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INTRODUCTION 

Geotechnical design is performed under a 

considerable degree of uncertainty. The two 

main sources of this uncertainty include: 

(i) Soil parameter uncertainty and (ii) cal-

culation model uncertainty. Soil parameter 

uncertainty arises from the variability 

exhibited by properties of geotechnical mate-

rials from one location to the other, even 

within seemingly homogeneous profiles. 

Geotechnical parameter prediction uncer-

tainties are attributed to inherent spatial 

variability, measurement noise/random 

errors, systematic measurements errors, and 

statistical uncertainties. Conversely, model 

uncertainty emanates from imperfections of 

analytical models for predicting engineer-

ing behaviour. Mathematical modelling 

of any physical process generally requires 

simplifications to create a useable model. 

Inevitably, the resulting models are simpli-

fications of complex real-world phenomena. 

Consequently there is uncertainty in the 

model prediction even if the model inputs 

are known with certainty.

For pile foundations, previous studies (e.g. 

Ronold & Bjerager1992; Phoon & Kulhawy 

2005) have demonstrated that calculation 

model uncertainty is the predominant com-

ponent. One of the fundamental objectives 

of reliability-based design is to quantify and 

systematically incorporate the uncertainties 

in the design process. The current state of 

the art in the quantification of model uncer-

tainty associated with a given pile design 

model entails determining the ratio of the 

measured capacity to theoretical capacity. 

Accordingly, in this paper a series of pile per-

formance predictions by the static formula 

are compared with measured performances. 

To capture the distinct soil types for the 

geologic region of southern Africa, as well as 

the local pile design and construction experi-

ence base, pile load tests and associated 

geotechnical data from the southern African 

geologic environment are used.

In reliability analysis and modelling, both 

materials properties and calculation model 

uncertainties are incorporated into a perfor-

mance function representing the limit state 

design function in terms of basic variables 

which express design variables (loads, mate-

rial properties, geometry) as probabilistic 

variables. The objective of this paper is to 

present detailed statistical characterisation 

of model uncertainty for pile foundations. 

The analysis is an extension of the model 

uncertainty characterisation reported by 

Dithinde et al (2011). The purpose of the 

characterisation is to relate southern African 

pile foundation design practice to reliability-

based design as it has been developed and 

Pile design practice in 
southern Africa Part I: 
Resistance statistics

M Dithinde, J V Retief 

The paper presents resistance statistics required for reliability assessment and calibration of 
limit state design procedures for pile design reflecting southern African practice. The first 
step of such a development is to determine the levels of reliability implicitly provided for in 
present design procedures based on working stress design. Such an assessment is presented 
in an accompanying paper (please turn to page 72). The statistics are presented in terms of a 
model factor M representing the ratio of pile resistance interpreted from pile load tests to its 
prediction based on the static pile formula. A dataset of 174 cases serves as sample set for the 
statistical analysis. The statistical characterisation comprises outliers detection and correction of 
erroneous values, using the corrected data to compute the sample moments (mean, standard 
deviation, skewness and kurtosis) needed in reliability analysis. The analyses demonstrate 
that driven piles depict higher variability compared to bored piles, irrespective of materials 
type. In addition to the above statistics, reliability analysis requires the theoretical probability 
distribution for the random variable under consideration. Accordingly it is demonstrated 
that the lognormal distribution is a valid theoretical model for the model factor. Another key 
basis for reliability theory is the notion of randomness of the basic variables. To verify that the 
variation in the model factor is not explainable by deterministic variations in the database, an 
investigation of correlation of the model factor with underlying pile design parameters is carried 
out. It is shown that such correlation is generally weak.
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standardised for geotechnical and structural 

design. The derived statistics constitute the 

backbone of all subsequent pile foundations 

limit state design initiatives in southern 

Africa. Specific usage of the derived statistics 

include: assessment of reliability indices 

embodied in the current southern African 

pile design practice, as presented in the 

accompanying paper (Retief & Dithinde 

2013 – please turn to page 72); derivation of 

the characteristic model factor for pile foun-

dations design in conjunction with SANS 

10160-5 (2011); and reliability calibration of 

resistance factors. The following topics are 

presented subsequently:

 ■ The geotechnical background to the 

dataset is briefly reviewed, including the 

basis and application for classification 

into homogeneous datasets and the for-

mal definition of the model factor M to 

represent model uncertainty. 

