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INTRODUCTION 

A considerable amount of data on hydrologi-

cal variables such as rainfall, streamflow, etc 

are required for the planning, management 

and effective control of water resource sys-

tems. Annual rainfall is used for agricultural 

planning since the total amount of rainfall is 

among the most important factors that affect 

agricultural systems. Crop production in 

semi-arid regions like South Africa is largely 

determined by the annual total rainfall; how-

ever, rainfall is the limiting factor in these 

areas. Sometimes hydrological data series 

have missing values or are incomplete. In 

such cases, the reliability of the design of, for 

example, a hydropower plant and the con-

struction of dams, can be severely affected. 

Limited financial resources, poor manage-

ment of data related to water resources, 

temporary absence of observers, cessation of 

measurement or no reliable hydrological net-

works can lead to incomplete or missing data 

in hydrological time-series. This situation is 

common in developing countries. 

In South Africa, for example, the over-

whelming majority of gaps are caused by 

the temporary absence of observers, the 

cessation of measurement or absence of 

observations prior to the commencement 

of measurement (Makhuvha et al 1997). 

In Bolivia, due to the limited financial 

resources, even a minimum national network 

could not be achieved according to the mete-

orological network density ratio (Balek 1972). 

Developing countries generally lag behind 

in the use of new technologies to process 

their statistical data (Sadowsky 1989). Yet 

their needs are just as great; they need to 

achieve a viable statistical data processing 

capability if they are to provide, on a con-

tinuous and sustained basis, the essential 

statistical information needed for their 

development planning and administration 

(Sadowsky 1989). Most of the old data for 

developing countries have been lost due to 

non-existent database storage (Medeiros et 

al 2002).

Several hydrological data infilling 

techniques have been developed. These 

techniques include artificial neural networks 

(ANNs), regression methods, deterministic 

models, stochastic models for rainfall-runoff 

modelling, flood forecasting/prediction 

and water quality modelling (Lawrence 
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et al 1996; Minns & Hall 1996; Raman & 

Sunilkumar 1995). Although several studies 

indicate that ANNs have proven to be poten-

tially useful tools in hydrology, their disad-

vantages should not be disregarded (ASCE 

Task Committee 2000b). The success of an 

ANN application depends both on the qual-

ity and the quantity of data available (ASCE 

Task Committee 2000b). This requirement 

cannot go back far enough. Quite often 

the requisite data are not available and 

have to be generated by other means, such 

as another well-tested model. Even when 

long historical records are available, it is 

not certain that conditions have remained 

homogeneous over the time span. Therefore 

data sets recorded over a period that was 

relatively stable and unaffected by human 

activities are desirable. Yet another limitation 

of ANNs is the lack of physical concepts 

and relations. The lack of a standardised 

way of selecting a network architecture has 

also been criticised. The choices of network 

architecture, training algorithm and defini-

tion are usually determined by the user’s 

experience and preference, rather than by the 

physical aspects of the problem (ASCE Task 

Committee 2000a,b) 

Despite the criticisms levelled against 

ANN techniques (ASCE Task Committee 

2000ab), they were found to be power-

ful tools when compared to multivariate 

regression-based models for infilling stream-

flow data (Panu et al 2000). Kuligowski 

and Barros (1998) showed that ANNs gave 

promising results in the estimation of miss-

ing rainfall data when compared to other 

methods such as regression techniques. 

ANN techniques can be used to express a 

non-linear mapping between variables with 

no prior assumptions as to the variables (lin-

ear or non-linear as in regression methods), 

and these techniques can cope with miss-

ing data (French et al 1992). Over the past 

decade, ANNs have been used intensively in 

hydrology and water-related fields (Lawrence 

et al 1996; Minns & Hall 1996; Raman & 

Sunilkumar 1995; French et al 1992; Wilby 

& Dawson 1998). However, the application 

of ANNs for infilling rainfall data remains 

limited. In addition, there is nothing in the 

literature on the use of the generalised BP 

(back-propagation) ANN technique for infill-

ing hydrological data, specifically for rainfall 

data, which generally show a relatively high 

variability both in time and space.

This paper discusses feedforward ANN 

techniques used for rainfall data infill-

ing. The standard back-propagation (BP) 

technique (Freeman and Skapura 1991) is 

compared to the generalised BP technique 

which has been introduced for the first time 

in hydrology, specifically for rainfall data 

infilling problems. Note that the generalised 

BP was initially used for different problems 

which included the “Exclusive-Or” problem 

(XOR) and the 3-bit parity and 5-bit count-

ing problems (Ng et al 1996). The root mean 

square error of predictions (RMSEp) is then 

used as a criterion to evaluate the perform-

ance of these two techniques. A case study is 

presented to demonstrate the performance 

of the two techniques. The terms algorithm 

and technique are used interchangeably in 

this paper. 

