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INTRODUCTION
The mechanical behaviour of ductile materi-
als is different from that of quasi-brittle 
materials. Cracks grow in ductile materials 
such as metals due to the intersection and 
coalescence of micro-voids, while in quasi-
brittle materials such as concrete, cracks 
propagate when the aggregates interlock or 
when micro-crack bridging occurs (Yang & 
Liu 2008).

In fracture mechanics a crack is assumed 
to start when there is a notch or a stress con-
centration in the tension zone. Linear elastic 
fracture mechanics (LEFM) was first used 
to study crack propagation during World 
War II (Esfahani 2007). Later some studies 
used LEFM to analyse crack propagation in 
concrete. However, Kaplan (1961) found that 
LEFM could not be applied to crack prob-
lems in normal concrete sizes.

The first model based on nonlinear 
fracture mechanics in concrete was proposed 
by Hillerborg et al (1976). It was shown that 
there is a region called the fracture process 
zone (FPZ) in front of the real crack tip, 
which is responsible for crack closure (see 
Figure 1). This significant and relatively large 
zone contains micro-cracks in matrix–aggre-
gate, gel pores, shrinkage cracks, bridging 
and branches of cracks that are located ahead 
of the macro-cracks. Since a significant 
amount of energy is stored in the FPZ, a 
crack can have stable growth before the peak 
load. In addition, the existence of the FPZ 

accounts for the strain softening behaviour 
in the stress-crack opening curve that is 
observed after peak load. In this region 
interlocking crack surfaces contribute to a 
gradual decline in stress and prevent sudden 
failure (Esfahani 2007). The dimension of 
the FPZ depends on the size of the structure 
and the length of the initial crack, as well 
as on the loading and material properties 
of the concrete. The length of the FPZ is of 
special interest as compared with its width. 
The effective modulus of elasticity is reduced 
when the crack moves from undamaged 
regions into the FPZ.

The so-called Griffith energy approach 
can be used to describe the crack propaga-
tion criterion in the fracture process at the 
crack tip. This approach states that the ener-
gy release rate, defined as the amount of the 
energy stored in the FPZ which is required 
to form the crack, must be sufficiently larger 
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than the critical fracture energy. Hence to 
study the crack state, the crack propagation 
criterion can be defined in terms of the 
energy release rate.

To simulate the FPZ, Hillerborg et al 
(1976) used cohesive stress, which is a func-
tion of crack opening. In the FPZ cohesive 
stress reaches its maximum at the tip of the 
crack, which is equal to the tensile strength 
ft, and in the critical opening of the crack 
wc it declines to zero. The area under the 
stress-opening curve is defined as the energy 
release rate. The cohesive zone model (CZM) 
was applied by Hillerborg to model the FPZ 
in normal-size structures using either the 
nodal force release method or the technique 
of interface element with zero initial thick-
ness (Ingraffea et al 1984). Since the length 
of the FPZ, lp, is of special interest compared 
to its width, the interface element with zero 
thickness is preferred (Yang & Liu 2008).

To model the FPZ, Bazant and Oh (1983) 
used dummy bands in which micro-cracks 
were uniformly distributed. This model, 
called the crack band model (CBM), was 
simulated using a layer continuum element 
in the finite element method. As the CBM 
depends on the width of the element, it was 
suggested to model only Mode I fracture 
(Rots & Brost 1987).

The non-local continuum approach is 
another method that uses the width and the 
length of the interface element for modelling 
the FPZ. This approach, however, uses too 
many degrees of freedom, and for this very 
reason it is not computationally affordable 
(Ingraffea et al 1984).

From a finite element point of view, to 
model the FPZ the stiffness of the element 
should be properly chosen. In practice, com-
pared to undamaged zones, the FPZ has a dif-
ferent stiffness due to micro-cracking, bridg-
ing and branching processes, which provide 
the energy required for the crack growth. In 
the softening zone, although some resistance 
is observed, the stress drops dramatically. 
Parallel use of the constitutive model of the 
CBM and the cohesive model may lead to a 
better simulation of the FPZ behaviour in 
terms of elastic branching and the softening 
zone. In addition, in order to estimate the 
nodal force, an accurate constitutive model 
for normal and shear stresses is needed.

