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INTRODUCTION

The development of cracks in a concrete 

structural element during its lifetime is 

always a probability. In this situation, reha-

bilitation of the damaged element is neces-

sary, otherwise the structural functions of 

the member will be in jeopardy. Identifying 

the location and the dimensions of the 

cracks is the first stage of recovery. This 

process may be performed through either 

direct observation or structural tests (ACI 

Manual of Concrete Practice 1996). These 

tests are divided into two main categories: 

destructive tests and non-destructive tests. 

There are various types of non-destructive 

test, such as ultrasonic, radiography and 

dynamic identification tests (Liew & 

Wang 1998). 

In this paper, a dynamic identifica-

tion technique is used to investigate the 

responses of damaged reinforced concrete 

(RC) members to dynamic excitation and to 

identify the location of probable defects. A 

powerful finite element method (FEM) soft-

ware package, COSMOS/M, is used to ana-

lyse the samples studied here. These samples 

are cracked RC cantilever beams with the 

same mechanical and geometrical properties, 

but with different locations and depth of the 

cracks. The analysis process is performed 

in the frequency domain. Since the study 

of natural frequencies and mode shapes of 

damaged concrete beams can be useful in 

understanding their dynamic behaviour, 

initially a modal analysis is performed to 

determine and compare the natural fre-

quencies and mode shapes of the different 

defective members. A random vibration 

analysis is then performed to identify the 

crack location. In this process each member 

is excited by an individual vertical force, with 

the specifications of white noise located at 

the end of the member, and the responses 

are monitored at different locations along 

the member. A study of the changes in 

these responses can be useful not only for 

determining the dynamic properties of the 

defective members, but also for identifying 

the crack locations.

LITERATURE REVIEW

Reinforced concrete (RC) structures are 

often exploited as partly cracked. Typical 

examples are RC bridges in which the cracks 

develop gradually from the moment they are 

erected as a result of sudden overloading, 

seismic effects (Zembaty 1997), corrosion, 

excessive temperature effects, etc. There is 

also an opposite phenomenon as concrete 

strength increases over many years after 

casting (Castellani 1992). Consequently, 
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the actual, overall elastic properties of RC 

structures are difficult to predict. Since 

some of the RC structures will crumble 

suddenly or have to be put out of operation 

without an early warning, the problems 

of Non-destructive Damage Evaluation 

(NDE) of these structures become ever 

more important.

During the last 20 years, methods 

of system identification and modal 

analysis have developed into quite a large 

interdisciplinary field. Ewins (1986) and 

Maia et al (1997) have also studied the 

problems involved in NDE. For example, 

it is now routine to use rotating machines 

to detect damage even without taking 

the elements out of service (Wauer 1990). 

However, the practical application of these 

methods for large engineering structures 

has met with some difficulties (see the 

Los Alamos state-of-the-art reports by 

Doebling et al (1996) and Sohn et al (2003)). 

Nevertheless, the search for effective ways 

of implementing these methods continues 

(see, e.g., the state-of-the-art review by 

Salawu (1997)). For RC structures such 

research started as early as the 1950s 

(Penzien & Hansen 1954), but even more 

experimental research took place from 

the early 1980s. For example, Wang et al 

(1998) experimented with impact tests on 

small beams (61 cm) with various boundary 

conditions. They noted a 25% drop in 

the natural frequencies and a substantial 

increase in structural damping. Maeck & 

De Roeck (1999) investigated 6-m-long RC 

beams after damage had been imposed 

statically at several levels. They included an 

analysis of the curvature of the beams, as 

well as investigations into the bending and 

reduction of torsional stiffness resulting 

from the damage that occurred. They noted 

a drop in stiffness reaching 50 and 40% for 

bending and torsional stiffness respectively. 

Recently, Ndambi et al (2002) also carried 

out an analysis of 6-m-long RC beams, 

but with the general aim of localising the 

statically inflicted damage.

Litorowicz (2006) reported a method for 

identifying and quantifying crack patterns 

in concrete by means of optical fluorescence 

microscopy and image analysis using 

impregnated reground polished sections. 