HYDROLOGICAL DATA 

INFILLING TECHNIQUES 

Overview of Artificial Neural 

Networks (ANNs) 

ANNs are networks of interconnected 

simple units (nodes) based on a greatly 

simplified model of the human biological 

system, which are capable of represent-

ing non-linear and complex interactions 

between variables without prior specifica-

tion. There are two main types of ANNs: 

feedforward networks (where the signal is 

propagated only from the input nodes to 

the output nodes) and recurrent networks 

(where the signal is propagated in both 

directions). The advantage of ANNs, even if 

the “exact” relationship between sets of input 

and output data is unknown but is acknowl-

edged to exist, is that they can be trained 

to learn that relationship, and require no 

prior underlying assumptions (non-linear vs 

linear) as in conventional methods. ANNs 

are regarded as ultimate black box models 

(Minns & Hall 1996). ANNs were shown 

to be generally superior in sediment yield 

models when compared to linear transfer 

function models (Argawal et al 2005). ANNs 

seek to learn patterns, but not to replicate 

the physical processes of transforming input 

to output (Minns & Hall, 1996). As opposed 

to conventional methods, ANNs are thought 

to have the ability to cope with the missing 

data and, perhaps most importantly, are 

able to generalise a relationship from small 

subsets of data while remaining relatively 

robust in the presence of noisy or missing 

inputs. Thus ANNs can learn in response to 

a changing environment (Wilby & Dawson 

1998). Since the early 1990s, ANNs have 

been successfully used in the area of water 

resource engineering related to rainfall/run-

off forecasting (Minns & Hall 1996; Agarwal 

& Singh 2001); streamflow data infilling (e.g. 

Panu et al 2000; Khalil et al 2001; Elshorbagy 

et al 2000; Ilunga & Stephenson 2005); 

validation and correction of high-frequency 

water quality data (Quilty et al 2004) and 

rainfall data infilling (Kuligowski & Barros 

1998). The latter authors used ANNs to esti-

mate the missing rainfall data at the target 

rainfall station from nearby rainfall stations. 

The issues of data quality for computational 

intelligence in earth sciences were also dis-

cussed by Cherkassy et al (2006). However, 

the application of ANNs hydrological data 

infilling is still very limited, specifically 

for rainfall data infilling. Some authors 

(e.g. Panu et al 2000; Khalil et al 2001; 

Elshorbagy et al 2000, Ilunga & Stephenson 

2005) developed ANN techniques for cases 

where data were available before and after 

missing periods of data (e.g. consecutive 

missing values). Three-layered ANNs have 

been used intensively for that purpose. The 

hidden-layer feedforward neural network is 

one of the most common architectures used 

by neurohydrologists (Panu et al 2000; Khalil 

et al 2001; Elshorbagy et al 2000; French 

et al 1992; Minns & Hall 1996; Agarwal & 

Singh 2001). These hydrologists believe that 

certain problems in hydrology and water 

resources can be solved using ANNs.

Standard back-propagation 

(BP) technique 

The standard BP technique is only outlined 

in this section and for more details the read-

er is referred to, for example, Freeman and 

Skapura (1991). Given a three-layered ANN 

as depicted in Figure 1, in standard BP the 

adjustment of the interconnecting weights 

during training employs a method known as 

error back-propagation in which the weight 

associated with each connection is adjusted 

by an amount proportional to the strength 

of the signal in the connection and the total 

measure of the error. The total error at the 

output layer is then reduced by redistribut-

ing this error value backwards through the 

hidden layers until the input layer is reached. 

This process is repeated until the total error 

for all data sets is sufficiently small. The 

weight changes to the output layer and hid-

den layer are given by Equations (1) and (2) 

respectively:

wkj
0 (t + 1) = wkj

0 (t) + ηδpk
0ipj (1)

wji
h (t + 1) = wji

h (t) + ηδpj
hxi (2)

where i is the unit node in the input layer, j 

is the unit node in the hidden layer, p is the 

pattern, k is the neuron related to the output 

layer, η is the learning rate, δpk
0 and δpj

h are 

error terms (which encompass a derivative 

part) for output units and hidden units 

respectively, t is the t-th iteration, wkj
0 (t) and 

wji
h (t) are weights in the output layer and 

the hidden layer respectively at t-iteration, 

and xi and ipj are inputs to unit nodes i and j 

respectively.
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For practical considerations, it is 

sometime suggested that the bias terms be 

removed altogether, i.e. their use is optional 

(Freeman & Skapura 1991).