To estimate the crack propagation state 
in the finite element model, either of two 
methods are used: the strength-based or 
the energy-based approach. To achieve 
higher accuracy, the energy-based approach 
is often used to simulate the CZM. The 
energy approach criterion depends on the 
stiffness matrix, the displacement and the 
crack geometry (Wua et al 2011). Therefore 
the crack propagation criterion should be 

modified based on the new stiffness matrix 
in the FPZ.

In addition, when the FPZ has fully 
propagated and reaches its maximum length, 
a stress-free length appears in front of the 
notch (or macro-crack) behind the FPZ (Wua 
et al 2011). This stress-free length has not 
been considered in previous research (Bocca 
et al 1991; Xie & Gersle 1995; Prasada & 
Krishnamoorthy 2002; Yang & Liu 2008; Shi 
2009; Ooi & Yang 2011; Guo et al 2012).

When modelling cracks, another issue 
to deal with is the direction of the crack. 
The initial direction of the propagation is 
mostly unknown. Numerous reports have 
proposed the use of approximate re-meshing 
algorithms as the crack starts to grow 
(Xie & Gersle 1995). In these algorithms, a 
significant number of nodes are created for 
re-meshing and a large stiffness matrix is 
created. In this approach, the computational 
complexity is relatively high. An alterna-
tive method is the so-called inter-element 
boundaries technique, which identifies the 
crack path (Alfaiate et al 1997).

This paper proposes a new constitutive 
model for the stiffness matrix to model the 
FPZ. Based on the new stiffness element, 
Griffith differential energy is improved to 
predict the propagation criterion. This work 
uses the method presented by Alfaiate et al 
(1997) instead of re-meshing. In this method, 
the crack propagation direction is identified 
by following the inter-element boundaries. 
The proposed approach is capable of model-
ling the mixed mode of the crack, which 
is described by the stress versus the crack 
opening displacement curve. Three examples 
are modelled to validate the criterion: a plain 
concrete beam with a notch shear crack, 
a notched reinforced concrete beam and a 
reinforced concrete beam with simple sup-
port are analysed and compared to recent 
experimental results and previous modelling.

NUMERICAL MODEL

Stiffness of interface element
As mentioned earlier, the FPZ has a sof-
tening behaviour due to the interlock of 
aggregates and micro-cracks. Thus different 
stiffness characteristics are used in the finite 
element method to model the FPZ. A single 
four-node interface element with linear 
variation of the crack opening displacement 
(COD) is shown in Figure 2. To model the 
mixed mode, the relationship between the 
stress and the displacement is represented by 
matrix Ds, which is given as:

Ds = éê
ë
Dnn
Dnt

  Dnt
Dtt

é
ê
ë
� (1)

where Dnn and Dtt are the normal and 
tangential stiffness respectively, and Dnt 
represents the additional stiffness due to the 
interaction between the shear and the nor-
mal stiffness in the fracture mechanism.

To estimate the normal stiffness, the normal 
stress versus COD curve was used. Figure 3 
illustrates the concrete COD due to normal 
stress.

The total opening can be separated into 
two components:

dw = dwe + dws� (2)

where dwe and dws are the opening elastic 
and the opening softening, respectively.

The softening parameter is defined as:

S = – dσ
dws

� (3)

This parameter is in fact the slope of stress 
in the softening portion of the curve and its 
value is negative. If Ee and Es

i are the slope of 
the elastic zone and the slope of the soften-
ing zone at the ith iteration of the nonlinear 
solution respectively, we can write:

S = – dσ
dw – dws

 = Es
i

1 + Es
i

Ee

� (4)

Eq (4) implies that the softening parameter 
changes due to changes in Es

i. On the 
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other hand, the normal stiffness can be 
expressed as:

Dnn = –L
S

� (5)

where the L is the interface element length. 
From Eq (4) and (5) we obtain the following:

Dnn = L
1 + Es

i

Ee
Es

i � (6)

From the study done by Yoshikawa et al 
(1989), shear stiffness and the additional 
stiffness due to the interaction between 
the shear and normal stiffnesses are rep-
resented as a linear function of the normal 
stiffness as:

Dtt = μβDnn� (7)

Dnt = βDtt� (8)

where μ and β are a frictional coefficient 
and dilatency factor respectively. Although 
these two parameters are functions of the 
normal stiffness, in this paper, for the sake of 
simplicity, they are assumed to be constant. 
The stiffness of the interface element Ks in 
the softening zone is given by:

Ks = ∫BTDsBdA� (9)

where B is the strain-displacement matrix 
used to model the interface element (Desai et 
al 1984), dA is the differential element of the 
crack surface area, and the T is transpose.

