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Infilling annual rainfall
data using feedforward
back-propagation Artificial
Neural Networks (ANN):
Application of the standard
and generalised back-
propagation techniques

M llunga

Water resource planning and management require long time series of hydrological data (e.g.
rainfall, river flow). However, sometimes hydrological time series have missing values or are
incomplete. This paper describes feedforward artificial neural network (ANN) techniques used
to infill rainfall data, specifically annual total rainfall data. The standard back-propagation (BP)
technique and the generalised BP technique were both used and evaluated. The root mean
square error of predictions (RMSEp) was used to evaluate the performance of these techniques.
A preliminary case study in South Africa was done using the Bleskop rainfall station as the
control and the Luckhoff-Pol rainfall station as the target. It was shown that the generalised BP
technique generally performed slightly better than the standard BP technique when applied
to annual total rainfall data. It was also observed that the RMSEp increased with the proportion
of missing values in both techniques. The results were similar when other rainfall stations were
used. It is recommended for further study that these techniques be applied to other rainfall data

(e.g. annual maximum series, etc) and to rainfall data from other climatic regions.

INTRODUCTION
A considerable amount of data on hydrologi-
cal variables such as rainfall, streamflow, etc
are required for the planning, management
and effective control of water resource sys-
tems. Annual rainfall is used for agricultural
planning since the total amount of rainfall is
among the most important factors that affect
agricultural systems. Crop production in
semi-arid regions like South Africa is largely
determined by the annual total rainfall; how-
ever, rainfall is the limiting factor in these
areas. Sometimes hydrological data series
have missing values or are incomplete. In
such cases, the reliability of the design of, for
example, a hydropower plant and the con-
struction of dams, can be severely affected.
Limited financial resources, poor manage-
ment of data related to water resources,
temporary absence of observers, cessation of
measurement or no reliable hydrological net-
works can lead to incomplete or missing data
in hydrological time-series. This situation is
common in developing countries.

In South Africa, for example, the over-
whelming majority of gaps are caused by
the temporary absence of observers, the

cessation of measurement or absence of
observations prior to the commencement

of measurement (Makhuvha et al 1997).

In Bolivia, due to the limited financial
resources, even a minimum national network
could not be achieved according to the mete-
orological network density ratio (Balek 1972).

Developing countries generally lag behind
in the use of new technologies to process
their statistical data (Sadowsky 1989). Yet
their needs are just as great; they need to
achieve a viable statistical data processing
capability if they are to provide, on a con-
tinuous and sustained basis, the essential
statistical information needed for their
development planning and administration
(Sadowsky 1989). Most of the old data for
developing countries have been lost due to
non-existent database storage (Medeiros et
al 2002).

Several hydrological data infilling
techniques have been developed. These
techniques include artificial neural networks
(ANNp), regression methods, deterministic
models, stochastic models for rainfall-runoff
modelling, flood forecasting/prediction
and water quality modelling (Lawrence
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et al 1996; Minns & Hall 1996; Raman &
Sunilkumar 1995). Although several studies
indicate that ANNSs have proven to be poten-
tially useful tools in hydrology, their disad-
vantages should not be disregarded (ASCE
Task Committee 2000b). The success of an
ANN application depends both on the qual-
ity and the quantity of data available (ASCE
Task Committee 2000b). This requirement
cannot go back far enough. Quite often

the requisite data are not available and

have to be generated by other means, such
as another well-tested model. Even when
long historical records are available, it is

not certain that conditions have remained
homogeneous over the time span. Therefore
data sets recorded over a period that was
relatively stable and unaffected by human
activities are desirable. Yet another limitation
of ANN:Ss is the lack of physical concepts

and relations. The lack of a standardised
way of selecting a network architecture has
also been criticised. The choices of network
architecture, training algorithm and defini-
tion are usually determined by the user’s
experience and preference, rather than by the
physical aspects of the problem (ASCE Task
Committee 2000a,b)

Despite the criticisms levelled against
ANN techniques (ASCE Task Committee
2000ab), they were found to be power-
ful tools when compared to multivariate
regression-based models for infilling stream-
flow data (Panu et al 2000). Kuligowski
and Barros (1998) showed that ANNSs gave
promising results in the estimation of miss-
ing rainfall data when compared to other
methods such as regression techniques.
ANN techniques can be used to express a
non-linear mapping between variables with
no prior assumptions as to the variables (lin-
ear or non-linear as in regression methods),
and these techniques can cope with miss-
ing data (French et al 1992). Over the past
decade, ANNSs have been used intensively in
hydrology and water-related fields (Lawrence
et al 1996; Minns & Hall 1996; Raman &
Sunilkumar 1995; French et al 1992; Wilby
& Dawson 1998). However, the application
of ANN:Ss for infilling rainfall data remains
limited. In addition, there is nothing in the
literature on the use of the generalised BP
(back-propagation) ANN technique for infill-
ing hydrological data, specifically for rainfall
data, which generally show a relatively high
variability both in time and space.