In the standard BP, the learning process 

is done through both sequential and batch 

modes. In the former mode the process of 

learning is governed by the error of each data 

set and the weight update is made for each 

sample of the training, and in the latter mode 

the weights at each iteration are adjusted only 

after all the data sets have been processed. 

An activation function is used to express 

the non-linear relationship process between 

the input and output data. This function can 

be any threshold function or any continu-

ous function. It is normally a monotonic 

non-decreasing function and differentiable 

everywhere for x values. The activation 

function most commonly used is a sigmoid, 

non-linear continuous function between 0 

and 1 and is represented as follows:

f (x) = 
1

1 – e–x
 (3)

Freeman and Skapura (1991) proposed that 

a range of x values from 0,1 to 0,9 should be 

used for practical purposes. This range is 

adopted in this paper. Thus the input data 

and the output data will be scaled (during 

training of ANNs) to adhere to the above 

range. A linear scaling was used in this 

paper. For ANNs, input data and output data 

scaling can speed up the convergence of the 

neural system. It also gives each input equal 

importance, prevents premature saturation 

of the activation function and aids the gener-

alisation capability (i.e. neural networks can 

approximate values that they did not see dur-

ing training). Therefore the equations used 

in this paper should not contain any unit as 

they apply to scaled numbers used during 

the training of ANNs. 

The majority of ANNs applied in water 

resources involve the use of feedforward 

propagation. The standard BP (which is a 

gradient descent method) has been criticised 

because convergence to an optimal solution 

is not always guaranteed (Agarwal & Singh 

2001). In other words, the method guarantees 

that the algorithm will find the nearest local 

minimum. Consequently, the solution often 

follows a zig-zag path while trying to reach 

the minimum error position, which may 

slow down the training process (ASCE Task 

Committee 2000a). Thus several variants of 

BP such as Bayesian regulation, the conjugate 

gradients method, adaptive stepsize, the 

Levenberg-Marquardt algorithm, causal 

recursive BP, Maclaurin pseudo-power series, 

and the generalised BP introduced recently by 

Ilunga and Stephenson (2005), were proposed. 

Despite these criticisms, it appears that in 

practice BP leads to solutions in almost every 

case and that standard multilayer feedforward 

networks are capable of approximating any 

measurable function to any desired degree of 

accuracy, as stated by Minns and Hall (1996). 

In the following section the generalised BP 

algorithm is briefly described. 

Generalised BP algorithm

The main reason for criticism of the use 

of standard back-propagation is due to the 

derivative of the sigmoid activation function 

(Ng et al 1996). When the actual output of 

the -th output neuron for the p -th pattern 

(i.e. opk) approaches the extreme values such 

as 0 or 1, the derivative of the activation 

function having the factor opk (1 – opk) will 

not be significant, and the BP error signal 

will become very small (Ng et al 1996). 

Thus the output can be maximally wrong 

without producing a large error signal. The 

algorithm can be trapped into local minima. 

Consequently the weight adjustment of the 

algorithm can be very slow or even sup-

pressed. Therefore a generalisation of the 

derivative of the activation function (i.e. 

logistic) is proposed so as to improve the 

convergence of the learning process by pre-

venting the error signal dropping to a very 

small value.

In generalised BP, the error signals for the 

output layer and hidden layer now become:

δpk
0 = (ypk – opk) ( fk

0
' 
(netpk

0)))1/b (4)

δpj
h = ( fj

h
' 
(netpj

h))1/b ∑ δpk
0wkj (5)

where opk is the target output, netpk is the 

net input to the output layer, netpk is the 

net input to the hidden layer, fk
0

'

 is the first 

derivative of the sigmoid function for the 

k-th neuron in the output layer, fj
h

'

 is the 

first derivative of the sigmoid function for 

the j-th neuron in the hidden layer, k, h and 

j have been previously defined, and b is the 

generalisation parameter. In this case b ≥ 1. 

For b = 1, this results in the standard BP 

algorithm. 

The effect of generalised BP is to change 

the slope of the sigmoid function in the 

two “tail” regions. For b f 1, errors will be 

significantly enlarged when opk approaches 

a wrong value, and hence the error signals 

will reflect the true error (ypk – opk) more 

appropriately. The generalised BP technique 

was applied to different problems including 

the “Exclusive-Or” problem XOR and the 

3-bit parity and 5-bit counting problems 

(Ng et al 1996). The results were not good 

for b f 50. However, this technique has 

not yet been applied in hydrology or water-

related fields, specifically for data infilling 

problems.