In material nonlinearity, the matrix Ds 
changes with different levels of loading, 
particularly after the peak load, where the 
stiffness matrix is of interest. The method of 
nonlinearity is an incremental-iterative tech-
nique. In this method, the stiffness matrix 
is updated at the beginning of each load 
increment. Small displacements are assumed 
to implement the nonlinear solution (Prasada 
& Krishnamoorthy 2002). Based on small 
displacements, at each step of the loading 
the tangential stiffness method is used at 
the ith iteration (i = j + 1) of the nonlinear 
solution by using the jth displacements of 
the interface element. To estimate the slope 
of the softening zone, an initial displace-
ment, w0, and the elastic slope, Ee, are used 
(Gerstle & Xie 1992). Corresponding to the 
initial displacement, the residual force is 
calculated linearly, and then the correction 
of the displacement to the trial value is 
calculated. The stiffness matrix is updated 
by accumulating the corrections of the 
displacements. This iterative procedure is 
continued until the residual force converges 
to zero. The stress distribution at all nodes 

is automatically implemented in the finite 
element program.

The vector of the cohesive forces in the 
nodes is given by:

F = ∫BTσijdA� (10)

where σij = [στ]T is the stress vector due to 
the proposed constitutive model for normal 
and shear stresses in the FPZ. By using 
Gaussian integration, employing linear shape 
functions, and setting the determinant of the 
Jacobian matrix equal to L/2, the stiffness 
of the interface element and nodal cohesive 
forces can be obtained.

The normal stress, σ, is obtained from 
Petersson’s constitutive law (1981) according 
to the on the interface element. For shear 
stress, τ, Bazant and Gambarova (1980) 
assumed that opening displacement takes 
place prior to the occurrence of the slip. 
However, in the present study, based on the 
shear stress versus the crack sliding displace-
ment (CSD) curve obtained by Yoshikawa 
et al (1989), it is proposed that when the 
normal stiffness is in the elastic zone, the 
tangential stiffness value is very large and 
constant. However, when the normal stress 
in the softening part decreases, the tangen-
tial stiffness starts to reduce (Figure 4). It 
seems more logical to assume that sliding 
starts when the normal stress begins to 
decrease.

To estimate the maximum shear stress, 
τmax, the initial slip, S0, and the critical slip 
Sc, shown in Figure 4, the following method 
is used. Previous experimental results have 
shown that the relationship between the 
slide and opening and displacements can 
be approximated as a linear relationship 
(Paulay & Loeber 1974). The relationship 
between COD and CSD is assumed to be 
given by:

δt = α(δn – δn
*)� (11)

where δt and δn are the slide and opening 
displacements respectively, the parameter 
α is greater than one, and δn

* is a constant. 
Based on Eq (11), the values of S0 and Sc 
(Figure 4) are assumed as α(w0 – δn

*) and 
α(wc – δn

*) respectively. In addition, from 
Eq (7) the maximum shear stress, τmax is 
given by:

τmax = α(w0 – δn
*)

μβDnn
� (12)

Crack propagation criterion
The Griffith criterion for crack propagation is:

δII
δA

 = δ
δA

(U – W + Es) 
ìïíïî

> 0,	� Crack does not propagate

= 0,	 Critical condition

< 0,	 Crack propagates� (13)

where II, U , W and Es are the total potential 
energy, the strain energy, the work done by 
applying the load, and the surface dissipated

energy respectively. Note that δW
δA

 is given by 

(Xie & Gerstle 1995):

δW
δA

 = �∫St
æççè
δuT

δA
NT + uT δNT

δA
æççè
tdS +

δW
δA

  ∫V
æççè
δuT

δA
NT + uT δNT

δA
æççè
bdV� (14)

Here u and N are the nodal displacement 
vector and the shape function matrix respec-
tively, the parameter t is the surface load on 
the surface St and b is the body force in the 

volume V. We can also write δEs
δA

 as:

δEs
δA

 = �∫ æççè
δuT

δA
M + uT δM

δA
æççè
σij dA� (15)

where matrix M is the linear shape function 
matrix which depends on the crack opening 
displacement and is related to the geometry 
of the crack (Xie & Gerstle 1995).