This paper discusses feedforward ANN
techniques used for rainfall data infill-
ing. The standard back-propagation (BP)
technique (Freeman and Skapura 1991) is
compared to the generalised BP technique
which has been introduced for the first time
in hydrology, specifically for rainfall data

infilling problems. Note that the generalised
BP was initially used for different problems
which included the “Exclusive-Or” problem
(XOR) and the 3-bit parity and 5-bit count-
ing problems (Ng et al 1996). The root mean
square error of predictions (RMSEp) is then
used as a criterion to evaluate the perform-
ance of these two techniques. A case study is
presented to demonstrate the performance
of the two techniques. The terms algorithm
and technique are used interchangeably in
this paper.

HYDROLOGICAL DATA
INFILLING TECHNIQUES

Overview of Artificial Neural
Networks (ANNs)

ANN s are networks of interconnected
simple units (nodes) based on a greatly
simplified model of the human biological
system, which are capable of represent-

ing non-linear and complex interactions
between variables without prior specifica-
tion. There are two main types of ANNSs:
feedforward networks (where the signal is
propagated only from the input nodes to

the output nodes) and recurrent networks
(where the signal is propagated in both
directions). The advantage of ANNS, even if
the “exact” relationship between sets of input
and output data is unknown but is acknowl-
edged to exist, is that they can be trained

to learn that relationship, and require no
prior underlying assumptions (non-linear vs
linear) as in conventional methods. ANNs
are regarded as ultimate black box models
(Minns & Hall 1996). ANNs were shown

to be generally superior in sediment yield
models when compared to linear transfer
function models (Argawal et al 2005). ANNs
seek to learn patterns, but not to replicate
the physical processes of transforming input
to output (Minns & Hall, 1996). As opposed
to conventional methods, ANNs are thought
to have the ability to cope with the missing
data and, perhaps most importantly, are
able to generalise a relationship from small
subsets of data while remaining relatively
robust in the presence of noisy or missing
inputs. Thus ANNs can learn in response to
a changing environment (Wilby & Dawson
1998). Since the early 1990s, ANNs have
been successfully used in the area of water
resource engineering related to rainfall/run-
off forecasting (Minns & Hall 1996; Agarwal
& Singh 2001); streamflow data infilling (e.g.
Panu et al 2000; Khalil et al 2001; Elshorbagy
et al 2000; Ilunga & Stephenson 2005);
validation and correction of high-frequency
water quality data (Quilty et al 2004) and
rainfall data infilling (Kuligowski & Barros

1998). The latter authors used ANNs to esti-
mate the missing rainfall data at the target
rainfall station from nearby rainfall stations.
The issues of data quality for computational
intelligence in earth sciences were also dis-
cussed by Cherkassy et al (2006). However,
the application of ANNSs hydrological data
infilling is still very limited, specifically

for rainfall data infilling. Some authors

(e.g. Panu et al 2000; Khalil et al 2001;
Elshorbagy et al 2000, Ilunga & Stephenson
2005) developed ANN techniques for cases
where data were available before and after
missing periods of data (e.g. consecutive
missing values). Three-layered ANNSs have
been used intensively for that purpose. The
hidden-layer feedforward neural network is
one of the most common architectures used
by neurohydrologists (Panu et al 2000; Khalil
et al 2001; Elshorbagy et al 2000; French

et al 1992; Minns & Hall 1996; Agarwal &
Singh 2001). These hydrologists believe that
certain problems in hydrology and water
resources can be solved using ANNs.