Observation of the concrete surface under 

ultraviolet light using an optical microscope 

at a 10x magnification is sufficient to detect 

fine cracks. This technique generates 

images with good contrast, which are 

convenient for automatic quantitative 

analysis.

The data obtained by means of image 

analysis methods are not obtainable 

from conventional test procedures. 

Litorowicz’s (2006) proposed method 

provides a quantitative determination of 

the crack system using parameters such 

as dendritic length, area, average width, 

density, area fraction, degree of orientation 

and distribution of crack widths. This 

researcher obtained evidence of concrete 

damage due to freezing during the 

hydration and hardening period.

Torigoe et al (2005) proposed and 

investigated a signal-processing method 

which has the ability to distinguish 

automatically a vibration signal output by 

an LDV-based detector used to observe 

the surface of a concrete structure that 

has been excited by a shock tube. It 

was confirmed that the system detects 

exponentially decaying sinusoids 

corresponding to the flexural vibrations 

generated when an internal crack is present 

in the concrete, and is capable of calculating 

the frequencies of the exponentially 

decaying sinusoid. Also, it was predicted 

that the system could be applied in a 

scanning-type detector for observing large 

concrete structures. Although this method 

has been discussed only in the context of 

crack-inspection procedures, it could also 

be extended to other uses of the impact-

echo method where the conditions are, 

in terms of signal theory, the same as the 

above conditions (Torigoe et al 2005).

NUMERICAL MODELLING 

OF RC BEAMS

FE modelling procedure

A multi-purpose FE package, COSMOS/M, 

was used for the modelling and analysis 

of RC beams. COSMOS/M presents 29 

different types of element for structural 

modelling for the purpose of dynamic 

analysis (COSMOS/M Advanced Modules 

1995). In this study, TRUSS 2D and 

PLANE 2D were selected to create the 

model. PLANE 2D is a two-dimensional 

quadrilateral element which can have 

either four or eight nodes. This element is 

applicable to plane stress, plane strain and 

axially symmetrical structural problems. 

In this research, four-noded PLANE 2D 

elements were used for modelling of the 

concrete. TRUSS 2D is an axial element 

which has two nodes. It was used here 

for modelling of the reinforcing bars 

(COSMOS/M Advanced Modules 1995). 

Since the modelling is two-dimensional, 

the material properties and the equivalent 

area of the reinforcing bars are assigned to 

TRUSS 2D elements.

Initially, the surface of the concrete 

and the reinforcing bars must be meshed. 

Then the bar elements must be merged into 

the adjacent concrete elements using the 

NMERGE command. It must be noted that 

before the bar and the concrete elements are 

merged, the elements located on the face of 

the crack must be displaced adequately to 

avoid merging these elements together. Once 

the bar and the concrete elements have been 

merged, the crack face elements are returned 

to their initial location. Since the aim of this 

research was to investigate the macroscopic 

behaviour of RC beams and the study was 

restricted to the elastic zone, the interface 

between the concrete and reinforcing bars 

was not modelled. 

Specifications of samples

All the samples are cantilever beams having 

the same geometric shape, dimensions and 

materials. Selected beam height and width 

are the common values in typical framed 

reinforced concrete buildings and the value 

of the beam length is the maximum length 

of the cantilever beams used in the balconies 

and stairs of typical buildings. The number 

and size of the bars are selected to be 

proportional to the beam dimensions. The 

distance between the centre of the tensile/

compressive reinforcing bars and the top/

bottom of the beam section is 5 cm. General 

specifications of the beams are presented in 

Table 1.

In this study 45 beams were analysed. 

Each beam has a single transverse crack. 

Five different crack depths are chosen 

such that they range from a relatively 

important crack depth (e.g. 10 cm) to a 

significantly critical one (e.g. 30 cm) for 

the beam height considered (40 cm). As 

the width of the crack is very small, it can 

only be considered as a discontinuity. The 

crack is placed at nine different distances 

from the fixed end so that its effect can 

be investigated at any location along the 

beam. The crack direction is chosen to be 

perpendicular to the beam axis because 

the flexural cracks will develop in this 

direction. Specifications of the cracks are 

listed in Table 2.

