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Pile design practice in
southern Africa Part I;
Resistance statistics

M Dithinde, J V Retief

The paper presents resistance statistics required for reliability assessment and calibration of
limit state design procedures for pile design reflecting southern African practice. The first

step of such a development is to determine the levels of reliability implicitly provided for in
present design procedures based on working stress design. Such an assessment is presented

in an accompanying paper (please turn to page 72). The statistics are presented in terms of a
model factor M representing the ratio of pile resistance interpreted from pile load tests to its
prediction based on the static pile formula. A dataset of 174 cases serves as sample set for the
statistical analysis. The statistical characterisation comprises outliers detection and correction of
erroneous values, using the corrected data to compute the sample moments (mean, standard
deviation, skewness and kurtosis) needed in reliability analysis. The analyses demonstrate

that driven piles depict higher variability compared to bored piles, irrespective of materials
type. In addition to the above statistics, reliability analysis requires the theoretical probability
distribution for the random variable under consideration. Accordingly it is demonstrated

that the lognormal distribution is a valid theoretical model for the model factor. Another key
basis for reliability theory is the notion of randomness of the basic variables. To verify that the
variation in the model factor is not explainable by deterministic variations in the database, an
investigation of correlation of the model factor with underlying pile design parameters is carried
out. It is shown that such correlation is generally weak.

INTRODUCTION

Geotechnical design is performed under a
considerable degree of uncertainty. The two
main sources of this uncertainty include:

(i) Soil parameter uncertainty and (ii) cal-
culation model uncertainty. Soil parameter
uncertainty arises from the variability
exhibited by properties of geotechnical mate-
rials from one location to the other, even
within seemingly homogeneous profiles.
Geotechnical parameter prediction uncer-
tainties are attributed to inherent spatial
variability, measurement noise/random
errors, systematic measurements errors, and
statistical uncertainties. Conversely, model
uncertainty emanates from imperfections of
analytical models for predicting engineer-
ing behaviour. Mathematical modelling

of any physical process generally requires
simplifications to create a useable model.
Inevitably, the resulting models are simpli-
fications of complex real-world phenomena.
Consequently there is uncertainty in the
model prediction even if the model inputs
are known with certainty.

For pile foundations, previous studies (e.g.
Ronold & Bjerager1992; Phoon & Kulhawy
2005) have demonstrated that calculation
model uncertainty is the predominant com-
ponent. One of the fundamental objectives
of reliability-based design is to quantify and

systematically incorporate the uncertainties
in the design process. The current state of
the art in the quantification of model uncer-
tainty associated with a given pile design
model entails determining the ratio of the
measured capacity to theoretical capacity.
Accordingly, in this paper a series of pile per-
formance predictions by the static formula
are compared with measured performances.
To capture the distinct soil types for the
geologic region of southern Africa, as well as
the local pile design and construction experi-
ence base, pile load tests and associated
geotechnical data from the southern African
geologic environment are used.

In reliability analysis and modelling, both
materials properties and calculation model
uncertainties are incorporated into a perfor-
mance function representing the limit state
design function in terms of basic variables
which express design variables (loads, mate-
rial properties, geometry) as probabilistic
variables. The objective of this paper is to
present detailed statistical characterisation
of model uncertainty for pile foundations.
The analysis is an extension of the model
uncertainty characterisation reported by
Dithinde et al (2011). The purpose of the
characterisation is to relate southern African
pile foundation design practice to reliability-
based design as it has been developed and
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standardised for geotechnical and structural

design. The derived statistics constitute the

backbone of all subsequent pile foundations
limit state design initiatives in southern

Africa. Specific usage of the derived statistics

include: assessment of reliability indices

embodied in the current southern African
pile design practice, as presented in the
accompanying paper (Retief & Dithinde

2013 — please turn to page 72); derivation of

the characteristic model factor for pile foun-

dations design in conjunction with SANS

10160-5 (2011); and reliability calibration of

resistance factors. The following topics are

presented subsequently:

B The geotechnical background to the
dataset is briefly reviewed, including the
basis and application for classification
into homogeneous datasets and the for-
mal definition of the model factor M to
represent model uncertainty.

B An assessment and detection of outliers
and correction of erroneous samples,
considering the sensitivity of reliability
analysis to even a limited number of such
values in a dataset.