Standard back-propagation

(BP) technique

The standard BP technique is only outlined
in this section and for more details the read-
er is referred to, for example, Freeman and
Skapura (1991). Given a three-layered ANN
as depicted in Figure 1, in standard BP the
adjustment of the interconnecting weights
during training employs a method known as
error back-propagation in which the weight
associated with each connection is adjusted
by an amount proportional to the strength
of the signal in the connection and the total
measure of the error. The total error at the
output layer is then reduced by redistribut-
ing this error value backwards through the
hidden layers until the input layer is reached.
This process is repeated until the total error
for all data sets is sufficiently small. The
weight changes to the output layer and hid-
den layer are given by Equations (1) and (2)

respectively:

ijo (t+1) = wk/O ) + ’75pk0ipj (1)
h _ h h

Wi (t+1) = Wi () + ;76!,]. x; 2)

where i is the unit node in the input layer, j
is the unit node in the hidden layer, p is the
pattern, k is the neuron related to the output
layer, 7 is the learning rate, 6pk0 and c')‘pjh are
error terms (which encompass a derivative
part) for output units and hidden units
respectively, ¢ is the t-th iteration, wkjo () and
Wjih (t) are weights in the output layer and
the hidden layer respectively at t-iteration,
and x; and i, are inputs to unit nodes i and j
respectively.
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Output signal
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layer
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Table 1 Geographical location of selected rainfall stations in the Secondary Drainage Region D33

Figure 1 A three-layer feedforward ANN

For practical considerations, it is
sometime suggested that the bias terms be
removed altogether, i.e. their use is optional
(Freeman & Skapura 1991).

In the standard BP, the learning process
is done through both sequential and batch
modes. In the former mode the process of
learning is governed by the error of each data
set and the weight update is made for each
sample of the training, and in the latter mode
the weights at each iteration are adjusted only
after all the data sets have been processed.

An activation function is used to express
the non-linear relationship process between
the input and output data. This function can
be any threshold function or any continu-
ous function. It is normally a monotonic
non-decreasing function and differentiable
everywhere for x values. The activation
function most commonly used is a sigmoid,
non-linear continuous function between 0
and 1 and is represented as follows:

1

£ = l-e™

®3)

Freeman and Skapura (1991) proposed that

a range of x values from 0,1 to 0,9 should be
used for practical purposes. This range is
adopted in this paper. Thus the input data
and the output data will be scaled (during
training of ANNG) to adhere to the above
range. A linear scaling was used in this
paper. For ANNS, input data and output data
scaling can speed up the convergence of the
neural system. It also gives each input equal
importance, prevents premature saturation
of the activation function and aids the gener-
alisation capability (i.e. neural networks can
approximate values that they did not see dur-
ing training). Therefore the equations used

Secondary drainage D33
i [V
Gauge Section | Position MAP Latitude Longitude Period of A’ °.f

(mm) records used | Missing
0228170 288 170 341 29°50°00” 24°36'00” 1924-1989 0
0228495 228 495 376 29°45'00” 24°47°00” 1924-1989 0

Table 2 Mean monthly rainfall for selected stations of the Secondary Drainage Region D33
Mean monthly rainfall (mm)
Station
Oct | Nov | Dec Jan Feb | Mar | Apr | May | June | July | Aug | Sept

0228170 | 23,59 | 34,92 | 33,32 | 39,62 | 56,67 | 60,39 | 38,94 | 16,54 | 7,63 | 6,58 | 10,47 | 12,48
0228495 | 25,57 | 38,50 | 36,74 | 43,69 | 62,49 | 66,59 | 42,94 | 18,24 | 6,66 | 7,26 | 14,14 | 13,76

in this paper should not contain any unit as
they apply to scaled numbers used during
the training of ANNS.

The majority of ANNSs applied in water
resources involve the use of feedforward
propagation. The standard BP (which is a
gradient descent method) has been criticised
because convergence to an optimal solution
is not always guaranteed (Agarwal & Singh
2001). In other words, the method guarantees
that the algorithm will find the nearest local
minimum. Consequently, the solution often
follows a zig-zag path while trying to reach
the minimum error position, which may
slow down the training process (ASCE Task
Committee 2000a). Thus several variants of
BP such as Bayesian regulation, the conjugate
gradients method, adaptive stepsize, the
Levenberg-Marquardt algorithm, causal
recursive BP, Maclaurin pseudo-power series,
and the generalised BP introduced recently by
Ilunga and Stephenson (2005), were proposed.
Despite these criticisms, it appears that in
practice BP leads to solutions in almost every
case and that standard multilayer feedforward
networks are capable of approximating any
measurable function to any desired degree of
accuracy, as stated by Minns and Hall (1996).
In the following section the generalised BP
algorithm is briefly described.