In this study, the effect of the soften-
ing strain energy is considered in order to 
determine the strain energy release rate. The 
strain energy release rate is assumed to be 
the same in both mixed mode and Mode I 
(Bocca et al 1991). The rate of change in the 
strain energy in the interface element with 
respect to area is expressed as:

δU
δA

 = δ
δA

∫∫ σT dε dV = ∫ δ
δA

∫ σT dε dV� (16)

where σ and ε are normal stress and strain 
respectively. On the other hand, the strain 
energy density Wd is written as:

Wd = ∫ σT dε = ∫ σT (dεe + dεS)

 = ∫ σT æççè
–S
Ee

dεS + dεS æççè
� (17) 

Figure 4 �Proposed shear stress vs crack sliding
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where εe and εs are the elastic strain and 
the softening strain respectively. The rate of 
change in the strain energy density is:

δWd
δA

 = δ
δA 

 ∫ æççè1 – S
Ee

æççè 
σT dεS

 = æççè1 – S
Ee

æççè
 δ ∫ σT dεS

δεS  
δεS

δA

 = æççè1 – S
Ee

æççè 
σT δεS

δA
� (18)

Substituting Eq (18) into Eq (16) yields:

δU
δA

 = æççè1 – S
Ee

æççè 
�∫ σT δεS

δA
 dV� (19)

Using the chain rule in partial differentia-
tion, we obtain:

δεS

δA
 = δ(Bu)

δA
 = δB

δA
 u + δu

δA
 B� (20)

Thus, using Eq (20), we write Eq (19) as:

δU
δA

 = æççè1 – S
Ee

æççè
 ∫ æççèσ

T δu
δA 

B + σT δB
δA

 u æççè
dV� (21)

Thus:

δU
δA

 = æççè1 – S
Ee

æççè
 (∫ æççè

δu
δA 

B æççè

T
 DsBu dV +

 ∫ æççè
δu
δA 

u æççè

T DsBu dV)� (22)

Substituting Eq (14), Eq (15) and Eq (22) into 
Eq (13) and rearranging the terms, we obtain 
the following:

δII
δA

 = – δU
δA

 éê
ë
æççè
1 – S

Ee

æççè
 ∫ BTDsBdVu + ∫ MσT dA

 + ∫s NTt dS + ∫V NTb dV é
ê
ë
 –

 uT éê
ë
∫s
æççè

δN
δA

æççè

T
 t dS + ∫V

æççè
δN
δA

æççè

T
b dV é

ê
ë
 –

 uT éê
ë
æççè
1 – S

Ee

æççè
 ∫ æççè

δB
δA

æççè

T
DsBdV u +

∫ æççè
δM
δA

æççè

T
σTdA é

ê
ë
� (23)

The first bracket is the equilibrium equation 
and is equal to zero. The body forces and 
surface load are small and can be ignored 
(second bracket). Hence, using the fact that 
(Xie & Gerstle 1995):

∫ uTæççè
δB
δA

æççè

T
DsBu dV = 1

2
uT δKs

δA
u� (24)

Eq (23) will be:

δII
δA

 = 1
2
æççè
1 – S

Ee

æççè
uT δKs

δA
u – uT ∫ δM

δA  
σT dA� (25)

In the finite difference method, in order 
to estimate the first part of Eq (25), only 
crack-tip stiffness elements can be used by 
applying crack extension (Yang & Liu 2008). 
The second part can be evaluated by using a 
Gaussian integration method (Xie & Gerstle 
1995). Eq (25) can be applied to mixed-mode 
and multiple-crack fracture problems.