B Using the corrected data and conven-
tional statistical methods to compute
the sample moments: mean, standard
deviation, skewness and kurtosis for the
respective datasets.

B Verification of randomness of the dataset
through investigation of any system-
atic dependence on the relevant design
variables.

B Determination of the appropriate prob-
ability distribution to represent model
uncertainty provides the final step in
characterising model factor statistics.

PILE LOAD TEST DATABASE

Although this paper primarily considers the
statistical characteristics of southern African
pile model uncertainty, as based on the data-
base of model factors reported by Dithinde
et al (2011), with additional background
provided by Dithinde (2007), it is also neces-
sary to appreciate the geotechnical basis and
integrity of the dataset. This section presents
an extract of the way in which the dataset
has been compiled and a formal definition of
a model factor (M).

The database of static pile load tests
reported by Dithinde et al (2011) include
information on the associated geotechnical
data, such as soil profiles, field and labora-
tory test results. A comprehensive range of
soil conditions, pile geometry and resistance
is incorporated in the dataset, to provide
extensive representation of southern African
pile construction practice. Although the pile
load test reports were collected from various

piling companies in South Africa, a signifi-
cant number of pile tests were performed

in countries such as Botswana, Lesotho,
Mozambique, Zambia, Swaziland and
Tanzania. The main pile types in the data-
base include Franki (expanded base) piles,
Auger piles, and Continuous Flight Auger
(CFA) piles. In addition, there are a few cases
of steel piles and slump cast piles. The steel
piles are mainly H-piles, with one case where
a steel tubular pile was used.

The collected pile load test data was
carefully studied in order to evaluate its
suitability for inclusion in the current
study. For each load test, emphasis was
placed on the completeness of the required
information, including test pile size (length
and diameter), proper record of the load-
deflection data, and availability of subsur-
face exploration data for the site. Only cases
where sufficient soil data was available
for the prediction of pile resistance were
included in the database.

The pile load tests were used to deter-
mine the measured pile resistance, while the
geotechnical data was used to compute the
predicted resistance. The measured resis-
tances from the respective load-settlement
curves were interpreted on the basis of
Davisson’s offset criterion (Davison 1972).
However, for working piles, Chin’s extrapola-
tion (Chin 1970) was carried out prior to the
application of the Davisson’s offset criterion.
The predicted resistance was based on the
classic static formula which is essentially the
generic theoretical pile design model based
on the principles of soil mechanics. The
soil data that was obtained from the survey,
and used for the predicted resistance, was
mainly in the form of borehole log descrip-
tions and standard penetration (SPT) results.
Soil design parameters were selected on the
basis of common southern African practice
(Dithinde 2007).

Model factor statistics

The primary output of the database of pile
load tests reported by Dithinde et al (2011)
consists of the interpreted pile resistance (Q,)
and the predicted pile resistance (Q,) from
which a set of observations of the Model
Factor (M) as given by Equation [1] can be
obtained:

@

where:
Q; = pile capacity interpreted from a
load test, to represent the measured
capacity;
Q,, = pile capacity generally predicted using
limit equilibrium models, and
M = model factor.

Each case of pile test included in the dataset
is consequently treated as a sample of the set
of n cases under consideration. In Dithinde
et al (2011) the complete set of 174 cases was
further classified in terms of four theoretical
principal pile design classes based on both
soil type and installation method. These
fundamental sets of classes include:

(i) driven piles in non-cohesive soil (D-NC)

with 29 cases, (ii) bored piles in non-cohesive

soil (B-NC) with 33 cases, (iii) driven piles

in cohesive soils (D-C) with 59 cases, and

(iv) bored piles in cohesive soils (B-C) with

53 cases. In this paper, the principle four data

sets are now combined into various practical

pile design classes considered in design codes

such as SANS 10169-5 (2011) and EN 1997-1

(2004). The additional classification schemes

include:

B Classification based on pile installation
method irrespective of soil type. This is
the classification adopted in EN 1997-1
(2004) and it yields: 87 cases of driven
piles (D) and 83 cases of bored piles (B).

B Classification based on soil type. This
classification system is supported by the
general practice where a higher factor of
safety is applied to pile capacity in clay
as compared to sand. This combination
results in 58 cases in non-cohesive soil
(NC) and 112 cases in cohesive soil (C).