 ■ An assessment and detection of outliers 

and correction of erroneous samples, 

considering the sensitivity of reliability 

analysis to even a limited number of such 

values in a dataset.

 ■ Using the corrected data and conven-

tional statistical methods to compute 

the sample moments: mean, standard 

deviation, skewness and kurtosis for the 

respective datasets. 

 ■ Verification of randomness of the dataset 

through investigation of any system-

atic dependence on the relevant design 

variables.

 ■ Determination of the appropriate prob-

ability distribution to represent model 

uncertainty provides the final step in 

characterising model factor statistics. 

PILE LOAD TEST DATABASE

Although this paper primarily considers the 

statistical characteristics of southern African 

pile model uncertainty, as based on the data-

base of model factors reported by Dithinde 

et al (2011), with additional background 

provided by Dithinde (2007), it is also neces-

sary to appreciate the geotechnical basis and 

integrity of the dataset. This section presents 

an extract of the way in which the dataset 

has been compiled and a formal definition of 

a model factor (M). 

The database of static pile load tests 

reported by Dithinde et al (2011) include 

information on the associated geotechnical 

data, such as soil profiles, field and labora-

tory test results. A comprehensive range of 

soil conditions, pile geometry and resistance 

is incorporated in the dataset, to provide 

extensive representation of southern African 

pile construction practice. Although the pile 

load test reports were collected from various 

piling companies in South Africa, a signifi-

cant number of pile tests were performed 

in countries such as Botswana, Lesotho, 

Mozambique, Zambia, Swaziland and 

Tanzania. The main pile types in the data-

base include Franki (expanded base) piles, 

Auger piles, and Continuous Flight Auger 

(CFA) piles. In addition, there are a few cases 

of steel piles and slump cast piles. The steel 

piles are mainly H-piles, with one case where 

a steel tubular pile was used.

The collected pile load test data was 

carefully studied in order to evaluate its 

suitability for inclusion in the current 

study. For each load test, emphasis was 

placed on the completeness of the required 

information, including test pile size (length 

and diameter), proper record of the load-

deflection data, and availability of subsur-

face exploration data for the site. Only cases 

where sufficient soil data was available 

for the prediction of pile resistance were 

included in the database.

The pile load tests were used to deter-

mine the measured pile resistance, while the 

geotechnical data was used to compute the 

predicted resistance. The measured resis-

tances from the respective load-settlement 

curves were interpreted on the basis of 

Davisson’s offset criterion (Davison 1972). 

However, for working piles, Chin’s extrapola-

tion (Chin 1970) was carried out prior to the 

application of the Davisson’s offset criterion. 

The predicted resistance was based on the 

classic static formula which is essentially the 

generic theoretical pile design model based 

on the principles of soil mechanics. The 

soil data that was obtained from the survey, 

and used for the predicted resistance, was 

mainly in the form of borehole log descrip-

tions and standard penetration (SPT) results. 

Soil design parameters were selected on the 

basis of common southern African practice 

(Dithinde 2007). 

Model factor statistics 

The primary output of the database of pile 

load tests reported by Dithinde et al (2011) 

consists of the interpreted pile resistance (Qi) 
and the predicted pile resistance (Qp) from 

which a set of observations of the Model 

Factor (M) as given by Equation [1] can be 

obtained:

M = 
Qi
Qp

 (1)

where:

 Qi =  pile capacity interpreted from a 

load test, to represent the measured 

capacity;

 Qp =  pile capacity generally predicted using 

limit equilibrium models, and 

 M = model factor.