Furthermore, a stress-free region appears 
in front of the initial notch or macro-cracks 
when the FPZ length is fully propagated 
(Wua et al 2011). It has been shown that if 
the crack-opening displacement reaches 3.6 
Gc/ft, the stress-free region appears in front 
of the initial notch. Gc is the area under the 
curve (fracture energy) in Figure 1. Thus the 
stress-free region length is 0.08 times the 
ligament length, approximately h – α0, where 
h and α0 are the depth of the beam and the 
length of the initial notch respectively. In 
finite element methods the length of the 
stress-free region is formulated by:

aσ=0 = n × L� (26)

where n is the number of elements that fail 
behind the crack. When the FPZ is fully 
propagated, n elements will be set to zero 
behind the crack and the crack will grow 
along the respective elements upon appropri-
ate identification of the cracking direction in 
each step, as described in the next section.

Crack propagation direction
One of the most important aspects in discrete 
cracking is the direction of propagation. In 
this investigation, the crack is assumed to 
follow the existing inter-element boundaries 
and no re-meshing algorithm is needed 
to decrease the computational complex-
ity (Alfaiate et al 1997). This method has 
a simple algorithm. It is assumed that the 
directions of maximum principal tensile 
stresses, which were automatically known in 
the program at each step, were perpendicular 
to the crack propagation direction (Xie & 
Gerstle 1995). Thus the angle (γ) is recognised 
(Figure 5). Crack propagation follows one of 
the inter-elements (AB) or (AC). It is assumed 
that the crack will not stop or intersect 
the main element and that the direction of 
propagation is perpendicular to the maximum 
tensile principal stress (Figure 5). There are 
two possible cases for the crack path: if the 
orientation angle (γ) is less than 45°, the 
path of growth is (AC), otherwise it will be 
(AB). The stiffness matrix, nodal forces and 
displacements of the interface element are 
changed from the local system to the global 
system by using the transformation matrix. 
Although the crack paths are non-smooth, 
the ones found with this method are in good 
agreement with the correct crack path.

The FEAPpv program code was developed 
to analyse cracks in concrete (Taylor 2009). 
Four-node isoparametric elements are used 
for bulk concrete, for which the material 
behaviour is considered to be linear elastic. 
Figure 6 shows the major steps used to solve 
fracture in the beam in the present numerical 
model. To model the post-peak curve of the 

structure, displacement was assumed to be 
incremented rather than the load, i.e. dis-
placement-controlled numerical analysis was 
applied. The displacements were classically 
those for nodes at the crack mouth on the 
modelling of crack tip behaviour. The non-
linear dynamic relaxation method is imple-
mented to find the load-displacement curve. 
This method is preferred to other methods 
such as Newton (Gerstle & Xie 1992).

NUMERICAL EXAMPLES
Three benchmark test specimens were 
analysed to validate the model. Figure 7 

Figure 5 �Two possible directions of propagation
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illustrates the previously tested plain beam 
used to simulate mixed-mode fracture (Arrea 
& Ingraffea 1982). The boundary conditions 
and material properties are indicated in 
Figure 7.

The Young’s modulus, Poisson’s ratio, and 
tensile strength of concrete were assumed 
to be 24 800, 0.18 and 4 MPa respectively. 
The thickness of the beam was 152 mm 
and the length of the initial notch was 
82 mm. The parameter values of fracture 
were Gc = 150 N/m, wc = 0.135 mm and 
w0 = 0.0001 mm. Four-node isoparametric 
elements were used for the bulk concrete 
with linear elastic behaviour, and plane stress 
was considered as the analysis condition. 
The values of parameters μ, β, α and δn

* were 
chosen as 1.16, 1.64, 0.5 and 0.1 respectively.
The initial mesh (c) is illustrated in Figure 8.

Figure 9 shows the result of the load 
versus the crack mouth sliding displacement 
(CMSD) curve for the beam, the experi-
ment of Arrea and Ingraffea (1982) and the 
numerical model of Xie et al (1995).