TESTS OF HYPOTHESES 

AND SIGNIFICANCE

Tests were performed to determine whether 

the statistics (e.g. mean and standard devia-

tion) of the infilled annual rainfall totals 

are significantly different from the observed 

annual rainfall totals at the target stations.

Figure 1 A three-layer feedforward ANN

Input layer

Output signal

Hidden 
layer

Table 1 Geographical location of selected rainfall stations in the Secondary Drainage Region D33

Secondary drainage D33

Gauge Section Position
MAP 
(mm)

Latitude Longitude
Period of 

records used
% of

Missing

0228170 288 170 341 29°50’00’’ 24°36’00’’ 1924–1989 0

0228495 228 495 376 29°45’00’’ 24°47’00’’ 1924–1989 0

Table 2 Mean monthly rainfall for selected stations of the Secondary Drainage Region D33

Station
Mean monthly rainfall (mm)

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept

0228170 23,59 34,92 33,32 39,62 56,67 60,39 38,94 16,54 7,63 6,58 10,47 12,48

0228495 25,57 38,50 36,74 43,69 62,49 66,59 42,94 18,24 6,66 7,26 14,14 13,76
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In practice a level of significance of 0,05 

or 0,01 is customary, although other values 

are used. In other words, there is about a 

5-in-100 chance that the hypothesis will be 

rejected when it should be accepted. There is 

a 95% confidence level that the right decision 

is made. 

The tests on means and standard devia-

tions are performed as explained by Spiegel 

and Boxer (1972). The tests are explained in 

the following sections.

Test on means

For large sample sizes N (N ≥ 30), the 

sampling distribution of the statistic can be 

assumed to be a (nearly) normal distribution 

with mean X̄ and standard deviation s. The 

test is performed based on the following rule 

decision or test of hypothesis or significance:

Reject the hypothesis at a 0,05 level of (a) 

significance if the Z score of the statistic 

(e.g. mean) lies outside the range –1,96 

to 1,96. In the case of means, the null 

hypothesis H0 : μ = μ0 is tested against 

the alternative hypothesis Ha : μ ≠ μ0 

(where μ0 is the population mean).

Accept the hypothesis (or if desired make (b) 

no decision at all). 

The Z score is computed using the following 

equation:

Z = 
 

√N  

σ  
(X̄  μ (6)

Where μ and σ are the mean and standard 

deviation of the population and X̄ is the sam-

ple mean (with s = σ

√N 
)

Test on standard deviations 

For large values of the degrees of freedom 

γ, (γ ≥ 30), (with γ = N – 1) and using the 

chi-square(ℵ2) test, the 95% confidence limit 

is given by:

 s√N 

ℵ0,975

 and 
 s√N 

ℵ0,025

ℵ2
0,975 and ℵ2

0,025 are calculated as follows:

ℵ2
0,975 = 

1

2
 (Z0,975 + √2γ – 1)2, Z0,975 = 1,96 (7)

ℵ2
0,025 = 

1

2
 (Z0,025 + √2γ – 1)2, Z0,025 = –1,96 (8)

DATA AVAILABILITY

The annual rainfall totals for the Bleskop 

station (SAWS gauge no 02284170) and 

the Luckhoff-Pol station (SAWS gauge no 

0228495) were considered for this preliminary 

study to test the performance of the two 

techniques, i.e. standard BP and generalised 

BP. (These two rainfall stations were selected 

randomly.) These rainfall stations are about 20 

km apart and belong to the secondary drain-

age region named D33 of the Orange River 

Drainage System (D) of South Africa. The 

monthly rainfall data were obtained from the 

report by Midgley et al (1994). The geographi-

cal location and other characteristics of the 

selected rainfall stations located in the sum-

mer rainfall zone are listed in Tables 1 and 2.

Gauge 0228495 (Luckhoff-Pol) was 

taken as the target gauge and gauge 0228170 

(Bleskop) as the control gauge. Gauge 

0228170 was chosen as the control since it 

gave better results during trials of the esti-

mation of missing values at gauge 0228495 

than when gauge 0228495 was considered to 

fill in the missing values at gauge 0228170. 