B All pile cases as a single data set irrespec-
tive of pile installation method and soil
type. This is the practical consideration
presented in SANS 10160-5 (2011) where
a single partial factor is given for all com-
pressive piles. The scheme yields 174 pile
cases (ALL).

DETECTION OF DATA OUTLIERS
The presence of outliers may greatly
influence any calculated statistics, lead-

ing to biased results. For instance, they
may increase the variability of a sample

and decrease the sensitivity of subsequent
statistical tests (McBean & Rovers 1998).
Therefore prior to further numerical treat-
ment of samples and application of statistical
techniques for assessing the parameters of
the population, it is absolutely imperative to
identify extreme values and correct errone-
ous ones.

The statistical detection and treatment
of outliers in the principal four sets were
reported by Dithinde et al (2011). The meth-
ods used include (i) load-settlement curves,
(ii) sample z-scores, (iii) box plots, and (iv)
scatter plots. The results for cases with outli-
ers are reproduced in Figure 1. Inspection
of Figure 1(a) reveals two potential outliers
(i.e. cases 27 and 54). The curves for these
two cases depict different behaviour from
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Figure 1(c) Z-score method

Figures 1(a)-(c) Outlier detection results (after Dithinde et al 2011)

the rest of the curves (case 27 with a soft
initial response and case 54 with a large
normalised capacity). Visual inspection of
Figure 1(b) for outliers shows one data point
marked as outlier for B-NC and B-C data
sets. The tagged data points correspond to
pile cases number 53 and 156. However, it
should be noted that the box plot method for
identifying outliers has shortcomings, par-
ticularly for small sample sizes as is the case
here. Accordingly the identified cases will
have to be corroborated by other methods.
Examination of Figure 1(c) shows two data
points with z-score values at a considerable
distance from the rest of the data points.
These data points belong to B-NC (case 53)
and B-C (case 156) with z-scores of 3.13

and 2.95 respectively. Although the z-score
for case 156 is less than the criterion limit
value of 3, and therefore technically is not an
outlier, it is sufficiently close to the limit to
require further scrutiny. The results of the
scatter plots of pile capacity (Q;) versus the
predicted capacity (Qp) revealed the same
outliers detected by the other methods.

Aggregate of outliers

A total of five observations were detected

as potential outliers, namely cases 27, 53,

54, 55 and 156. However, it is not proper to
automatically delete a data point once it has
been identified as an outlier through statisti-
cal methods (Robinson et al 2005). Since an
outlier may still represent a true observation,
it should only be rejected on the basis of
evidence of improper sampling or error.
Accordingly the five data points identified as
outliers were carefully examined by double-
checking the processes of determination

of interpreted capacities and computation

of predicted capacities. This entailed going

back to the original data (pile testing records

and derivation of soil design parameters) and

checking for recording and computational
errors. Following this procedure the correc-
tions were as follows:

B Cases 53, 54 and 55: Examination of
records for these cases showed that an
uncommon pile installation practice was
employed. The steel piles were installed
in predrilled holes and then grouted. The
strength of the grout surrounding the
piles contributed to the high resistance
and hence the higher interpreted capaci-
ties. Since the installation procedure
for these piles deviates from the normal
practice, they represent a different
population. These were the only piles in
the database constructed in this rather
unusual method. These data points were
therefore regarded as genuine outliers and
were deleted from the data set.

B Case 27: There was no obvious physical
explanation for the behaviour of pile case
27. The depicted behaviour is attributed
to extreme values of the hyperbolic
parameters representing the non-linear
behaviour of the test results. Since piles
in terms of pile type, size and soils condi-
tions (i.e. cases 28 and 29) did not show
similar characteristics, it was concluded
that an error was made during the execu-
tion of the pile test. Accordingly this pile
case was regarded as having incomplete
information, and was therefore deleted.

B Case 156: Again there was no obvious
physical explanation for the behaviour of
this pile case. Furthermore, the location
of this data point on the scatter plot of
Q versus Qp fits the general trend for
the dataset. Therefore no correction was
justified for this pile case.

In summary, four outliers were removed and
one retained, bringing the dataset to n = 170
cases in total and for the respective subsets
np N = 28; np_yc = 30; npy_¢ = 59; ng_ = 53.