Each case of pile test included in the dataset 

is consequently treated as a sample of the set 

of n cases under consideration. In Dithinde 

et al (2011) the complete set of 174 cases was 

further classified in terms of four theoretical 

principal pile design classes based on both 

soil type and installation method. These 

fundamental sets of classes include:

(i) driven piles in non-cohesive soil (D-NC) 

with 29 cases, (ii) bored piles in non-cohesive 

soil (B-NC) with 33 cases, (iii) driven piles 

in cohesive soils (D-C) with 59 cases, and 

(iv) bored piles in cohesive soils (B-C) with 

53 cases. In this paper, the principle four data 

sets are now combined into various practical 

pile design classes considered in design codes 

such as SANS 10169-5 (2011) and EN 1997-1 

(2004). The additional classification schemes 

include:

 ■ Classification based on pile installation 

method irrespective of soil type. This is 

the classification adopted in EN 1997-1 

(2004) and it yields: 87 cases of driven 

piles (D) and 83 cases of bored piles (B).

 ■ Classification based on soil type. This 

classification system is supported by the 

general practice where a higher factor of 

safety is applied to pile capacity in clay 

as compared to sand. This combination 

results in 58 cases in non-cohesive soil 

(NC) and 112 cases in cohesive soil (C).

 ■ All pile cases as a single data set irrespec-

tive of pile installation method and soil 

type. This is the practical consideration 

presented in SANS 10160-5 (2011) where 

a single partial factor is given for all com-

pressive piles. The scheme yields 174 pile 

cases (ALL). 

DETECTION OF DATA OUTLIERS 

The presence of outliers may greatly 

influence any calculated statistics, lead-

ing to biased results. For instance, they 

may increase the variability of a sample 

and decrease the sensitivity of subsequent 

statistical tests (McBean & Rovers 1998). 

Therefore prior to further numerical treat-

ment of samples and application of statistical 

techniques for assessing the parameters of 

the population, it is absolutely imperative to 

identify extreme values and correct errone-

ous ones.

The statistical detection and treatment 

of outliers in the principal four sets were 

reported by Dithinde et al (2011). The meth-

ods used include (i) load-settlement curves, 

(ii) sample z-scores, (iii) box plots, and (iv) 

scatter plots. The results for cases with outli-

ers are reproduced in Figure 1. Inspection 

of Figure 1(a) reveals two potential outliers 

(i.e. cases 27 and 54). The curves for these 

two cases depict different behaviour from 
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Figure 1(a) Load-settlement curves method
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the rest of the curves (case 27 with a soft 

initial response and case 54 with a large 

normalised capacity). Visual inspection of 

Figure 1(b) for outliers shows one data point 

marked as outlier for B-NC and B-C data 

sets. The tagged data points correspond to 

pile cases number 53 and 156. However, it 

should be noted that the box plot method for 

identifying outliers has shortcomings, par-

ticularly for small sample sizes as is the case 

here. Accordingly the identified cases will 

have to be corroborated by other methods. 

Examination of Figure 1(c) shows two data 

points with z-score values at a considerable 

distance from the rest of the data points. 

These data points belong to B-NC (case 53) 

and B-C (case 156) with z-scores of 3.13 

and 2.95 respectively. Although the z-score 

for case 156 is less than the criterion limit 

value of 3, and therefore technically is not an 

outlier, it is sufficiently close to the limit to 

require further scrutiny. The results of the 

scatter plots of pile capacity (Qi) versus the 

predicted capacity (Qp) revealed the same 

outliers detected by the other methods.

Aggregate of outliers

A total of five observations were detected 

as potential outliers, namely cases 27, 53, 

54, 55 and 156. However, it is not proper to 

automatically delete a data point once it has 

been identified as an outlier through statisti-

cal methods (Robinson et al 2005). Since an 

outlier may still represent a true observation, 

it should only be rejected on the basis of 

evidence of improper sampling or error. 