Table 1  General specifications of the beams

Length 200 cm

Height 40 cm

Width 30 cm

Modulus of elasticity of concrete 2  ́105 kgf / cm2

Poison’s ratio of concrete 0,1

Modulus of elasticity of steel 2,1  ́105 kgf / cm2

Poison’s ratio of steel 0,3

Reinforcing bars (top/bottom) 3 φ 18
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An intact beam (N1) was also modelled in 

order to compare its dynamic response with 

that of the damaged beam.

Mesh size optimisation

The size, shape and number of elements 

used in the model directly affect the con-

vergence and the accuracy of the results. 

Obviously, when smaller elements are 

used, the number of elements is increased 

and the results will be more accurate. 

But it must be remembered that the use 

of smaller elements will lead to increased 

calculation time. For each problem, there 

is a specific element size below which the 

accuracy of the results will not be increased 

significantly. 

Since the most important factor affecting 

the accuracy of the results in a modal-

based problem is the natural frequency, 

the criterion for optimisation of the size 

of the elements is the accuracy of natural 

frequencies obtained. To investigate this 

factor, four different sizes are selected for 

elements and a modal analysis performed 

by using each of them. The results of the 

Table 2  Specifications of the cracks

Beam No Depth (cm) D*(cm) Beam No Depth (cm) D*(cm)

A1 10 20 C6 20 120

A2 10 40 C7 20 140

A3 10 60 C8 20 160

A4 10 80 C9 20 180

A5 10 100 D1 25 20

A6 10 120 D2 25 40

A7 10 140 D3 25 60

A8 10 160 D4 25 80

A9 10 180 D5 25 100

B1 15 20 D6 25 120

B2 15 40 D7 25 140

B3 15 60 D8 25 160

B4 15 80 D9 25 180

B5 15 100 E1 30 20

B6 15 120 E2 30 40

B7 15 140 E3 30 60

B8 15 160 E4 30 80

B9 15 180 E5 30 100

C1 20 20 E6 30 120

C2 20 40 E7 30 140

C3 20 60 E8 30 160

C4 20 80 E9 30 180

C5 20 100 * Distance of the crack from the fixed end

Figure 1  Results of the first natural frequency for four different mesh sizes
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Figure 2  1st natural mode shape for beam A1

Figure 3  2nd natural mode shape for beam A1

Figure 4  3rd natural mode shape for beam A1

Figure 5  4th natural mode shape for beam A1

Figure 6  5th natural mode shape for beam A1

Figure 7  6th natural mode shape for beam A1

Figure 8  7th natural mode shape for beam A1

Figure 9  8th natural mode shape for beam A1

Figure 10  9th natural mode shape for beam A1
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first natural frequency are presented in 

Figure 1 and the results of first ten natural 

frequencies are shown in Table 3.

It can be seen that although the 1 x 1 

element leads to the most accurate results, 

the difference between the results obtained 

from the 1 x 1 element and the 2 x 2 element 

is negligible. Consequently, the selected sizes 

are 2 cm x 2 cm for plane elements and 2 cm 

for truss elements.

MODAL ANALYSIS

Consideration of the natural frequencies and 

mode shapes of damaged concrete beams can 

be useful for understanding their dynamic 

behaviour. By using the subspace iteration 

numerical method and assuming that the 

masses are concentrated, a modal analysis 

is performed. The maximum number of 

iterations is 16 (Theoretical Manual for 

COSMOS/M 1993). The natural frequencies, 

periods and the type of mode shapes for 

beam N1 are listed in Table 4.

It can be seen that the majority of mode 

shapes are flexural and three of them (the 

3rd, 6th and 8th) are axial. Since the problem 

is two-dimensional, torsional mode shapes 

do not exist.

The mode shapes of oscillation for beam 

A1 are shown in Figures 2 to 11. The left end 

in these figures is the fixed end of the beam.