Generalised BP algorithm

The main reason for criticism of the use

of standard back-propagation is due to the
derivative of the sigmoid activation function
(Ng et al 1996). When the actual output of
the -th output neuron for the p -th pattern
(i.e. 0,) approaches the extreme values such
as 0 or 1, the derivative of the activation
function having the factor Opk 1-o0 k) will
not be significant, and the BP error 31gnal
will become very small (Ng et al 1996).
Thus the output can be maximally wrong
without producing a large error signal. The
algorithm can be trapped into local minima.
Consequently the weight adjustment of the
algorithm can be very slow or even sup-
pressed. Therefore a generalisation of the

derivative of the activation function (i.e.
logistic) is proposed so as to improve the
convergence of the learning process by pre-
venting the error signal dropping to a very
small value.

In generalised BP, the error signals for the
output layer and hidden layer now become:

81 = Ot = 0,00 (0 (e, NP @
8,11 = (fft (net, /)P 5.5, 0m; (5)

where Oy is the target output, net, is the
net input to the output layer, net, is the
net input to the hidden layer, £} is the first
derivative of the sigmoid function for the
k-th neuron in the output layer,fjh is the
first derivative of the sigmoid function for
the j-th neuron in the hidden layer, k, h and
j have been previously defined, and & is the
generalisation parameter. In this case b > 1.
For b = 1, this results in the standard BP
algorithm.

The effect of generalised BP is to change
the slope of the sigmoid function in the
two “tail” regions. For b > 1, errors will be
significantly enlarged when o, approaches
a wrong value, and hence the error signals
will reflect the true error (J’pk - Opk) more
appropriately. The generalised BP technique
was applied to different problems including
the “Exclusive-Or” problem XOR and the
3-bit parity and 5-bit counting problems
(Ng et al 1996). The results were not good
for b > 50. However, this technique has
not yet been applied in hydrology or water-
related fields, specifically for data infilling
problems.

TESTS OF HYPOTHESES

AND SIGNIFICANCE

Tests were performed to determine whether
the statistics (e.g. mean and standard devia-
tion) of the infilled annual rainfall totals
are significantly different from the observed
annual rainfall totals at the target stations.
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In practice a level of significance of 0,05
or 0,01 is customary, although other values
are used. In other words, there is about a
5-in-100 chance that the hypothesis will be
rejected when it should be accepted. There is
a 95% confidence level that the right decision
is made.

The tests on means and standard devia-
tions are performed as explained by Spiegel
and Boxer (1972). The tests are explained in
the following sections.

Test on means

For large sample sizes N (N = 30), the

sampling distribution of the statistic can be

assumed to be a (nearly) normal distribution

with mean Xand standard deviation s. The

test is performed based on the following rule

decision or test of hypothesis or significance:

(a) Reject the hypothesis at a 0,05 level of
significance if the Z score of the statistic
(e.g. mean) lies outside the range —1,96
to 1,96. In the case of means, the null
hypothesis H : u = y, is tested against
the alternative hypothesis H, : 4 # u,
(where y, is the population mean).

(b) Accept the hypothesis (or if desired make
no decision at all).

The Z score is computed using the following

equation:
Z= g] X-w (6)

Where 4 and o are the mean and standard
deviation of the population and X is the sam-

ple mean (with s = 9)

VN
Test on standard deviations
For large values of the degrees of freedom
¥ (y 2 30), (with y = N — 1) and using the
chi-square(N?) test, the 95% confidence limit
is given by:

sYN

N0,975

s\N

N0,025

and

N3 975 and N3 o5 are calculated as follows:
1

NGo75 = 3 (Zogrs + 2y =12, Zg 975 =196 (7)
1

N 005 = 5 Zooos + V2y = D% Zg gy = ~196 (8)

DATA AVAILABILITY

The annual rainfall totals for the Bleskop
station (SAWS gauge no 02284170) and

the Luckhoff-Pol station (SAWS gauge no
0228495) were considered for this preliminary
study to test the performance of the two
techniques, i.e. standard BP and generalised
BP. (These two rainfall stations were selected

Table 3 Geographical location of selected rainfall stations of the rainfall zone J1C