Accordingly the five data points identified as 

outliers were carefully examined by double-

checking the processes of determination 

of interpreted capacities and computation 

of predicted capacities. This entailed going 

back to the original data (pile testing records 

and derivation of soil design parameters) and 

checking for recording and computational 

errors. Following this procedure the correc-

tions were as follows:

 ■ Cases 53, 54 and 55: Examination of 

records for these cases showed that an 

uncommon pile installation practice was 

employed. The steel piles were installed 

in predrilled holes and then grouted. The 

strength of the grout surrounding the 

piles contributed to the high resistance 

and hence the higher interpreted capaci-

ties. Since the installation procedure 

for these piles deviates from the normal 

practice, they represent a different 

population. These were the only piles in 

the database constructed in this rather 

unusual method. These data points were 

therefore regarded as genuine outliers and 

were deleted from the data set. 

 ■ Case 27: There was no obvious physical 

explanation for the behaviour of pile case 

27. The depicted behaviour is attributed 

to extreme values of the hyperbolic 

parameters representing the non-linear 

behaviour of the test results. Since piles 

in terms of pile type, size and soils condi-

tions (i.e. cases 28 and 29) did not show 

similar characteristics, it was concluded 

that an error was made during the execu-

tion of the pile test. Accordingly this pile 

case was regarded as having incomplete 

information, and was therefore deleted.

 ■ Case 156: Again there was no obvious 

physical explanation for the behaviour of 

this pile case. Furthermore, the location 

of this data point on the scatter plot of 

Qi versus Qp fits the general trend for 

the dataset. Therefore no correction was 

justified for this pile case. 

In summary, four outliers were removed and 

one retained, bringing the dataset to n = 170 

cases in total and for the respective subsets 

nD-NC = 28; nB-NC = 30; nD-C = 59; nB-C = 53. 

SCATTER PLOTS OF QI VS QP

Scatter plots of Qi versus Qp can serve as a 

multivariate approach to outlier detection. 

However they are presented here to provide 

an indication of whether the variance of 

the data set is constant or varies with the 

dependent variable (i.e. homoscedasticity). 

The ensuing scatter plots are presented in 

Figure 2. Visual inspection of the scatter 

plots seems to suggest variation in the degree 

of scatter increases with values of Qp. In this 

regard, it is evident that there is reduced 

scatter at smaller values of Qp. However, due 

to the small sample size, the case for large 

values of Qp is not sufficiently clear to make 

any firm conclusion. Furthermore, Figure 2 

gives the impression that the variance of 

the points around the fitted line increases 

linearly, thereby suggesting that the standard 

deviation increases with the square root 

of the values of Qp. This explains why the 

scatter tends to flatten off for large values of 

Qp. The foregoing assumption implies that 

weighted regression analysis must be used 

to establish the relationship between Qi and 

Qp. Such regression analysis was applied in 

this study (Figure 2) with the regression line 

forced to pass through the origin. In this 

case, the slope of the regression line is an 

estimate of the model factor M. 

SUMMARY STATISTICS

Following the outlier detection and removal 

process, the descriptive statistics for M 

consisting of mean (mM), standard deviation 

(sM), skewness and kurtosis are presented 

in Table 1. The sample descriptive statistics 

were computed using conventional statistical 

analysis approach. These are quantities used 

to describe the salient features of the sample 

and are required for calculations, statisti-

cal testing, and inferring the population 

parameters.

The sample mean mM indicates the aver-

age ratio of Qi to Qp, with mM > 1 indicating 

a conservative bias of Qi exceeding Qp. This 

is generally the case, with a positive bias 

of between 1.04 and 1.17 shown in Table 1, 

except for the B-NC case where Qi is on 

average slightly less than Qp with mM = 0.98, 

which is slightly un-conservative. The 

general conservative bias reflected by mM is, 

however, small in comparison to the disper-

sion of M as reflected by the sample standard 

deviation sM for which values range from 

0.23 to 0.36; the dispersion is also presented 

Figure 1(c) Z-score method
Figures 1(a)–(c) Outlier detection results (after Dithinde et al 2011)

Z-
sc

or
e

3

4

1

2

0

–1

–3

–2

M
0 1 2 3

D-NC B-NC D-C B-C



Journal of the South African Institution of Civil Engineering • Volume 55 Number 1 April 201364

in normalised form as the coefficient of 

variation VM = sM/mM. 