It can be seen that the first to fifth 

mode shapes are similar to those obtained 

in the case of beam N1, but the sixth and 

eighth modes, which were axial oscillation 

modes in beam N1, are transformed into a 

combination of axial and lateral oscillation 

modes. Also the seventh, ninth and tenth 

mode shapes are lateral oscillation modes, 

the same as they were in beam N1. It is also 

obvious that the creation of a crack can lead 

to some changes in the higher mode shapes 

of oscillation. The type of mode shape may 

be changed or two types may be combined. 

Investigating the pattern of these changes 

can be useful for identifying the damage to 

the structures.

The types of mode shape for beams A1 

to A9 are presented in Table 5. It can be seen 

that the majority of the changes occur in the 

higher mode shapes. Thus the higher modes 

are more sensitive to damage and suitable for 

the study of damage effects in structures.

Once the results have been arranged 

according to the location and depth of the 

crack and then plotted in three-dimensional 

diagrams, some remarkable results are 

obtained. These diagrams are presented in 

Figures 12 to 21.

The change of the first natural frequency 

due to the change in the depth and location 

of the crack is shown in Figure 12. It can 

be seen that when the depth of the crack is 

Table 3  Change of the first ten natural frequencies (Hz) of intact beam N1 due to change in element size

Mode / 
Element Size

6*6 cm2 3*3 cm2 2*2 cm2 1*1 cm2

1 47,478 47,483 47,484 47,485

2 256,841 256,885 256,893 256,895

3 371,467 371,488 371,491 371,493

4 613,596 613,818 613,859 613,874

5 1 020,880 1 022,080 1 022,280 1 022,390

6 1 112,980 1 113,670 1 113,800 1 113,870

7 1 452,250 1 455,710 1 456,370 1 456,720

8 1 849,550 1 852,840 1 853,460 1 853,810

9 1 882,490 1 890,320 1 891,820 1 892,660

10 2 292,290 2 305,180 2 307,700 2 309,120

Table 4  Natural frequencies, periods and the type of mode shapes for beam N1

Mode Frequency (rad/s) Period (s) Type

1 298 0,0211 Lateral

2 1 610 0,00389 Lateral

3 2 330 0,00269 Axial

4 3 860 0,00163 Lateral

5 6 420 0,000978 Lateral

6 7 000 0,000978 Axial

7 9 150 0,000898 Lateral

8 11 600 0,000687 Axial

9 11 900 0,00054 Lateral

10 14 500 0,000529 Lateral

Figure 11  10th natural mode shape for beam A1

Table 5  The type of mode shapes for beams A1 to A9 (A and L denote Axial and Lateral mode shapes, 
respectively)

Mode 1 2 3 4 5 6 7 8 9 10

A1 L L A L L A+L L A+L L L

A2 L L A L L A+L L A L L

A3 L L A L L A L A+L L L

A4 L L A L L A L A+L L L

A5 L L A L L A+L L A+L L L

A6 L L A L L A+L L A L L

A7 L L A L L A+L L A+L L L

A8 L L A L L A+L L A+L L L

A9 L L A L L A+L L A+L L L

Figure 12  Change of 1st natural frequency due 
to the change of crack location and 
crack depth

Evolution of 1st natural frequency as a function of location and depth of crack
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increased, the rate of decrease in natural 

frequencies increases, and when the location 

of the crack comes closer to the free end of 

the beam, the rate of the frequency decrease 

is reduced. However, the change in the first 

natural frequency due to the increase in the 

crack depth and the change in the crack 

location occur at an approximately uniform 

rate. Figure 13 shows the change in the sec-

ond natural frequency due to the change in 

these factors. It can be seen that this change 

does not occur at a uniform rate. The change 

in the third natural frequency (the first axial 

oscillation mode) is shown in Figure 14. In 

this case the changes in frequency occur at 

a uniform rate too. The frequency values 

vary from 310 to 370 Hz. Figure 15 shows the 

change in the fourth natural frequency due 

to these factors. It can be seen that when the 

crack location is far from the fixed end, the 

rate of the changes is increased, although it 

generally decreases due to the increase in 

crack depth.

A study of these figures shows that the 

pattern of frequency changes due to the 

change in the crack location depends on 

their corresponding mode shapes. When the 

crack location approaches those points of the 

system for which the deformation amplitude 

is higher in a specific mode shape, the rate 

of reduction of the corresponding specific 

natural frequency will increase. 