The mean monthly rainfall information 

Table 3 Geographical location of selected rainfall stations of the rainfall zone J1C

Rainfall zone J1C 

Gauge Section Position
MAP
(mm)

Latitude Longitude
Period of 

records used
% of

Missing

0044050 44 50 228 33°00’ 20°02’ 1906–2006 0

0044286 44 286 216 33°16’ 20°10’ 1906–2006 0

Table 4 Mean monthly rainfall for selected stations of the rainfall zone J1C

Station
Mean monthly rainfall (mm)

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept

0044050 13,67 12,0 11,42 8,55 12,06 16,34 23,50 27,24 33,26 31,50 27,77 12,51

0044286 13,94 12,45 10,90 8,74 11,08 18,0 24,17 26,31 32,48 26,08 24,55 10,97

Table 5 Geographical location of selected rainfall stations of the rainfall zone S6A

Rainfall zone S6A 

Gauge Section Position
MAP
(mm)

Latitude Longitude
Period of 

records used
% of

Missing

0079490 79 490 341 32°40’ 27°17’ 1906–2006 0

0079730 79 730 376 32°40’ 27°25’ 1906–2006 0

Table 6 Mean monthly rainfall for selected stations of the rainfall zone S6A

Station
Mean monthly rainfall (mm)

Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept

0079490 110,40 127,46 121,81 121,94 120,92 126,05 70,04 47,79 34,71 35,22 51,44 72,75

0079730   93,59 120,50 112,11 121,36 117,73 125,09 59,43 33,76 21,61 23,81 34,98 62,43

Table 7  Performance of Standard BP and Generalised BP for different proportions of missing  values 
at station 0228495

Proportion of 
missing values

RMSEp (mm)

7 % 13 % 20 % 25 % 30 % 35 % 40 % 45 %

Standard BP 23,00 29,687 33,36 35,37 34,99 35,96 39,72 41,66

Generalised BP 20,81 28,423 33,61 34,58 34,61 35,13 38,45 40,61

Table 9  Performance of Standard BP and Generalised BP for different proportions of missing  values 
at station 0079490

Proportion of 
missing values 

RMSEp (mm)

5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 %

Standard BP 97,72 98,70 105,10 127,93 134,04 135,84 135,90 136,94 137,05

Generalised BP 90,76 92,56 100,94 125,79 128,04 126,14 121,56 118,82 120,25

Table 8  Performance of Standard BP and Generalised BP for different proportions of missing  values 
at station 0044050

Proportion of 
missing values 

RMSEp (mm)

5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 %

Standard BP 26,43 28,91 28,08 43,42 51,10 53,33 55,19 55,65 58,15

Generalised BP 21,29 23,29 25,42 35,13 37,85 38,43 38,60 40,65 41,47
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listed in Table 2 was obtained by multiplying 

the MAP (in mm) by the monthly rainfall as 

a percentage of MAP since this was drawn 

from the Water Research Report WRC 

298/3.1/94. (The computer programme 

HDY08 output is a monthly time-series, 

expressed as a percentage of MAP, and is 

representative of the rainfall zone.) 

Other rainfall stations were added to 

this preliminary study: the Touws River sta-

tion (SAWS gauge no 0044050) and the Jan 

Deboers station (SAWS gauge no 0044286). 

The 0044050 and 0044286 rainfall sta-

tions are about 15 km apart and belong 

specifically to the J1C rainfall zone of the 

primary river drainage system (J) in the 

Western Cape. The geographical locations 

of the selected rainfall stations 0044050 

and 0044286 is given in Table 3. Gauge 

0044050 was taken as the target gauge and 

gauge 0044286 as the control gauge. This 

was done in a similar way as explained 

above. The mean monthly rainfall informa-

tion (Table 4) was calculated directly from 

the data since data files were obtained 

from the SAWS. The annual rainfall totals 

for the Isidenge station (SAWS gauge no 

0079490) and the Izeleni station (SAWS 

gauge no 0079730) were considered as well. 

The 0079490 and 0079730 rainfall sta-

tions are about 14 km apart and belong to 

the S6A rainfall zone of the primary river 

drainage system s (S) in the Eastern Cape. 

The geographical locations of the selected 

rainfall stations, 0079490 and 0079730 

are listed in Table 5. The mean monthly 

rainfall information as listed in Table 6 was 

calculated directly from the data since data 

files were obtained from the SAWS. Gauge 

0079490 was taken as the target gauge and 

gauge 0079730 as the control gauge as in the 

previous cases. 

The hydrological year starts in October 

and ends in September for the data used.

The SAWS rainfall data used in this 

study were checked for general reliability and 

consistency using a mass plot, i.e. a plot of 

cumulative rainfall against time, as outlined 

by Midgley et al (1994).