The combined effect of values of mM 

close to 1 and the relatively large values 

of sM or VM indicate large probabilities of 

realisations of M in the un-conservative 

range M < 1. The lower tail of the distribu-

tion of M derived from the dataset and M 

statistics is therefore of specific interest 

for application of the results in reliability 

assessment.

A comparison of the standard deviations 

or coefficient of variations for the respective 

cases indicates small differences. However, 

there seems to be a distinct trend that is 

influenced by the pile installation method 

(i.e. driven or bored). In this regard, driven 

piles depict higher variability compared to 

bored piles, irrespective of soil type. This 

 Table 1 Summary of statistics for M

M n Mean
mM

Confidence 
-75%

mM; -0.75

Std. Dev.
sM

Upper CI 
SD 75%
sM; +0.75

COV Skewness Kurtosis

D-NC 28 1.11 1.03 0.36 0.40 0.33 0.35 –1.15

B-NC 30 0.98 0.93 0.23 0.26 0.24 0.14 –0.19

D-C 59 1.17 1.12 0.3 0.32 0.26 –0.01 –0.74

B-C 53 1.15 1.10 0.28 0.30 0.25 0.36 0.49

D 87 1.15 1.11 0.32 0.34 0.28 0.1 –0.95

B 83 1.09 1.05 0.28 0.30 0.25 0.41 0.47

NC 58 1.04 1.00 0.30 0.32 0.29 0.55 –0.37

C 112 1.16 1.13 0.29 0.30 0.25 0.15 –0.29

ALL 170 1.1 1.07 0.31 0.32 0.28 0.24 –0.75

Figure 2 Scatter plots of Qi versus Qp
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implies that the densification of the soil sur-

rounding the pile emanating from the pile 

driving process is not well captured in the 

selection of the soil design parameters. Even 

the bias for the driven piles dataset is rela-

tively higher, thereby reiterating the notion 

that current practice is conservative in 

selecting design parameters for driven piles. 

Furthermore, the variability in non-cohesive 

materials is higher than that in cohesive 

materials. This is attributed to the fact that 

in cohesive materials the un-drained shear 

strength derived from the SPT measurement 

is directly used in the computation of pile 

capacity, while in non-cohesive materials, 

the angle of friction obtained from the SPT 

measurement is not directly used. Instead, 

the key pile design parameters in the form 

of bearing capacity factor (Nq), earth pres-

sure coefficient (ks) and pile-soil interface 

friction (δ) are obtained from the derived 

angle of friction on the basis of empirical 

correlation, thus introducing some additional 

uncertainties.

Skewness provides an indication of the 

symmetry of the dataset. The skewness 

represented in Table 1 is generally positive, 

indicating a shift towards the upper tail 

(conservative) of the values for M. There is, 

however, no consistent trend amongst the 

values for the respective datasets. The value 

of 0.24 for the combined dataset (ALL) 

could therefore be taken as indicative of the 

general trend. As a guideline it should be 

noted that the skewness of the symmetrical 

normal distribution is 0; for a lognormal 

distribution it is dependent on the distribu-

tion parameters, with a value of 0.83 based 

on the parameter values for the combined 

dataset. 

Values of kurtosis indicate the peakedness 

of the data, with a positive value indicating a 

high peak, and a negative value indicating a 

flat distribution of the data. Negative values 

generally listed in Table 1 indicate flat dis-

tribution of the data, particularly for driven 

piles. Since these characteristics can only be 

captured by advanced probability distribu-

tions not generally considered in reliability 

modelling, kurtosis is not further considered.

In order to provide for uncertainties in 

parameter estimation, Table 1 also presents 

the confidence limits of the mean and stan-

dard deviation at a confidence level of 0.75; 

this is the confidence level recommended by 

EN1990:2002 for parameter estimation for 

reliability models with vague information 

on prior distributions. The lower confidence 

limit of the mean (mM; -0.75) and the upper 

confidence limit of the standard deviation 

(sM; +0.75) is used to present conserva-

tive estimates of the range of parameter 

estimates.