SCATTER PLOTS OF Q, VS Qp

Scatter plots of Q; versus Qp can serve as a
multivariate approach to outlier detection.
However they are presented here to provide
an indication of whether the variance of

the data set is constant or varies with the
dependent variable (i.e. homoscedasticity).
The ensuing scatter plots are presented in
Figure 2. Visual inspection of the scatter
plots seems to suggest variation in the degree
of scatter increases with values of Qy In this
regard, it is evident that there is reduced
scatter at smaller values of Qp. However, due
to the small sample size, the case for large
values of Q, is not sufficiently clear to make
any firm conclusion. Furthermore, Figure 2
gives the impression that the variance of
the points around the fitted line increases
linearly, thereby suggesting that the standard
deviation increases with the square root

of the values of Q.. This explains why the
scatter tends to flatten off for large values of
Qy The foregoing assumption implies that
weighted regression analysis must be used
to establish the relationship between Q; and
Q- Such regression analysis was applied in
this study (Figure 2) with the regression line
forced to pass through the origin. In this
case, the slope of the regression line is an
estimate of the model factor M.

SUMMARY STATISTICS

Following the outlier detection and removal
process, the descriptive statistics for M
consisting of mean (m1,,), standard deviation
(spp)» skewness and kurtosis are presented

in Table 1. The sample descriptive statistics
were computed using conventional statistical
analysis approach. These are quantities used
to describe the salient features of the sample
and are required for calculations, statisti-
cal testing, and inferring the population
parameters.

The sample mean m1,, indicates the aver-
age ratio of Q; to Q,, with #1,; > 1 indicating
a conservative bias of Q; exceeding Qp. This
is generally the case, with a positive bias
of between 1.04 and 1.17 shown in Table 1,
except for the B-NC case where Q; is on
average slightly less than Q, with m,, = 0.98,
which is slightly un-conservative. The
general conservative bias reflected by m1,, is,
however, small in comparison to the disper-
sion of M as reflected by the sample standard
deviation s,, for which values range from
0.23 to 0.36; the dispersion is also presented
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Figure 2 Scatter plots of Q; versus Q,
Table 1 Summary of statistics for M in normalised form as the coefficient of
Mean | Confidence| .o = | UpperCI variation Vi, : Sl
M n -75% . : SD 75% COV | Skewness Kurtosis The combined effect of values of myp
my 7 Sm 3 .
M; -0.75 M; +0.75 close to 1 and the relatively large values
pNC | 28 111 1.03 036 0.40 0.33 0.35 115 of s;, or V,; indicate large probabilities of
realisations of M in the un-conservative
B-NC | 30 0.98 0.93 0.23 0.26 0.24 0.14 -0.19 range M < 1. The lower tail of the distribu-
tion of M derived from the dataset and M
D-C 59 1.17 1.12 0.3 0.32 0.26 -0.01 -0.74 P ipe
statistics is therefore of specific interest
B-C 53 1.15 1.10 0.28 0.30 0.25 0.36 0.49 fO[' application Of the results in rehablhty
assessment.
D 87 L15 L11 0.32 0.34 0.28 0.1 -0.95 A comparison of the standard deviations
or coefficient of variations for the respective
B 83 1.09 1.05 0.28 0.30 0.25 041 0.47 L .
cases indicates small differences. However,
NC 58 1.04 1.00 0.30 0.32 0.29 0.55 ~0.37 there seems to be a distinct trend that is
influenced by the pile installation method
C 112 L16 113 0.29 0.30 025 0.15 -029 (i.e. driven or bored). In this regard, driven
ALL 170 11 107 0.31 0.3 0.28 0.24 o075 piles depict higher variability compared to
bored piles, irrespective of soil type. This
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implies that the densification of the soil sur-
rounding the pile emanating from the pile
driving process is not well captured in the
selection of the soil design parameters. Even
the bias for the driven piles dataset is rela-
tively higher, thereby reiterating the notion
that current practice is conservative in
selecting design parameters for driven piles.
Furthermore, the variability in non-cohesive
materials is higher than that in cohesive
materials. This is attributed to the fact that
in cohesive materials the un-drained shear
strength derived from the SPT measurement
is directly used in the computation of pile
capacity, while in non-cohesive materials,
the angle of friction obtained from the SPT
measurement is not directly used. Instead,
the key pile design parameters in the form
of bearing capacity factor (Nq), earth pres-
sure coefficient (k) and pile-soil interface
friction (8) are obtained from the derived
angle of friction on the basis of empirical
correlation, thus introducing some additional
uncertainties.