The two techniques, i.e. standard BP and 

generalised BP, were applied to the different 

rainfall data sets. In the following, the results 

of the application of these techniques are 

presented and discussed. 

RESULTS AND DISCUSSION OF THE 

APPLICATION OF THE STANDARD BP 

AND GENERALISED BP TECHNIQUES

The selected rainfall data sets (stations 

00228170 and 00228295) of the Orange River 

Drainage System were complete and had no 

periods of missing data. However, for testing 

both infilling techniques, some consecutive 

gaps (e.g. 7, 13, 20, 25, 30, 35, 40 and 45% of 

missing data, starting from 1935) were cre-

ated randomly in the target rainfall station 

data set (station 0228495). 

The selected rainfall data sets in the 

Western Cape (stations 0044050 and 

0044286) and in the Eastern Cape (stations 

0079490 and 0079730) were complete and 

had no periods of missing data. However, 

for testing the different infilling techniques 

(i.e. the standard BP and the generalised 

Figure 2 Annual rainfall totals at 0228495 (5% missing data from 1935)
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Figure 3 Annual rainfall totals at 0228495 (45% missing data from 1935)
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Figure 4 Accuracy vs proportion of missing rainfall data at 0228495
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BP), some consecutive gaps (e.g. 5, 10, 15, 

20, 25, 30, 35, 40 and 45% of missing data, 

starting from 1965) were created randomly 

in the target rainfall station data set, i.e. 

0044050. Similarly, some consecutive gaps 

(e.g. 5, 10, 15, 20, 25, 30, 35, 40 and 45% of 

missing data, starting from 1930) were cre-

ated in the target rainfall station data set, 

i.e. 0079790.

The two techniques were then applied 

to annual total rainfall series. The ANNs 

were trained on the concurrent parts of 

the observed data using a sequential mode 

and the weights obtained were then used to 

estimate the missing values. The approach 

was similar to that used by Kuligowski and 

Barros (1998). A single input-output, three-

layered ANN with three nodes in the hidden 

layer was used and the bias terms were 

assumed to be zero as their use is optional. 

Learning rates set to 0,15 and 0,45 yielded 

reasonable results, although a wide range 

of values (i.e. between 0,01 and 0,9) for the 

learning rate was tried. Input and output 

values were scaled linearly to fall within the 

range 0,1 to 0,9 as mentioned earlier. Tables 

7, 8 and 9 contain a summary of the results 

obtained from the two techniques. It was 

found that a value of 5 for the generalisa-

tion parameter gave good results for the 

generalised BP technique at rainfall station 

00228295, while a value of 3 for the generali-

sation parameter yielded good results for the 

same technique at rainfall stations 0044050 

and 0079490. 

From Tables 7, 8 and 9 it is evident that 

the RMSEp at the target station increases 

with the proportion of missing values 

(gap size) for both techniques. Thus the 

accuracy decreases as the proportion 

of missing annual total rainfall values 

increases. A similar observation was made 

for a streamflow data infilling problem 

(Ilunga & Stephenson 2005). This situation 

(in this study) could be due to the fact that 

the generalisation capability of the two 

techniques of neural networks reduces 

as the proportion of missing values to be 

infilled becomes larger. In other words, as 

the periods of missing data increase, so the 

neural network is trained on smaller data 

sets and thus verified on a larger proportion 

of data. Hence the generalisation capability 

of ANNs decreases. It was noted that earlier 

missing record periods (e.g. 1928) in the 

records of the target station 0228495 did 

not have a significant impact on the accu-

racy of the estimated values for the different 

techniques.

A similar observation was made that ear-

lier missing periods (1965) in the record of 

target rainfall station 0044050 did not appar-

ently have any impact on the accuracy of the 

estimated values for the different techniques. 

Similarly, it was noted that earlier gaps 

(1925) in the record of target rainfall station 

0079490 did apparently not have any impact 

on the accuracy of the estimated values for 

the different techniques. 

In Figures 2 to 10, StandardBP and 

Generalised BP refer to standard back-prop-

agation and generalised back-propagation 

techniques.