The values of the natural frequencies are 

listed in Tables 6 to 15 for whole beams.

RANDOM VIBRATION ANALYSIS

General considerations

Study of the frequency response of an oscil-

latory system and dynamic identification can 

be useful for determining the existence and 

location of probable defects such as cracks in 

a structural member. For this purpose, the 

structure must be excited by a force source. 

Then its response must be monitored at 

various points and transferred to a frequency 

domain to study the changes. Specific fast 

Fourier transform (FFT) techniques are used 

to transfer the responses.

Since the exciting force in both the 

laboratory and in situ works is usually an 

impact hammer, the excitation frequency 

will be broad-banded. An individual vertical 

force, with the specifications of the white 

noise located at the free end of the beam, is 

used to excite the member and to investigate 

its response by random vibrational analysis. 

In this case, the amplitude of the force will 

be constant throughout the frequency band. 

Random vibrational analysis is performed 

in the frequency domain. Input and output 

data are in the form of power spectral 

Figure 13  Change of 2nd natural frequency due 
to the change of crack location and 
crack depth

Evolution of 2nd natural frequency as a function of location and depth of crack
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Figure 14  Change of 3rd natural frequency due 
to the change of crack location and 
crack depth

Evolution of 3rd natural frequency as a function of location and depth of crack
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Figure 15  Change of 4th natural frequency due 
to the change of crack location and 
crack depth

Evolution of 4th natural frequency as a function of location and depth of crack
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Evolution of 4th natural frequency as a function of location and depth of crack

Figure 16  Change of 5th natural frequency due 
to the change of crack location and 
crack depth
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Evolution of 5th natural frequency as a function of location and depth of crack

Figure 17  Change of 6th natural frequency due 
to the change of crack location and 
crack depth
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Figure 18  Change of 7th natural frequency due 
to the change of crack location and 
crack depth
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Figure 19  Change of 8th natural frequency due 
to the change of crack location and 
crack depth
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Figure 20  Change of 9th natural frequency due 
to the change of crack location and 
crack depth
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Figure 21  Change of 10th natural frequency 
due to the change of crack location 
and crack depth
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density (PSD), whose function is defined as 

follows:

 (1)

where Sf (w) is the PSD of random variable 

f(t), and Rf (t) is the autocorrelation function 

of this random variable, which is expressed 

as:

 (2)

It is noted that the units of “PSD of dis-

placement”, “PSD of velocity” and “PSD of 

acceleration” will be “[displacement unit]2/

[frequency unit]”, “[velocity unit]2/[frequency 

unit]” and “[acceleration unit]2/[frequency 

unit]” respectively. In such problems, in order 

to increase the accuracy of the analysis, the 

range of the white noise is determined in 

such a way that the frequency of the last 

mode shape becomes at least 80% of the 

upper limits of the excitation frequency 

band (Bensalem et al 1996). In this paper 

the maximum frequency considered, which 

is the frequency of tenth mode shape, is 

approximately 2 000 Hz. Although the upper 

limit of the excitation frequency is 3 000 Hz 

for all the beams analysed, the responses at 

frequencies higher than 2 000 Hz are not 

studied here. The white noise input signal is 

shown in Figure 22. 

The aim of this study was to investigate 

the changes in the responses of damaged 

members, such as accelerations, displace-

ments and velocities, and to compare them 

with the responses of an intact member. 

Adequate care must be taken in choos-

ing the location of the applied force and the 

response recorders because this significantly 

affects the success of the work. Numerical 

methods such as FEM can be useful for 

determining suitable locations. These loca-

tions must be sufficiently far from the nodal 

points. In this investigation the free end of 

the beam was selected as the location for the 

applied force. Since the force is vertical, it 

is obvious that the axial mode shapes either 

will not be excited at all or their response 

amplitude will be very small.