CORRELATION WITH PILE 

DESIGN PARAMETERS 

Although the mean and standard deviation 

values presented in Table 1 provide a useful 

data summary, they combine data in ways 

that mask information on trends in the data. 

If there is a strong correlation between M 

and some pile design parameters (pile length, 

pile diameter and soil properties), then part 

of its total variability presented in Table 1 

is explained by these design parameters. 

The presence of correlation between M and 

deterministic variations in the database 

would indicate that:

 ■ The classical static formula method does 

not fully take the effects of the parameter 

into account.

 ■ The assumption that M is a random vari-

able is not valid. 

Reliability-based design is based on the 

assumption of randomness of the basic 

variables. Since the model factor is among the 

variables that serve as input into reliability 

analysis of pile foundations, it is critical to 

verify that it is indeed a random variable. 

This was partially verified by investigating 

the presence or absence of correlation with 

various pile design parameters. The measure 

of the degree of association between variables 

is the correlation coefficient. The basic 

and most widely used type of correlation 

coefficient is Pearson r, also known as 

linear or product-moment correlations. 

The correlation can be negative or positive. 

When it is positive, the dependent variable 

tends to increase as the independent variable 

increases; when it is negative, the dependent 

variable tends to decrease as the independent 

variable increases. The numerical value of 

r lies between the limits -1 and +1. A high 

absolute value of r indicates a high degree 

of association, whereas a small absolute 

value indicates a small degree of association. 

When the absolute value is 1, the relationship 

is said to be perfect and when it is zero, 

the variables are independent. For the 

numerical correlation values in-between the 

limits a critical question is, “When is the 

numerical value of the correlation coefficient 

considered significant?” Several authors 

in various fields have suggested guidelines 

for the interpretation of the correlation 

coefficient. For the purposes of this study an 

interpretation by Franzblau (1958) is adopted 

as follows:

 ■ Range of r: 0 to ±0.2 – indicates no or 

negligible correlation

 ■ Range r: ±0.2 to ±0.4 – indicates a low 

degree of correlation

 ■ Range r: ±0.4 to ±0.6 – indicates a moder-

ate degree of correlation

 ■ Range r: ±0.6 to ±0.8 – indicates a 

marked degree of correlation

 ■ Range r: ±0.8 to ±1 – indicates a high 

correlation

The statistical significance of the correlation 

is determined through hypothesis testing 

and presented in terms of a p-value. In this 

regard, the null hypothesis is that there is no 

correlation between M and the given design 

parameter (indicative of statistical independ-

ence). A small p-value (p < 0.05) indicates 

that the null hypothesis is not valid and 

should be rejected. Values for the correlation 

between M and the respective pile design 

parameters with the associated p-values are 

listed in Table 2. The results indicate that 

R < 0.4 for all the pile design parameters and 

therefore the degree of correlation is low. 

The associated p-values are generally much 

greater than 0.05, confirming that the cor-

relation between the model factor and the 

various pile design parameters is statistically 

insignificant. Therefore, variations in the 

model factor are at least not explainable by 

systematic variations in the key pile design 

parameters, and a random variable model 

appears reasonable.

For visual appreciation of the correlation 

results in Table 2, some of scatter plots of M 

versus pile design parameters are shown in 

Figure 3.

Table 2  Correlation with pile design parameters

Design 
parameter Case

Spearman rank 
correlation

R p-value

Pile length

D 0.11 0.29

B 0.11 0.31

NC –0.25 0.05

C 0.17 0.07

ALL 0.02 0.75

Shaft 
diameter

D 0.01 0.92

B 0.12 0.26

NC 0.13 0.34

C –0.02 0.82

ALL 0.05 0.53

Base 
diameter

D –0.16 0.15

B 0.05 0.63

NC 0.00 1.00

C –0.06 0.51

ALL –0.03 0.67

φ-base NC 0.19 0.16

φ-shaft NC 0.19 0.16

Cu-base C –0.002 0.98

Cu-shaft C –0.21 0.02
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PROBABILISTIC MODEL FOR 

THE MODEL FACTOR

The theory of reliability is based on the 

general principle that the basic variables 

(actions, material properties and geometric 

data) are considered as random variables 

having appropriate types of distribution. One 

of the key objectives of the statistical data 

analysis is to determine the most appropriate 

theoretical distribution function for the basic 

variable. This is the governing probability 

distribution for the random process under 

consideration and therefore extends beyond 

the available sample (i.e. the distribution of 

the entire population). Once the probability 

distribution function is known, inferences 

based on the known statistical properties of 

the distribution can be made.