Skewness provides an indication of the
symmetry of the dataset. The skewness
represented in Table 1 is generally positive,
indicating a shift towards the upper tail
(conservative) of the values for M. There is,
however, no consistent trend amongst the
values for the respective datasets. The value
of 0.24 for the combined dataset (ALL)
could therefore be taken as indicative of the
general trend. As a guideline it should be
noted that the skewness of the symmetrical
normal distribution is 0; for a lognormal
distribution it is dependent on the distribu-
tion parameters, with a value of 0.83 based
on the parameter values for the combined
dataset.

Values of kurtosis indicate the peakedness
of the data, with a positive value indicating a
high peak, and a negative value indicating a
flat distribution of the data. Negative values
generally listed in Table 1 indicate flat dis-
tribution of the data, particularly for driven
piles. Since these characteristics can only be
captured by advanced probability distribu-
tions not generally considered in reliability
modelling, kurtosis is not further considered.

In order to provide for uncertainties in
parameter estimation, Table 1 also presents
the confidence limits of the mean and stan-
dard deviation at a confidence level of 0.75;
this is the confidence level recommended by
EN1990:2002 for parameter estimation for
reliability models with vague information
on prior distributions. The lower confidence
limit of the mean (m1,,. , 75) and the upper
confidence limit of the standard deviation
(S1; +0.75) 1s used to present conserva-
tive estimates of the range of parameter
estimates.

CORRELATION WITH PILE

DESIGN PARAMETERS

Although the mean and standard deviation

values presented in Table 1 provide a useful

data summary, they combine data in ways
that mask information on trends in the data.

If there is a strong correlation between M

and some pile design parameters (pile length,

pile diameter and soil properties), then part

of its total variability presented in Table 1

is explained by these design parameters.

The presence of correlation between M and

deterministic variations in the database

would indicate that:

B The classical static formula method does
not fully take the effects of the parameter
into account.

B The assumption that M is a random vari-
able is not valid.

Reliability-based design is based on the

assumption of randomness of the basic

variables. Since the model factor is among the
variables that serve as input into reliability
analysis of pile foundations, it is critical to
verify that it is indeed a random variable.

This was partially verified by investigating

the presence or absence of correlation with

various pile design parameters. The measure
of the degree of association between variables
is the correlation coefficient. The basic

and most widely used type of correlation

coefficient is Pearson r, also known as

linear or product-moment correlations.

The correlation can be negative or positive.

When it is positive, the dependent variable

tends to increase as the independent variable

increases; when it is negative, the dependent
variable tends to decrease as the independent
variable increases. The numerical value of

r lies between the limits -1 and +1. A high

absolute value of r indicates a high degree

of association, whereas a small absolute

value indicates a small degree of association.

When the absolute value is 1, the relationship

is said to be perfect and when it is zero,

the variables are independent. For the

numerical correlation values in-between the

limits a critical question is, “When is the
numerical value of the correlation coefficient
considered significant?” Several authors

in various fields have suggested guidelines

for the interpretation of the correlation

coefficient. For the purposes of this study an
interpretation by Franzblau (1958) is adopted
as follows:

B Range of : 0 to +0.2 — indicates no or
negligible correlation

B Range r: 0.2 to £0.4 — indicates a low
degree of correlation

B Range r: £0.4 to +0.6 — indicates a moder-
ate degree of correlation

B Range r: 0.6 to +0.8 — indicates a
marked degree of correlation

Table 2 Correlation with pile design parameters

Spearman rank
Design Case correlation
parameter
R p-value
D 0.11 0.29
B 0.11 0.31
Pile length NC -0.25 0.05
C 0.17 0.07
ALL 0.02 0.75
D 0.01 0.92
B 0.12 0.26
ili‘aarite | NC 013 0.34
C -0.02 0.82
ALL 0.05 0.53
D -0.16 0.15
B 0.05 0.63
gf;;eter NC 0.00 1.00
C -0.06 0.51
ALL —-0.03 0.67
¢-base NC 0.19 0.16
¢-shaft NC 0.19 0.16
C,-base C —-0.002 0.98
C,-shaft C ~0.21 0.02

B Range r: 0.8 to +1 — indicates a high
correlation
The statistical significance of the correlation
is determined through hypothesis testing
and presented in terms of a p-value. In this
regard, the null hypothesis is that there is no
correlation between M and the given design
parameter (indicative of statistical independ-
ence). A small p-value (p < 0.05) indicates
that the null hypothesis is not valid and
should be rejected. Values for the correlation
between M and the respective pile design
parameters with the associated p-values are
listed in Table 2. The results indicate that
R < 0.4 for all the pile design parameters and
therefore the degree of correlation is low.
The associated p-values are generally much
greater than 0.05, confirming that the cor-
relation between the model factor and the
various pile design parameters is statistically
insignificant. Therefore, variations in the
model factor are at least not explainable by
systematic variations in the key pile design
parameters, and a random variable model
appears reasonable.