The round dots represent the experi-
mental envelope by Arrea and Ingraffea 
(1982), the results of Xie and Gerstle (1995) 
are shown in black dashed lines and the 
results of the proposed model are shown 
by coloured lines. As seen in Figure 9, the 
results of the proposed model show good 
agreement with those of the experimental 
method. Mesh (a) has 110 interface ele-
ments, mesh (b) has 225 interface elements, 
and mesh (c) has 306 interface elements. 
Approximate matching of the three curves 
demonstrates independence of the model 
from the mesh size and shows fast conver-
gence of the proposed model. It can be seen 
from Figure 9 that the peak loads are close to 
each other, although the mesh size changes.

In the elastic part, the results lay close 
to the midpoint of the experimental results 
obtained previously. However, the peak load 
obtained by the numerical method is slightly 
shifted below the upper limit of the envelope. 
The difference between the data of the 
proposed model and the experimental data 

is inevitable since the behaviour of concrete 
is assumed to be linear elastic in fracture 
mechanics, but in fact it is nonlinear plastic; 
compression crushing has also been ignored. 
The peak load obtained by the proposed 
method differs by almost 7% from that of the 
experimental method. The peak load in the 
numerical model is considerably different 
from that of the experimental peak load.

It is seen that after the peak load, the 
curves in the softening zone (up to 57 kN) are 
closer to the experimental data than to the 
numerical model (Xie et al 1995), which is 
slightly more brittle thereafter. In the soften-
ing zone after 60 kN, the proposed model 
shows more agreement with the experimental 
data in terms of ductility. This may be 
because the stress-free zone in the tip of the 
notch was not considered in previous models.

Figure 10 shows the predicted crack path 
in mesh (c) compared with the experimental 
data. The FPZ propagation elements are 
shown in red lines, while the stress-free 
elements are displayed in black. It should 
be noted that the crack path is a smooth 

Figure 7 Shear beam (unit: mm)
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curve, although in this study the crack path 
is illustrated by straight lines. It can be seen 
that the predicted crack path in the mesh (c) 
is very close to the experimental result.

To further validate the proposed 
numerical method in mode I cracking, the 
experimental data reported by Prasada and 
Krishnamoorthy (2002) were chosen. The 
test arrangement, the boundary condi-
tions and the geometry of the RC beam are 

illustrated in Figure 11. The Young’s modu-
lus, compressive strength, tensile strength 
and fracture energy were 29 270 MPa, 
30.1 MPa, 4.11 MPa, 100 N/m respectively. 
The yield strength of the steel was 395 MPa. 
Other parameters were assumed to be the 
same as those used in the previous example. 
The bond between the bars and the concrete 
was assumed to be perfect, i.e. no bond-slip 
was considered.

The data from the numerical analysis are 
compared with experimental records and 
the numerical model information of Prasada 
and Krishnamoorthy (2002) (Figure 12). The 
numerical results are in good agreement with 
the upper limit of the experimental envelop. 
This could be due to the assumptions in 
fracture mechanics such as the linear elastic 
behaviour of concrete and tension cracks 
which are not available in practice, especially 
for low loads. In this study, the bond-slip 
of the steel bars was ignored, unlike in the 
experimental test and the numerical model 
by Prasada and Krishnamoorthy (2002). This 
is why there is a slight over-estimation in the 
numerical model for a load of about 13.2 kN.

The FPZ appeared in front of the notch 
tip at a loading of about 2.5 kN, while 
deflection at mid-span was 0.012 mm. The 
FPZ began to grow with increasing deflec-
tion at mid-span as the load increased. 
Since the crack-opening displacement was 
smaller than 3.6 Gc/ft, the FPZ did not fully 
propagate. In the initial stages, the load was 
sustained by the FPZ and reinforcement 
bars were not involved yet. When the load 
was 13.2 kN, the reinforcement bars arrest-
ed the crack. As shown in Figure 12, at a 
load of 19 kN the stiffness of the beam was 
slightly reduced. This may be because the 
stress in the reinforcement bars reached the 
yield stress. At a load of 23.4 kN, the crack-
opening displacement was equal to 3.6 Gc/ft. 
Thus the FPZ completely propagated and a 

Figure 11 The notched RC beam (unit: mm)
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stress-free crack was created in front of the 
notch tip.