For reliability calibration and associated 

studies, the most commonly applied distribu-

tions to describe actions, materials properties 

and geometric data are the normal and log-

normal distributions (Holický 2009; Allen et 
al 2005). Accordingly, for the current analysis 

only the normal and lognormal distribution 

fit to the data are considered. The fit is inves-

tigated through (i) a cumulative distribution 

function (CDF) plotted using a standard 

normal variate with z as the vertical axis, and 

(ii) direct distribution fitting to the data.

The cumulative distribution function 

is the most common tool for statistical 

characterisation of random variables used in 

reliability calibration (e.g. Allen et al 2005). 

In the context of the current analysis, the 

CDF is a function that represents the prob-

ability that a value of M less than or equal to 

a specified value will occur. This probability 

can be transformed to the standard normal 

variable (or variate), z, and plotted against 

M values (on x-axis) for each data point. 

This plotting approach is essentially the 

equivalent of plotting the bias values and 

their associated probability values on normal 

probability paper. An important property 

of a CDF plotted in this manner is that 

normally distributed data plot as a straight 

line, while lognormally distributed data on 

the other hand will plot as a curve. The fol-

lowing steps were used to create the standard 

normal variate plot of the CDF:

 ■ The capacity model factor values in a 

given data set were sorted in a descending 

order, then the probability associated 

with each value in the cumulative distri-

bution was calculated as i/(n +1).

 ■ For the probability value calculated in 

Step 1 associated with each ranked capac-

ity model factor value, z was computed in 

Excel as: z = NORMSINV(i/(n +1)) where 

i is the rank of each data point as sorted, 

and n is the total number of points in the 

data set.

 ■ Once the values of z have been calculated, 

z versus model factor (X) was plotted for 

each data set.

The ensuing plots are presented in Figure 4(a) 

from which it can be seen that the CDF for 

the five data sets plot more as curves than 

straight lines, thereby implying that the data 

follow a lognormal distribution. A further 

characterisation entailing fitting predicted 

normal and lognormal distributions to the 

CDF of the data sets is carried out. These 

theoretical distributions are also shown in 

Figure 4(a). Both distributions seem to fit 

the data reasonably well. However, with the 

exception of the bored piles data set, the 

lognormal distribution has a better fit to the 

lower tail of the data, which is important for 

reliability analysis and design.

Figure 3 Correlation with some of the pile design parameters
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To further confirm that the data best 

fits a lognormal distribution, z-scores are 

plotted as a function of Ln (M). The plots 

would follow a straight line if the data in 

fact follows the lognormal distribution. The 

results are presented in Figure 4(b) from 

which it is apparent that all the data sets plot 

as a straight line. This therefore confirms 

the strong case for a lognormal distribution 

assumption for the data.

In Figure 5 the histogram of M for the 

respective datasets are compared to normal, 

lognormal and general lognormal (also three-

parameter 3P) probability density function 

distributions based on the sample moments 

listed in Table 1 as distribution parameters. 

The graphic comparison indicates the degree 

to which the alternative distributions provide 

a reasonably smoothed representation of the 

M data. At the same time the approximate 

nature of the M data is indicated by the 

Figure 4(a) CDF plots with normal and lognormal fit
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uneven nature of the histogram. The quan-

titative assessment of the difference between 

the empirical data frequencies and the 

assumed distributions is provided by the chi-

square goodness-of-fit test. In this regard, the 

p-value is a measure of the goodness-of-fit, 

with larger values indicating a better fit. 