Results of the random 

vibrational analysis

If the displacement, velocity and vertical 

acceleration responses are studied at the 

Figure 22  The white noise input signal
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Table 6  Values of 1st natural frequency for all of the beams

i 1 2 3 4 5 6 7 8 9

Ai 43,002 43,902 44,714 45,373 45,863 46,188 46,371 46,45 46,471

Bi 41,432 42,69 43,844 44,803 45,533 46,026 46,307 46,432 46,469

Ci 40,247 41,761 43,154 44,333 45,248 45,876 46,242 46,411 46,465

Di 39,645 41,275 42,772 44,054 45,06 45,763 46,183 46,386 46,457

Ei 39,438 41,08 42,591 43,892 44,924 45,659 46,114 46,353 46,447

Table 7  Values of 2nd natural frequency for all of the beams

i 1 2 3 4 5 6 7 8 9

Ai 246,34 246,92 247,23 247,81 248,34 248,72 249,42 249,82 250,52

Bi 241,21 241,63 242,34 243,12 243,34 244,52 244,96 245,84 245,91

Ci 236,23 236,74 237,24 237,07 238,09 239,43 239,88 240,82 241,31

Di 231,62 232,34 233,12 234,22 235,23 236,11 236,23 237,25 237,32

Ei 226,94 227,14 228,63 229,34 230,35 231,34 232,12 233,24 233,25

Table 8  Values of 3rd natural frequency for all of the beams

i 1 2 3 4 5 6 7 8 9

Ai 358,27 357,67 358,65 360,38 361,89 363,08 364,17 365,26 366,04

Bi 351,44 349,88 351,73 355,21 358,07 360,13 362,03 364,12 365,75

Ci 341,28 338,65 341,78 347,64 352,37 355,65 358,69 362,3 365,29

Di 327,12 324,11 328,94 337,32 344,27 349,28 354,04 359,77 364,64

Ei 307,87 306,3 312,99 323,37 332,71 340,27 347,82 356,56 363,75

Table 9  Values of 4th natural frequency for all of the beams

i 1 2 3 4 5 6 7 8 9

Ai 605,37 598,05 591,24 600,89 605,5 590,33 577,61 585,97 603,08

Bi 600,15 593,66 586,13 597,25 602,21 582,65 565,4 574,84 599,8

Ci 589,25 588,54 583,43 592,34 595,32 575,35 556,55 565,23 595,38

Di 571,11 581,76 582,75 584,96 583,05 567,74 552,04 558,77 589,25

Ei 544,67 571,56 582,31 572,5 562,56 556,71 550,54 554,43 580,05

Table 10  Values of 5th natural frequency for all of the beams

i 1 2 3 4 5 6 7 8 9

Ai 1 007,59 990,55 1 010,76 998,44 979,9 1 008,98 991,5 962,85 994,91

Bi 995,72 982,02 1 004,62 988,81 964,43 998,34 974,09 936,67 979,76

Ci 973,76 975,85 991,63 976,25 950,21 976,33 948,97 910,56 961,66

Di 943,65 972,06 966,77 958,36 937,69 939,83 913,98 884,35 941,19

Ei 910,86 970,35 921,74 929,77 926,44 887,76 864,70 855,05 917,61
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different points along the beams, it can be 

seen that when the distance of the point 

from the fixed end is increased, the ampli-

tude of the responses is increased too. Also, 

it can be shown that the displacement and 

velocity responses are very small (approxi-

mately zero) at high frequencies in compari-

son with the responses at low frequencies. 

However, the acceleration response is more 

illustrative, having a high amplitude at high 

frequencies. Investigating the acceleration 

PSD diagrams is therefore a suitable way to 

study the change in the frequency response. 

The acceleration responses at different 

points along the beam A1 are presented in 

Figures 23 to 26. The acceleration response 

at the free end of the beam is shown in 

Figure 23 and the responses at the distances 
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Figure 23  The PSD of acceleration response at 
the free end of the beam
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Figure 24  The PSD of acceleration response at a 
distance of 150 cm from the fixed end
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Figure 25  The PSD of acceleration response at a 
distance of 100 cm from the fixed end

Table 11  Values of 6th natural frequency for all of the beams

i 1 2 3 4 5 6 7 8 9

Ai 1 078,5 1 091,07 1 097,71 1 095,96 1 088,34 1 073,32 1 077,55 1 085,94 1 091,51