Rainfall zone J1C
i [V
Gauge Section | Position MAP Latitude Longitude Period of A’ °.f
(mm) records used [ Missing
0044050 44 50 228 33°00 20°02’ 1906-2006 0
0044286 44 286 216 33°16 20°10° 1906-2006 0
Table 4 Mean monthly rainfall for selected stations of the rainfall zone J1C
Mean monthly rainfall (mm)
Station
Oct | Nov | Dec | Jan Feb | Mar | Apr | May | June | July | Aug | Sept
0044050 | 13,67 | 12,0 | 11,42 | 8,55 | 12,06 | 16,34 | 23,50 | 27,24 | 33,26 | 31,50 | 27,77 | 12,51
0044286 | 13,94 | 12,45 | 10,90 | 8,74 | 11,08 | 18,0 | 24,17 | 26,31 | 32,48 | 26,08 | 24,55 | 10,97
Table 5 Geographical location of selected rainfall stations of the rainfall zone S6A
Rainfall zone S6A
i oy
Gauge Section | Position MAP Latitude Longitude Period of /6 o.f
(mm) records used | Missing
0079490 79 490 341 32°40 27°17’ 1906-2006 0
0079730 79 730 376 32°40 27°25' 1906-2006 0
Table 6 Mean monthly rainfall for selected stations of the rainfall zone S6A
Mean monthly rainfall (mm)
Station
Oct | Nov | Dec | Jan Feb | Mar | Apr | May | June | July | Aug | Sept
0079490 | 110,40 | 127,46 | 121,81 | 121,94 | 120,92 | 126,05 | 70,04 | 47,79 | 34,71 | 35,22 | 51,44 | 72,75
0079730 | 93,59(120,50 | 112,11 | 121,36 | 117,73 | 125,09 | 59,43 | 33,76 | 21,61 | 23,81 | 34,98 | 62,43

Table 7 Performance of Standard BP and Generalised BP for different proportions of missing values

at station 0228495
Proportion of RMSEp (mm)
missing values 7 % 13 % 20% | 25% | 30% | 35% | 40% | 45%
Standard BP 23,00 | 29,687 | 33,36 | 3537 | 3499 | 3596 | 3972 | 41,66
Generalised BP 20,81 | 28423 | 33,61 | 34,58 | 3461 | 3513 | 3845 | 4061

Table 8 Performance of Standard BP and Generalised BP for different proportions of missing values

at station 0044050
Proportion of RMSEp (mm)
missing values 5 % 10% | 15% | 20% | 25% | 30% | 35% | 40% | 45%
Standard BP 26,43 | 28,91 | 28,08 | 43,42 | 51,10 | 53,33 | 5519 | 55,65 | 58,15
Generalised BP 21,29 | 23,29 | 2542 | 3513 | 37,85 | 3843 | 38,60 | 40,65 | 41,47

Table 9 Performance of Standard BP and Generalised BP for different proportions of missing values

at station 0079490
Proportion of RMSEp (mm)
missing values 5% 10 % 15 % 20 % 25 % 30 % 35% 40 % 45 %
Standard BP 97,72 98,70 | 105,10 | 127,93 | 134,04 | 135,84 | 135,90 | 136,94 | 137,05
Generalised BP 90,76 92,56 | 100,94 | 125,79 | 128,04 | 126,14 | 121,56 | 118,82 | 120,25

randomly.) These rainfall stations are about 20
km apart and belong to the secondary drain-
age region named D33 of the Orange River
Drainage System (D) of South Africa. The
monthly rainfall data were obtained from the
report by Midgley et al (1994). The geographi-
cal location and other characteristics of the
selected rainfall stations located in the sum-
mer rainfall zone are listed in Tables 1 and 2.

Gauge 0228495 (Luckhoff-Pol) was

taken as the target gauge and gauge 0228170
(Bleskop) as the control gauge. Gauge
0228170 was chosen as the control since it
gave better results during trials of the esti-
mation of missing values at gauge 0228495
than when gauge 0228495 was considered to
fill in the missing values at gauge 0228170.

The mean monthly rainfall information
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Figure 2 Annual rainfall totals at 0228495 (5% missing data from 1935)
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Figure 3 Annual rainfall totals at 0228495 (45% missing data from 1935)
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Figure 4 Accuracy vs proportion of missing rainfall data at 0228495

listed in Table 2 was obtained by multiplying
the MAP (in mm) by the monthly rainfall as
a percentage of MAP since this was drawn
from the Water Research Report WRC
298/3.1/94. (The computer programme
HDY08 output is a monthly time-series,

expressed as a percentage of MAP, and is
representative of the rainfall zone.)

Other rainfall stations were added to
this preliminary study: the Touws River sta-
tion (SAWS gauge no 0044050) and the Jan
Deboers station (SAWS gauge no 0044286).