For visual appreciation of the correlation
results in Table 2, some of scatter plots of M
versus pile design parameters are shown in
Figure 3.
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Figure 3 Correlation with some of the pile design parameters

PROBABILISTIC MODEL FOR

THE MODEL FACTOR

The theory of reliability is based on the
general principle that the basic variables
(actions, material properties and geometric
data) are considered as random variables
having appropriate types of distribution. One
of the key objectives of the statistical data
analysis is to determine the most appropriate
theoretical distribution function for the basic
variable. This is the governing probability
distribution for the random process under
consideration and therefore extends beyond
the available sample (i.e. the distribution of
the entire population). Once the probability
distribution function is known, inferences
based on the known statistical properties of
the distribution can be made.

For reliability calibration and associated
studies, the most commonly applied distribu-
tions to describe actions, materials properties
and geometric data are the normal and log-
normal distributions (Holicky 2009; Allen et
al 2005). Accordingly, for the current analysis
only the normal and lognormal distribution
fit to the data are considered. The fit is inves-
tigated through (i) a cumulative distribution
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function (CDF) plotted using a standard
normal variate with z as the vertical axis, and
(ii) direct distribution fitting to the data.
The cumulative distribution function
is the most common tool for statistical
characterisation of random variables used in
reliability calibration (e.g. Allen et al 2005).
In the context of the current analysis, the
CDF is a function that represents the prob-
ability that a value of M less than or equal to
a specified value will occur. This probability
can be transformed to the standard normal
variable (or variate), z, and plotted against
M values (on x-axis) for each data point.
This plotting approach is essentially the
equivalent of plotting the bias values and
their associated probability values on normal
probability paper. An important property
of a CDF plotted in this manner is that
normally distributed data plot as a straight
line, while lognormally distributed data on
the other hand will plot as a curve. The fol-
lowing steps were used to create the standard
normal variate plot of the CDF:
B The capacity model factor values in a
given data set were sorted in a descending
order, then the probability associated

with each value in the cumulative distri-
bution was calculated as i/(n +1).

B For the probability value calculated in
Step 1 associated with each ranked capac-
ity model factor value, z was computed in
Excel as: z= NORMSINV(i/(n +1)) where
i is the rank of each data point as sorted,
and # is the total number of points in the
data set.

B Once the values of z have been calculated,
z versus model factor (X) was plotted for
each data set.

The ensuing plots are presented in Figure 4(a)

from which it can be seen that the CDF for

the five data sets plot more as curves than
straight lines, thereby implying that the data
follow a lognormal distribution. A further
characterisation entailing fitting predicted
normal and lognormal distributions to the

CDF of the data sets is carried out. These

theoretical distributions are also shown in

Figure 4(a). Both distributions seem to fit

the data reasonably well. However, with the

exception of the bored piles data set, the

lognormal distribution has a better fit to the
lower tail of the data, which is important for
reliability analysis and design.
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Figure 4(a) CDF plots with normal and lognormal fit

To further confirm that the data best
fits a lognormal distribution, z-scores are
plotted as a function of Ln (M). The plots
would follow a straight line if the data in
fact follows the lognormal distribution. The
results are presented in Figure 4(b) from
which it is apparent that all the data sets plot
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as a straight line. This therefore confirms
the strong case for a lognormal distribution
assumption for the data.

In Figure 5 the histogram of M for the
respective datasets are compared to normal,
lognormal and general lognormal (also three-
parameter 3P) probability density function

distributions based on the sample moments
listed in Table 1 as distribution parameters.
The graphic comparison indicates the degree
to which the alternative distributions provide
a reasonably smoothed representation of the
M data. At the same time the approximate
nature of the M data is indicated by the
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uneven nature of the histogram. The quan-
titative assessment of the difference between
the empirical data frequencies and the
assumed distributions is provided by the chi-
square goodness-of-fit test. In this regard, the
p-value is a measure of the goodness-of-fit,
with larger values indicating a better fit.