In testing the hypothesis that the 

distribution of the data is similar to the 

selected probability distribution (normal 

or lognormal), the hypothesis is rejected if 

p < 0.05. The p-values for chi-square testing 

are presented in Table 3 from which it is 

apparent that such values for all the data sets 

are greater than 0.05 and therefore there is 

no evidence to reject the null hypothesis of 

either normal or lognormal distributions. 

However, on the basis of the magnitude of 

the p-values, the lognormal distribution 

seems to show a better fit compared to 

the other two distributions. The general 

Figure 4(b) Z-score vs LN(M)
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Figure 5 Normal and lognormal distribution fit to the data
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lognormal distribution provides distributions 

which are generally intermediate between 

the normal and lognormal distributions 

(Figure 5), with similar results for the 

p-values (Table 3).

 On the basis of the results of the two 

standard distribution fitting approaches 

studied, it can be concluded that the 

data fits both the normal and lognormal 

distributions, although the ordinary 

lognormal distribution has a slight 

edge, particularly towards the lower tail 

(Figure 5). However, theoretically M 

ranges from zero to infinity, resulting in 

an asymmetric distribution with a zero 

lower bound and an infinite upper bound. 

The lognormal probability density function 

is often the most suitable theoretical 

model for such data, as it is a continuous 

distribution with a zero lower bound and 

an infinite upper bound. On the basis of 

this practical consideration, past studies 

(e.g. Phoon 2005; Briaud & Tucker 1988; 

Ronold & Bjerager 1992; Titi & Abu-Farsakh 

1999; FHWA-H1-98-032 2001; Rahman et 
al 2002) have recommended the lognormal 

distribution as the most suitable theoretical 

model for model uncertainty. Furthermore, 

in the Probabilistic Model Code by the Joint 

Committee on Structural Safety (JCSS) 

(2001), model uncertainty is modelled by 

the lognormal distribution. Therefore the 

lognormal distribution is considered a valid 

probability model for M. Nonetheless, it 

should be acknowledged that there could 

be some other distributions that can 

provide a better fit to the tails. Generally 

such advanced and complex distributions 

require a large sample size. For a small 

sample size, as is the case in this study, such 

distributions may only lead to a refinement 

of the results, but not a significant 

improvement. 

CONCLUSIONS

Pile foundation design uncertainties are 

captured by the M statistics. The M statistics 

constitute the main input into reliability 

calibration and associated studies. Since 

the M statistics are derived from raw data, 

statistical characterisation of such data is 

of paramount importance. Accordingly 

characterisation of the data collected for 

pile foundation reliability studies have been 

presented in this paper. The key conclusions 

reached are as follows:

 ■ Based on the mean values for M, the 

static formula yields a positive bias of 

between 1.04 and 1.17, except for the 

B-NC data set where Qi is on average 

slightly less than Qp with mM = 0.98, 

which is slightly un-conservative.

 ■ There is a distinct trend that driven 

piles depict higher variability compared 

to bored piles, irrespective of materials 

type. This suggests that the densification 

induced by pile driving is not fully cap-

tured by existing procedures for selecting 

design parameters. 

 ■ The variability in non-cohesive materials 

is higher than that in cohesive materials. 

This is attributed to the high degree of 

empiricism associated with the selection 

of pile design parameters (Nq, ks and δ) in 

non-cohesive soils.

 ■ The values of mM close to 1 and the 

relatively large values of sM or VM 

indicate large probabilities of realisa-

tions of M in the un-conservative range 

M < 1. Therefore the lower tail of the 

distribution of M is of specific interest 

for application of the results in reliability 

assessment.

 ■ At the customary 5% confidence level, 

the chi-square goodness-of-fit test results 

indicate that both the normal and log-

normal distributions are valid theoretical 

distributions for M. However, when 

taking into account other practical con-

siderations, the lognormal distribution 

is considered to be the most appropriate 

distribution for M. 

 ■ None of the pile design parameters is 

significantly correlated with the model 

factor. From the probabilistic perspec-

tive, this implies that the variation in 

the model factor is not caused by the 

variations in the key pile design para-

meters. Therefore it is correct to model 

the model factor as a random variable.
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