Figure 13 shows the FPZ length, the 
length of the stress-free region and the 
COMD at the final load. The CMOD is 
0.468 mm, and the deflection at mid-span is 
0.576 mm at a loading of 28.1 kN. The FPZ 
propagation reaches to almost three-quarters 
of the beam depth after the thirteenth load-
ing step. At the tenth loading step the FPZ 
fully propagates and the stress-free region 
length appears.

In addition, a reinforced concrete beam 
with simple supports (Figure 14), which was 
tested by Bresler and Scordelis (1963), was 
analysed using the proposed model. The RC 
beam was 4 572 mm long and 305.8 mm 
thick. The modulus of elasticity and the 
Poisson’s ratio of concrete are 24 000 MPa 
and 0.18 MPa respectively. The modulus of 
elasticity , the Poisson’s ratio, the cross-sec-
tional area and the yield strength of steel are 
200 GPa, 0.3 MPa, 3 290 mm2 and 552 MPa 
respectively. The tensile strength of concrete 
is 2.8 MPa and the critical crack opening 
displacement is 0.152 mm. A two-node truss 
element with elastic-perfect plastic behaviour 
and a four-node isoparametric element with 
linear elastic behaviour were used to model 
the steel bar and the concrete respectively. 
To model the symmetry condition, only half 
of the beam was simulated. The bond-slip 
between the bars and the concrete was 
assumed to be perfect. Also, the crack in the 
RC beam was simulated by a primary crack, 
first introduced by Ingraffea et al (1984), 
where the reinforcing bar crosses a primary 
crack.

In this study, load versus deflection at 
the middle of the beam was compared to 
experimental results in Figure 15. It can 
be seen that the shapes of the curves are 
similar to those of the experimental data. It 
can be seen that the stiffness of the beam 
obtained by the proposed method is slightly 
greater than that of the experimental 
observation (almost 6%) and the proposed 
model underestimates the deflection of the 
beam. However, as the load is increased, the 

results no longer agree. The reason could be 
that the proposed model ignores the com-
pression crushing, the nonlinear behaviour 
of concrete, plastic deformation and the 
bond-slip of bar concrete.

Initially a few flexural cracks appeared 
near the mid-span perpendicular to the 
longitudinal axis when the loading reached 
about 55 kN. The length of the biggest 
crack for this load was 190 mm. The width 
of the flexural cracks was greater than the 
shear crack width, which occured near the 
supports. The first flexural crack reached 
245 mm in length and 0.168 mm in width 
at a loading of 100 kN. In one-quarter of 
the span to mid-span the cracks tended 
to grow towards the loading point. When 
the load was about 200 kN, the first crack 
propagated with a length of about 320 mm 
and a width of 0.187 mm. A shear crack 
was observed in the vicinity of the sup-
port and its width was greater than that of 
the flexural crack. Figure 16(a) shows the 
crack patterns in the experimental study 
of Bresler and Scordelis (1963) and Figure 
16(b) illustrates the crack paths in this 
study at a loading of around 285 kN. As 
can be seen, both shear and flexural crack 
formation resemble the experimental data. 
Initially, the cracks grow straight and then 
slowly propagate towards the loading point. 
The initiation and location of some of these 
cracks may change due to the mesh size.

CONCLUSIONS
In this study an alternative stiffness 
matrix was applied to model the FPZ. The 
relationship between the normal stress 

and the shear transfer was considered in 
the implementation of the finite element 
method. A new constitutive model for 
shear stress was proposed in a four-node 
interface element. The energy-based crack 
propagation criterion was then improved 
by using a new stiffness matrix. The load-
deflection curve in this numerical model 
and the curve in a previous experimental 
study were in good agreement. The crack 
directions at the tensile face in three recent 
experimental data sets and the present 
study were close to one another. Several 
case studies were considered and global 
load-deflection responses computed with 
the proposed model being in reasonable 
agreement with the results found in the 
literature. Therefore it can be concluded 
that the model is applicable, as it has 
been verified computationally that it is 
sufficiently able to predict the crack pattern.

Figure 15 Load deflection in the model (Bresler & Scordelis 1963; Ingraffea et al 1984)
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