of the
notch was not considered in previous models.

Figure 10 shows the predicted crack path
in mesh (c) compared with the experimental
data. The FPZ propagation elements are
shown in red lines, while the stress-free
elements are displayed in black. It should
be noted that the crack path is a smooth

300

S>3 o~}
(=3 SN
(=} (=}

I
=)
Unit (mm)

100

50

— T
150 100 50 0
Unit (mm)

[ Test

— Stress-free e FPZ,

Figure 10 Crack path in present study
(unit: mm) and test (Bresler &
Scordelis 1963)
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curve, although in this study the crack path
is illustrated by straight lines. It can be seen
that the predicted crack path in the mesh (c)
is very close to the experimental result.

To further validate the proposed
numerical method in mode I cracking, the
experimental data reported by Prasada and
Krishnamoorthy (2002) were chosen. The
test arrangement, the boundary condi-
tions and the geometry of the RC beam are

illustrated in Figure 11. The Young’s modu-
lus, compressive strength, tensile strength
and fracture energy were 29 270 MPa,

30.1 MPa, 4.11 MPa, 100 N/m respectively.
The yield strength of the steel was 395 MPa.
Other parameters were assumed to be the
same as those used in the previous example.
The bond between the bars and the concrete
was assumed to be perfect, i.e. no bond-slip
was considered.

The data from the numerical analysis are
compared with experimental records and
the numerical model information of Prasada
and Krishnamoorthy (2002) (Figure 12). The
numerical results are in good agreement with
the upper limit of the experimental envelop.
This could be due to the assumptions in
fracture mechanics such as the linear elastic
behaviour of concrete and tension cracks
which are not available in practice, especially
for low loads. In this study, the bond-slip
of the steel bars was ignored, unlike in the
experimental test and the numerical model
by Prasada and Krishnamoorthy (2002). This
is why there is a slight over-estimation in the
numerical model for a load of about 13.2 kN.

The FPZ appeared in front of the notch
tip at a loading of about 2.5 kN, while
deflection at mid-span was 0.012 mm. The
FPZ began to grow with increasing deflec-
tion at mid-span as the load increased.
Since the crack-opening displacement was
smaller than 3.6 G_/f,, the FPZ did not fully
propagate. In the initial stages, the load was
sustained by the FPZ and reinforcement
bars were not involved yet. When the load
was 13.2 kN, the reinforcement bars arrest-
ed the crack. As shown in Figure 12, at a
load of 19 kN the stiffness of the beam was
slightly reduced. This may be because the
stress in the reinforcement bars reached the
yield stress. At a load of 23.4 kN, the crack-
opening displacement was equal to 3.6 G_/f,.
Thus the FPZ completely propagated and a

<+

FPZ 131.11

¥

Stress-free A 5.89

Sy A

Figure 13 Final crack predicate scale = 150 (unit: mm)
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stress-free crack was created in front of the
notch tip.

Figure 13 shows the FPZ length, the
length of the stress-free region and the
COMD at the final load. The CMOD is
0.468 mm, and the deflection at mid-span is
0.576 mm at a loading of 28.1 kN. The FPZ
propagation reaches to almost three-quarters
of the beam depth after the thirteenth load-
ing step. At the tenth loading step the FPZ
fully propagates and the stress-free region
length appears.

In addition, a reinforced concrete beam
with simple supports (Figure 14), which was
tested by Bresler and Scordelis (1963), was
analysed using the proposed model. The RC
beam was 4 572 mm long and 305.8 mm
thick. The modulus of elasticity and the
Poisson’s ratio of concrete are 24 000 MPa
and 0.18 MPa respectively. The modulus of
elasticity , the Poisson’s ratio, the cross-sec-
tional area and the yield strength of steel are
200 GPa, 0.3 MPa, 3 290 mm? and 552 MPa
respectively. The tensile strength of concrete
is 2.8 MPa and the critical crack opening
displacement is 0.152 mm. A two-node truss
element with elastic-perfect plastic behaviour
and a four-node isoparametric element with
linear elastic behaviour were used to model
the steel bar and the concrete respectively.
To model the symmetry condition, only half
of the beam was simulated. The bond-slip
between the bars and the concrete was
assumed to be perfect. Also, the crack in the
RC beam was simulated by a primary crack,
first introduced by Ingraffea et al (1984),
where the reinforcing bar crosses a primary
crack.

In this study, load versus deflection at
the middle of the beam was compared to
experimental results in Figure 15. It can
be seen that the shapes of the curves are
similar to those of the experimental data. It
can be seen that the stiffness of the beam
obtained by the proposed method is slightly
greater than that of the experimental
observation (almost 6%) and the proposed
model underestimates the deflection of the
beam. However, as the load is increased, the

400
300 A
z
=
< 200
&
S
=
100 -
== Test (Bresler & Scordelis)
={J= Present model
=A== Model (Ingraffea et al)
O T T T
0 4 8 12 16

Defletion at midspan (mm)

Figure 15 Load deflection in the model (Bresler & Scordelis 1963; Ingraffea et al 1984)

results no longer agree. The reason could be
that the proposed model ignores the com-
pression crushing, the nonlinear behaviour
of concrete, plastic deformation and the
bond-slip of bar concrete.

Initially a few flexural cracks appeared
near the mid-span perpendicular to the
longitudinal axis when the loading reached
about 55 kN. The length of the biggest
crack for this load was 190 mm. The width
of the flexural cracks was greater than the
shear crack width, which occured near the
supports. The first flexural crack reached
245 mm in length and 0.168 mm in width
at a loading of 100 kN. In one-quarter of
the span to mid-span the cracks tended
to grow towards the loading point. When
the load was about 200 kN, the first crack
propagated with a length of about 320 mm
and a width of 0.187 mm. A shear crack
was observed in the vicinity of the sup-
port and its width was greater than that of
the flexural crack. Figure 16(a) shows the
crack patterns in the experimental study
of Bresler and Scordelis (1963) and Figure
16(b) illustrates the crack paths in this
study at a loading of around 285 kN. As
can be seen, both shear and flexural crack
formation resemble the experimental data.
Initially, the cracks grow straight and then
slowly propagate towards the loading point.
The initiation and location of some of these
cracks may change due to the mesh size.

CONCLUSIONS

In this study an alternative stiffness
matrix was applied to model the FPZ. The
relationship between the normal stress

(a)

* Flexural crack Shear crack

s :
[ARIRIRN|

+ (b)
[T
[ ]

Figure 16 (a) Test cracks path, scale = 650
(Bresler & Scordelis 1963)
(b) Model cracks path, scale = 650

and the shear transfer was considered in
the implementation of the finite element
method. A new constitutive model for
shear stress was proposed in a four-node
interface element. The energy-based crack
propagation criterion was then improved
by using a new stiffness matrix. The load-
deflection curve in this numerical model
and the curve in a previous experimental
study were in good agreement. The crack
directions at the tensile face in three recent
experimental data sets and the present
study were close to one another. Several
case studies were considered and global
load-deflection responses computed with
the proposed model being in reasonable
agreement with the results found in the
literature. Therefore it can be concluded
that the model is applicable, as it has

been verified computationally that it is
sufficiently able to predict the crack pattern.
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