The 0044050 and 0044286 rainfall sta-
tions are about 15 km apart and belong
specifically to the J1C rainfall zone of the
primary river drainage system (J) in the
Western Cape. The geographical locations
of the selected rainfall stations 0044050
and 0044286 is given in Table 3. Gauge
0044050 was taken as the target gauge and
gauge 0044286 as the control gauge. This
was done in a similar way as explained
above. The mean monthly rainfall informa-
tion (Table 4) was calculated directly from
the data since data files were obtained
from the SAWS. The annual rainfall totals
for the Isidenge station (SAWS gauge no
0079490) and the Izeleni station (SAWS
gauge no 0079730) were considered as well.
The 0079490 and 0079730 rainfall sta-
tions are about 14 km apart and belong to
the S6A rainfall zone of the primary river
drainage system s (S) in the Eastern Cape.
The geographical locations of the selected
rainfall stations, 0079490 and 0079730

are listed in Table 5. The mean monthly
rainfall information as listed in Table 6 was
calculated directly from the data since data
files were obtained from the SAWS. Gauge
0079490 was taken as the target gauge and
gauge 0079730 as the control gauge as in the
previous cases.

The hydrological year starts in October
and ends in September for the data used.

The SAWS rainfall data used in this
study were checked for general reliability and
consistency using a mass plot, i.e. a plot of
cumulative rainfall against time, as outlined
by Midgley et al (1994).

The two techniques, i.e. standard BP and
generalised BP, were applied to the different
rainfall data sets. In the following, the results
of the application of these techniques are
presented and discussed.

RESULTS AND DISCUSSION OF THE
APPLICATION OF THE STANDARD BP
AND GENERALISED BP TECHNIQUES
The selected rainfall data sets (stations
00228170 and 00228295) of the Orange River
Drainage System were complete and had no
periods of missing data. However, for testing
both infilling techniques, some consecutive
gaps (e.g. 7, 13, 20, 25, 30, 35, 40 and 45% of
missing data, starting from 1935) were cre-
ated randomly in the target rainfall station
data set (station 0228495).

The selected rainfall data sets in the
Western Cape (stations 0044050 and
0044286) and in the Eastern Cape (stations
0079490 and 0079730) were complete and
had no periods of missing data. However,
for testing the different infilling techniques
(i.e. the standard BP and the generalised
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Figure 7 Accuracy vs proportion of missing rainfall data at 0044050

BP), some consecutive gaps (e.g. 5, 10, 15,
20, 25, 30, 35, 40 and 45% of missing data,
starting from 1965) were created randomly
in the target rainfall station data set, i.e.
0044050. Similarly, some consecutive gaps
(e.g. 5, 10, 15, 20, 25, 30, 35, 40 and 45% of

missing data, starting from 1930) were cre-
ated in the target rainfall station data set,
i.e. 0079790.

The two techniques were then applied
to annual total rainfall series. The ANNs
were trained on the concurrent parts of

the observed data using a sequential mode
and the weights obtained were then used to
estimate the missing values. The approach
was similar to that used by Kuligowski and
Barros (1998). A single input-output, three-
layered ANN with three nodes in the hidden
layer was used and the bias terms were
assumed to be zero as their use is optional.
Learning rates set to 0,15 and 0,45 yielded
reasonable results, although a wide range

of values (i.e. between 0,01 and 0,9) for the
learning rate was tried. Input and output
values were scaled linearly to fall within the
range 0,1 to 0,9 as mentioned earlier. Tables
7, 8 and 9 contain a summary of the results
obtained from the two techniques. It was
found that a value of 5 for the generalisa-
tion parameter gave good results for the
generalised BP technique at rainfall station
00228295, while a value of 3 for the generali-
sation parameter yielded good results for the
same technique at rainfall stations 0044050
and 0079490.

From Tables 7, 8 and 9 it is evident that
the RMSEp at the target station increases
with the proportion of missing values
(gap size) for both techniques. Thus the
accuracy decreases as the proportion
of missing annual total rainfall values
increases. A similar observation was made
for a streamflow data infilling problem
(Ilunga & Stephenson 2005). This situation
(in this study) could be due to the fact that
the generalisation capability of the two
techniques of neural networks reduces
as the proportion of missing values to be
infilled becomes larger. In other words, as
the periods of missing data increase, so the
neural network is trained on smaller data
sets and thus verified on a larger proportion
of data. Hence the generalisation capability
of ANNs decreases. It was noted that earlier
missing record periods (e.g. 1928) in the
records of the target station 0228495 did
not have a significant impact on the accu-
racy of the estimated values for the different
techniques.

A similar observation was made that ear-
lier missing periods (1965) in the record of
target rainfall station 0044050 did not appar-
ently have any impact on the accuracy of the
estimated values for the different techniques.
Similarly, it was noted that earlier gaps
(1925) in the record of target rainfall station
0079490 did apparently not have any impact
on the accuracy of the estimated values for
the different techniques.