Bi 1 062,99 1 085,58 1 097,05 1 093,77 1 081,04 1 052,9 1 062,67 1 077,51 1 084,78

Ci 1 042,25 1 077,55 1 096,03 1 090,16 1 070,1 1 025,19 1 039,84 1 065,03 1 074,11

Di 1 016,69 1 066,23 1 094,52 1 084,21 1 053,68 989,04 1 002,12 1 046,33 1 056,76

Ei 985,64 1 050,15 1 092,4 1 074,61 1 027,84 941,18 938,34 1 017,24 1 025,83

Table 12  Values of 7th natural frequency for all of the beams

I 1 2 3 4 5 6 7 8 9

Ai 1 430,65 1 437,4 1 426,85 1 410 1 445,04 1 415,75 1 444,78 1 404,46 1 398,42

Bi 1 419,56 1 429,39 1 411,13 1 393,36 1 430,68 1 408,48 1 427,25 1 385,4 1 370,93

Ci 1 403,66 1 413,45 1 387,22 1 374,74 1 395,75 1 405,78 1 386,42 1 358,37 1 348,76

Di 1 384,17 1 377,69 1 349,99 1 348,58 1 328,22 1 405,47 1 318,54 1 301,47 1 333,69

Ei 1 362,87 1 301,73 1 296,86 1 303,13 1 226,76 1 404,31 1 239,81 1 180,39 1 323,70

Table 13  Values of 8th natural frequency for all of the beams

i 1 2 3 4 5 6 7 8 9

Ai 1 798,31 1 828,43 1 782,36 1 783,32 1 785,64 1 828,43 1 793,33 1 782,88 1 752,09

Bi 1 778,3 1 828,43 1 747,64 1 747,54 1 755,16 1 828,42 1 768,27 1 750 1 696,77

Ci 1 756,73 1 809,36 1 705,3 1 696,21 1 721,72 1 803,01 1 740,14 1 706,63 1 634,06

Di 1 734,91 1 707,59 1 650,47 1 614,35 1 685,62 1 682,44 1 710,98 1 597,8 1 533,96

Ei 1 713,52 1 609,85 1 582,88 1 504,12 1 647,39 1 540,81 1 683,54 1 502,74 1 377,25

Table 14  Values of 9th natural frequency for all of the beams

i 1 2 3 4 5 6 7 8 9

Ai 1 867,22 1 883,6 1 857,94 1 880,9 1 860,32 1 880,99 1 865,62 1 872,53 1 850,64

Bi 1 864,63 1 864,02 1 856,74 1 851,29 1 859,64 1 861,05 1 859,89 1 839,44 1 850,05

Ci 1 859,15 1 828,44 1 852,88 1 775,56 1 857,95 1 828,46 1 845,05 1 743,18 1 845,4

Di 1 849 1 828,43 1 827,19 1 667,56 1 847,88 1 828,43 1 814,58 1 654,74 1 729,34

Ei 1 834,12 1 828,42 1 731,66 1 584,4 1 780,16 1 828,43 1 772,96 1 593,07 1 590,26

Table 15  Values of 10th natural frequency for all of the beams

i 1 2 3 4 5 6 7 8 9

Ai 2 278,98 2 273,92 2 279,37 2 271,56 2 296,96 2 244,75 2 291,23 2 291,84 2 206,71

Bi 2 274,92 2 240,36 2 240,26 2 264,19 2 242,07 2 216,29 2 282,53 2 224,24 2 144,6

Ci 2 273,83 2 173,08 2 094,53 2 254,42 2 089,77 2 173,19 2 244,85 2 118,98 1 971,29

Di 2 273,74 2 093,69 1 916,87 2 197,35 1 917,21 2 081,3 2 121,81 2 057,71 1 851,13

Ei 2 273,14 2 050,5 1 865,19 2 145,5 1 856,14 2 032,78 2 037,18 2 030,8 1 831,05
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of 150, 100 and 50 cm from the fixed end are 

shown in Figures 24, 25 and 26 respectively. 