In testing the hypothesis that the

distribution of the data is similar to the

selected probability distribution (normal

or lognormal), the hypothesis is rejected if

p < 0.05. The p-values for chi-square testing

are presented in Table 3 from which it is

apparent that such values for all the data sets

are greater than 0.05 and therefore there is

no evidence to reject the null hypothesis of

either normal or lognormal distributions.

However, on the basis of the magnitude of

the p-values, the lognormal distribution

seems to show a better fit compared to

the other two distributions. The general
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Table 3 Chi-Square goodness-of-fit test results

Chi-Squared test p-value
Pile class Normal Lognormal General(zl’;g;gnormal
Driven piles 0.32 0.60 0.43
Bored piles 0.07 0.77 0.20
Piles in non-cohesive soil 0.32 0.81 0.81
Piles in cohesive soil 0.69 0.68 0.70
All piles 0.29 0.62 0.51

lognormal distribution provides distributions
which are generally intermediate between
the normal and lognormal distributions
(Figure 5), with similar results for the
p-values (Table 3).

On the basis of the results of the two
standard distribution fitting approaches
studied, it can be concluded that the
data fits both the normal and lognormal
distributions, although the ordinary
lognormal distribution has a slight
edge, particularly towards the lower tail
(Figure 5). However, theoretically M
ranges from zero to infinity, resulting in
an asymmetric distribution with a zero
lower bound and an infinite upper bound.
The lognormal probability density function
is often the most suitable theoretical
model for such data, as it is a continuous
distribution with a zero lower bound and
an infinite upper bound. On the basis of
this practical consideration, past studies
(e.g. Phoon 2005; Briaud & Tucker 1988;
Ronold & Bjerager 1992; Titi & Abu-Farsakh
1999; FHWA-H1-98-032 2001; Rahman et
al 2002) have recommended the lognormal
distribution as the most suitable theoretical
model for model uncertainty. Furthermore,
in the Probabilistic Model Code by the Joint
Committee on Structural Safety (JCSS)
(2001), model uncertainty is modelled by
the lognormal distribution. Therefore the
lognormal distribution is considered a valid
probability model for M. Nonetheless, it
should be acknowledged that there could
be some other distributions that can
provide a better fit to the tails. Generally
such advanced and complex distributions
require a large sample size. For a small
sample size, as is the case in this study, such
distributions may only lead to a refinement
of the results, but not a significant
improvement.

CONCLUSIONS

Pile foundation design uncertainties are
captured by the M statistics. The M statistics
constitute the main input into reliability
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calibration and associated studies. Since

the M statistics are derived from raw data,

statistical characterisation of such data is

of paramount importance. Accordingly

characterisation of the data collected for

pile foundation reliability studies have been
presented in this paper. The key conclusions
reached are as follows:

B Based on the mean values for M, the
static formula yields a positive bias of
between 1.04 and 1.17, except for the
B-NC data set where Q; is on average
slightly less than Q, with m,, = 0.98,
which is slightly un-conservative.

B There is a distinct trend that driven
piles depict higher variability compared
to bored piles, irrespective of materials
type. This suggests that the densification
induced by pile driving is not fully cap-
tured by existing procedures for selecting
design parameters.

B The variability in non-cohesive materials
is higher than that in cohesive materials.
This is attributed to the high degree of
empiricism associated with the selection
of pile design parameters (Nq, k, and ) in
non-cohesive soils.

B The values of 1, close to 1 and the
relatively large values of s, or V,
indicate large probabilities of realisa-
tions of M in the un-conservative range
M < 1. Therefore the lower tail of the
distribution of M is of specific interest
for application of the results in reliability
assessment.

B At the customary 5% confidence level,
the chi-square goodness-of-fit test results
indicate that both the normal and log-
normal distributions are valid theoretical
distributions for M. However, when
taking into account other practical con-
siderations, the lognormal distribution
is considered to be the most appropriate
distribution for M.

B None of the pile design parameters is
significantly correlated with the model
factor. From the probabilistic perspec-
tive, this implies that the variation in
the model factor is not caused by the

variations in the key pile design para-
meters. Therefore it is correct to model
the model factor as a random variable.
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