By and large, generalised BP performed 

slightly better than standard BP. The plots 

Figure 5 Annual rainfall totals at 0044050 (5% missing data from 1965)
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Figure 6 Annual rainfall totals at 0044050 (45% missing data from 1965)
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Figure 7 Accuracy vs proportion of missing rainfall data at 0044050
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shown in Figures 2 and 3, 5 and 6, and 8 

and 9 confirm these results: the differences 

in the estimated missing values at rainfall 

station 0228495 are generally small, whereas 

the differences in the estimated missing 

values at rainfall stations 0044050 and 

0079490 are more prominent. This could 

be due to the generalisation para meter 

introduced in the update Equations (4) 

and (5). In the cases under discussion, the 

generalised parameter is believed to slightly 

improve the approximation of the output 

signal without producing a large error signal 

in the neural network when the actual 

input for the given neuron and pattern 

approaches the limits, i.e. 0,1 and 0,9. This 

could therefore support the premise behind 

the generalised BP algorithm (Ng et al 1996) 

that a generalisation of the derivative of the 

activation function (i.e. logistic) enables 

improvement of the convergence of the 

learning process by limiting the error signal 

drop to a very small value. From Figures 

4, 7 and 10 it can also be seen that for all 

algorithms the bigger the proportion of 

missing values (gap size), the bigger the 

RMSEp, hence the accuracy decreases. 

The two lines (obtained from the scatter 

data points) in Figure 4 are very close, 

while in Figures 7 and 10 the two lines 

are not very close. This could correlate 

with the observation that the differences 

in estimated values at station 0228495 

were very small for both techniques. The 

two techniques were generally shown to 

give a good estimation of the annual total 

rainfall values. 

Figure 8 Annual rainfall totals at 0079490 (5% missing data from 1930)
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Figure 9 Annual rainfall totals at 0079490 (45% missing data from 1930)
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Figure 10 Accuracy vs proportion of missing rainfall data at 0079790
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From the above it can be said that both 

the standard BP and the generalised BP algo-

rithms are acceptable to fill in the annual 

rainfall values for rainfall stations 0228495, 

0044050 and 0079790. It was shown that 

there was no significant breach of statistical 

properties (i.e. the mean and the variance 

of the incomplete and infilled rainfall series 

specifically at the target rainfall station). The 

hypothesis test was conducted on the basis of 

the statistical method explained above. The 

mean and variance of the observed annual 

rainfall totals at the target stations were 

considered (assumed) as an estimation of the 

population mean and variance respectively. 

The mean of the infilled data series for each 

proportion of missing values was tested (at 

95% confidence interval) for acceptance or 

rejection of the mean of the annual rainfall 

totals remaining unchanged. The different 

tests revealed that the results could gener-

ally be accepted at 95% confidence interval, 

except for a 45% missing proportion at 

rainfall station 0079790 as shown in Tables 

10, 11, 12 and 13.

For the generalised BP technique as 

applied in this paper, the generalisation 

parameter was purposely not strictly 

restricted to the conditions of binary prob-

lems, i.e. b f 1 and b p 50 for good results. 

In the current case, the results became less 

accurate for b f 5. This could be due to the 

type of problem tackled here (i.e. data infill-

ing) and the nature of the data (i.e. rainfall) 

used.

CONCLUSIONS AND SUGGESTIONS

The generalised BP technique has been 

introduced for the first time in hydrology, 

specifically for a rainfall data infilling 

problem. This technique was compared to 

the standard BP technique. The perform-

ance of the two techniques was evaluated 

through RMSEp for annual rainfall data. The 

preliminary results using the rainfall station 

pair 0228170 (control) and 0228495 (target) 

showed that the generalised BP technique 

performed slightly better than the standard 

BP technique. However, the standard BP 

had no negative impact on the estimation 

of missing values at the target station. Both 

techniques were acceptable for infilling the 

missing annual total rainfall data at station 

0228495. Hence either of these techniques 

could be used for infilling annual rainfall 

totals. The results were similar when other 

station pairs were used: 0044050 (control) 

and 0044050 (target) and 0079030 (control) 

and 0079090 (target).

It was also observed that the RMSEp 

at the different target stations generally 

increased with an increase in the propor-

tion of missing values (gap size) for both 

techniques. It is suggested that the impact of 

other activation functions (e.g. hyperbolic) 

as well as the batch-training mode for neu-

ral networks should be investigated. The 

techniques used in this study should also be 

tested on other rainfall data sets. A sensiti-

vity analysis of the generalisation parameter 

on the accuracy of estimated rainfall values 

should also be investigated. These results 

were based on the techniques applied to 

annual total rainfall data. It is recommended 

that other rainfall data should also be tried 

(e.g. maximum series, mean annual, etc) and 

data from other climatic regions should also 

be used to evaluate the techniques.