In Figures 2 to 10, StandardBP and
Generalised BP refer to standard back-prop-
agation and generalised back-propagation
techniques.

By and large, generalised BP performed
slightly better than standard BP. The plots
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Figure 10 Accuracy vs proportion of missing rainfall data at 0079790

shown in Figures 2 and 3, 5 and 6, and 8
and 9 confirm these results: the differences
in the estimated missing values at rainfall
station 0228495 are generally small, whereas
the differences in the estimated missing
values at rainfall stations 0044050 and

8

0079490 are more prominent. This could
be due to the generalisation parameter
introduced in the update Equations (4)

and (5). In the cases under discussion, the
generalised parameter is believed to slightly
improve the approximation of the output

signal without producing a large error signal
in the neural network when the actual
input for the given neuron and pattern
approaches the limits, i.e. 0,1 and 0,9. This
could therefore support the premise behind
the generalised BP algorithm (Ng et al 1996)
that a generalisation of the derivative of the
activation function (i.e. logistic) enables
improvement of the convergence of the
learning process by limiting the error signal
drop to a very small value. From Figures
4,7 and 10 it can also be seen that for all
algorithms the bigger the proportion of
missing values (gap size), the bigger the
RMSEp, hence the accuracy decreases.

The two lines (obtained from the scatter
data points) in Figure 4 are very close,

while in Figures 7 and 10 the two lines

are not very close. This could correlate
with the observation that the differences

in estimated values at station 0228495

were very small for both techniques. The
two techniques were generally shown to
give a good estimation of the annual total
rainfall values.
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Table 10 Statistics of annual rainfall totals at station 00228495

Missing
values 7% 13 % 20 % 25 % 30 % 35 % 40 % 45 %
proportion
Standard BP (4, = 290,83 mm, ¢, = 112,7 mm, N = 66 for served data series at 00228495)
0% (mm?) |12589,76 |12068,80 |12 113,15 | 10927,63 | 11689,96 | 10910,24 |10 255,88 | 9 753,44
[o (mm)] [112,2] | [109,86] | [110,06] | [104,55] | [108,12] | [104,45] | [10L,21] | [98,76]
u (mm) 289,64 288,67 290,00 294,097 289,96 292,98 293,36 295,22

Generalised BP (4, = 290,83 mm, 0, = 112,7 mm, N = 66 for served data series at 00228495)

02(mm?) |12582,27 |12110,91 |12098,00 |11 153,21 |11 710,77 |11 309,96 |11 051,31 |10 788,29
[0 (mm)] [112,17] | [110,05] | [110,00] | [105,61] | [108,22] | [106,35] | [105,13] | [103,87]
4 (mm) 289,57 288,96 289,63 294,62 291,10 293,73 294,17 295,58
Table 11 Statistics of annual rainfall totals at station 0044050
Missing
values 5% 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 %
proportion

Standard BP (y, = 227,84 mm, 0, = 71,07 mm, N = 58 for the observed data series at 0044050)

02 (mm?2) 4.719,38 | 4:922,00 | 4 824,26 | 4 242,13 | 3 634,24 | 3 418,18 | 3 319,18 | 3401,1 |3 300,18
[0 (mm)] [68,7] [70,16] | [69,46] | [65,13] | [60,28] | [58,47] | [57,61] | [58,32] [57,45]
4 (mm) 232,15| 230,50 230,87 | 231,50 232,50| 233,69| 232,84| 234,52 232,95

Generalised BP (¢, = 227,84 mm, o, = 71,07 mm,

N = 58 for the observed data series at 0044050)

02 (mm?2) 4.844,10 | 4 980,41 | 4 843,51 | 4 654,23 | 4 330,89 | 4 251,17 | 4 199,31 | 4 274,49 | 4 274,08
[o (mm))] [69,60] | [70,52] | [69,70] | [68,22] | [65,80] | [65,20] | [64,80] | [65,38] [65,38]
4 (mm) 230,18 | 229,41 | 230,22| 231,33| 232,92| 233,67| 233,67| 23572 234,99
Table 12 Statistics of annual rainfall totals at station 0079490
Missing
values 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 % 45 %
proportion

Standard BP (u, = 227,63 mm, 0, = 227,63 mm, N = 101 for the observed data series at 0079490)