Table 10 Statistics of annual rainfall totals at station 00228495

Missing 
values

proportion 
7 % 13 % 20 % 25 % 30 % 35 % 40 % 45 %

Standard BP (μ0 = 290,83 mm, σ0 = 112,7 mm, N = 66 for served data series at 00228495)

σ2
 (mm2)

[σ (mm)]
12 589,76

[112,2]
12 068,80

[109,86]
12 113,15

[110,06]
10 927,63
[104,55]

11689,96
[108,12]

10910,24
[104,45]

10 255,88
[101,21]

9 753,44
[98,76]

μ (mm) 289,64 288,67 290,00 294,097 289,96 292,98 293,36 295,22

Generalised BP (μ0 = 290,83 mm, σ0 = 112,7 mm, N = 66 for served data series at 00228495) 

σ2
 (mm2)

[σ (mm)]
12 582,27

[112,17]
12 110,91
[110,05]

12 098,00
[110,00]

11 153,21
[105,61]

11 710,77
[108,22]

11 309,96
[106,35]

11 051,31
[105,13]

10 788,29
[103,87]

μ (mm) 289,57 288,96 289,63 294,62 291,10 293,73 294,17 295,58

Table 11 Statistics of annual rainfall totals at station 0044050 

Missing 
values

proportion 
5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 %

Standard BP (μ0 = 227,84 mm, σ0 = 71,07 mm, N = 58 for the observed data series at 0044050) 

σ2
 (mm2)

[σ (mm)]
4 719,38

[68,7]
4 922,00
[70,16]

4 824,26
[69,46]

4 242,13
[65,13]

3 634,24
[60,28]

3 418,18
[58,47]

3 319,18
[57,61]

3 401,1
[58,32]

3 300,18
[57,45]

μ (mm) 232,15 230,50 230,87 231,50 232,50 233,69 232,84 234,52 232,95

Generalised BP (μ0 = 227,84 mm, σ0 = 71,07 mm, N = 58 for the observed data series at 0044050)

σ2
 (mm2)

[σ (mm)]
4 844,10
[69,60]

4 980,41
[70,52]

4 843,51
[69,70]

4 654,23
[68,22]

4 330,89
[65,80]

4 251,17
[65,20]

4 199,31
[64,80]

4 274,49
[65,38]

4 274,08
[65,38]

μ (mm) 230,18 229,41 230,22 231,33 232,92 233,67 233,67 235,72 234,99

Table 12 Statistics of annual rainfall totals at station 0079490 

Missing 
values 

proportion 
5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 %

Standard BP (μ0 = 227,63 mm, σ0 = 227,63 mm, N = 101 for the observed data series at 0079490)

σ2
 (mm2)

[σ (mm)]
52 345,18
[228,79]

52 249,13
[228,58]

51 394,54
[226,70]

48 466,95
[220,15]

47 113,27
[217,06]

46 210,23
[214,97]

48 366,93
[219,62]

43 451,67
[208,45]

39 862,48
[199,66]

μ (mm) 1 046,52 1 046,80 1 041,80 1 052,35 1 058,66 1 060,32 1 063,92 1 064,09 1 059,89

Generalised BP (μ0 = 227,63 mm, σ0 = 227,63 mm, N = 101 for the observed data series at 0079490)

σ2
 (mm2)

[σ (mm)]
52 426,7
[228,97]

51 773,7
[227,54]

51 283,10
[226,46]

48 831,38
[220,98]

47 909,5
[218,88]

47 643,69
[218,27]

45 746,48
[213,88]

45 509,05
[213,32]

41 517,5
[203,76]

μ (mm) 1 046,7 1 044,7 1 048,62 1 052,65 1 058,4 1 060,75 1 062,4 1 066,39 1 058,81

Table 13  Test of hypothesis on means of infilled annual rainfall totals at different target stations for 
0-45% missing values

Target rainfall station
Test on means 

H0 : μ = μ0

Test on variances
H0 : σ = σ0

Confidence intervals

0228495
(μ0 = 290,83 mm,

σ0 = 112,7 mm, N = 66)

Accepted
(0-45% missing values)

Accepted
(0-45% missing values)

 Means: (-1,96; +1,96)
Variance: (96,53; 135,98)

0044050
(μ0 = 227,84 mm,

σ0 = 71,07 mm, N = 58)

Accepted
(0-45% missing values)

Accepted
(0-45% missing values)

   Means: (-1,96; +1,96)
Variance: (60,44; 87,63)

0079790
(μ0 = 227,63 mm,

σ0 = 227,63 mm, N = 101)

Accepted
(0-45% missing values)

Accepted for the range 
of missing values, 

except for 45 % 

    Means: (-1,96; +1,96)
Variance: (201; 265,89)
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