02 (mm?) |52 345,18(52 249,13|51 394,54(48 466,95|47 113,27 |46 210,23|48 366,93|43 451,67|39 862,48
[0 (mm)] [228,79] | [228,58] | [226,70] | [220,15] | [217,06] | [214,97] | [219,62] | [208,45] | [199,66]
¢ (mm) 1046,52| 1046,80 1041,80| 1052,35| 1058,66| 1060,32| 1063,92| 1064,09| 1 059,89

Generalised BP (/40 = 227,63 mm, 0\, = 227,63 mm, N = 101 for the observed data series at 0079490)

o2 (mm?) |52426,7 |51773,7 |51283,10(48 831,38|47 909,5 |47 643,69 |45 746,48|45 509,05 41 517,5
[0 (mm)] [228,97] | [227,54] | [226,46] | [220,98] | [218,88] | [218,27] | [213,88] | [213,32] | [203,76]
¢ (mm) 1046,7 | 1044,7 | 1048,62| 1052,65| 10584 | 1060,75 1062,4 | 1066,39| 1058,81

Table 13 Test of hypothesis on means of infilled annual rainfall totals at different target stations for

0-45% missing values

Test on means

Target rainfall station
8 Hy:p=po

Test on variances

Confidence intervals
Hy:0=0,

0228495
(4 = 290,83 mm,
0 =112,7 mm, N = 66)

Accepted
(0-45% missing values)

Means: (-1,96; +1,96)
Variance: (96,53; 135,98)

Accepted
(0-45% missing values)

0044050
(1 = 227,84 mm,
0 =71,07 mm, N = 58)

Accepted
(0-45% missing values)
g

Means: (-1,96; +1,96)
Variance: (60,44; 87,63)

Accepted
(0-45% missing values)

0079790
(o = 227,63 mm,
0y = 227,63 mm, N = 101)

Accepted
(0-45% missing values)

Accepted for the range
of missing values,
except for 45 %

Means: (-1,96; +1,96)
Variance: (201; 265,89)

From the above it can be said that both
the standard BP and the generalised BP algo-
rithms are acceptable to fill in the annual
rainfall values for rainfall stations 0228495,
0044050 and 0079790. It was shown that
there was no significant breach of statistical
properties (i.e. the mean and the variance
of the incomplete and infilled rainfall series

specifically at the target rainfall station). The
hypothesis test was conducted on the basis of
the statistical method explained above. The
mean and variance of the observed annual
rainfall totals at the target stations were
considered (assumed) as an estimation of the
population mean and variance respectively.
The mean of the infilled data series for each

proportion of missing values was tested (at
95% confidence interval) for acceptance or
rejection of the mean of the annual rainfall
totals remaining unchanged. The different
tests revealed that the results could gener-
ally be accepted at 95% confidence interval,
except for a 45% missing proportion at
rainfall station 0079790 as shown in Tables
10, 11, 12 and 13.

For the generalised BP technique as
applied in this paper, the generalisation
parameter was purposely not strictly
restricted to the conditions of binary prob-
lems, i.e. b > 1 and b < 50 for good results.
In the current case, the results became less
accurate for b > 5. This could be due to the
type of problem tackled here (i.e. data infill-
ing) and the nature of the data (i.e. rainfall)
used.

CONCLUSIONS AND SUGGESTIONS
The generalised BP technique has been
introduced for the first time in hydrology,
specifically for a rainfall data infilling
problem. This technique was compared to
the standard BP technique. The perform-
ance of the two techniques was evaluated
through RMSEp for annual rainfall data. The
preliminary results using the rainfall station
pair 0228170 (control) and 0228495 (target)
showed that the generalised BP technique
performed slightly better than the standard
BP technique. However, the standard BP
had no negative impact on the estimation
of missing values at the target station. Both
techniques were acceptable for infilling the
missing annual total rainfall data at station
0228495. Hence either of these techniques
could be used for infilling annual rainfall
totals. The results were similar when other
station pairs were used: 0044050 (control)
and 0044050 (target) and 0079030 (control)
and 0079090 (target).

It was also observed that the RMSEp
at the different target stations generally
increased with an increase in the propor-
tion of missing values (gap size) for both
techniques. It is suggested that the impact of
other activation functions (e.g. hyperbolic)
as well as the batch-training mode for neu-
ral networks should be investigated. The
techniques used in this study should also be
tested on other rainfall data sets. A sensiti-
vity analysis of the generalisation parameter
on the accuracy of estimated rainfall values
should also be investigated. These results
were based on the techniques applied to
annual total rainfall data. It is recommended
that other rainfall data should also be tried
(e.g. maximum series, mean annual, etc) and
data from other climatic regions should also
be used to evaluate the techniques.
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