It can be seen that the peak responses are 

considerably smaller than they were in the 

intact beam. The reason is the reduction 

in beam stiffness due to the existence of a 

crack. 

The acceleration responses at the crack 

edges and at the points located at a distance 

of 10 cm from the crack are presented in 

Figure 27. It can be seen that the amplitude 

of the responses at the points located to the 

right of the crack is higher than at the points 

to the left of the crack. The reason is that 

these points to the right are closer to the free 

end of the beam. 

For investigation of the response to 

the white noise along the beam, 58 three-

dimensional diagrams are provided by the 

program. As an example, the PSD of the 

acceleration response along the beam N1 is 

presented in Figures 28 and 29. 

The following noteworthy results are 

obtained from these figures. The pattern of 

the response changes along the beam at the 

frequencies that coincide with the natural 

frequencies of the structure depends on the 

corresponding mode shape. For example, 

when the distance of a specific point from 

the fixed end of the beam is increased, the 

amplitude of response in the excitation fre-

quency that coincides with the first natural 

frequency of oscillation will be increased and 

the associated response diagram will be quite 

similar to the first mode shape. This is also 

confirmed for higher natural frequencies. It 

must be noted that the response amplitude 

at excitation frequencies that coincide with 

the axial natural frequencies is very low 

(approximately zero).

Figure 30 shows the change in the 

acceleration response along beam A1. In this 

figure, a peak is observed at a frequency of 

1 500 Hz at the point located at a distance of 

20 cm from the fixed end, which represents 

the location of the crack. Figure 31 shows the 

change in the acceleration response along 

beam A2. In this figure, a peak is observed at 

a frequency of 1 000 Hz at the point located 

at a distance of 40 cm from the fixed end, 

which represents the location of the crack.

CONCLUSIONS

The existence of a crack generally leads to  ■

a reduction in the natural frequencies in a 

damaged member in comparison with an 

intact member. An increase in the depth 

of the crack leads to an increase in the 

decrement rate of the natural frequen-

cies. Whenever the location of the crack 

comes closer to the free end of the beam, 

the rate of the frequency decrement is 

reduced because the rate of decrement of 

the beam stiffness is increased. 

The rate of frequency changes due to  ■

the change in crack location depends 

on their corresponding mode shapes. 

When the crack location comes closer to 

those points for which the deformation 

amplitude is higher in a specific mode 

shape, the rate of the corresponding 

specific natural frequency decrement will 

be increased. 

The creation of a crack can lead to some  ■

changes in the higher mode shapes of 

oscillation, but the lower mode shapes 

usually remain unchanged. The type of 

mode shape may be changed or two types 

may be combined. A study of the pattern 

of these changes can be useful for identi-

fying the damage to the structures.

When the displacement, velocity and ver- ■

tical acceleration responses are studied at 

different points along the beams, it can be 

seen that if the distance of the point from 

the fixed end is increased, the amplitude 

of the responses will be increased. 

The displacement and velocity responses  ■

are approximately zero and are very small 

at high frequencies in comparison with 

the low-frequency responses. However, 

the acceleration response is more illustra-

tive and has a high amplitude at high 

frequencies. Investigating the acceleration 

PSD diagrams is therefore a suitable way 

to study the change of the frequency 

response.

The amplitude of the responses at the  ■

points located to the right of the crack 

is higher than that at the points to the 

left of the crack. The reason is that these 

points are closer to the free end of the 

beam.

The pattern of the response changes  ■

along the beam at the frequencies that 

coincide with the natural frequencies of 
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Figure 26  The PSD of acceleration response at a 
distance of 50 cm from the fixed end

Figure 27  The PSD of acceleration response at 
the crack edges and the points located 
at a distance of 10 cm from the crack
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Figure 28  PSD of acceleration response along 
the beam N1 (view 1)

Evolution of acceleration response as function of the response location
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Figure 30  Change of the PSD of acceleration 
response along the beam A1

Evolution of acceleration response as function of the response location
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Figure 29  PSD of acceleration response along 
the beam N1 (view 2)

Evolution of acceleration response as function of the response location

A
c

c
e

le
ra

ti
o

n
 (

P
S

D
)

1,5

0,5

2

1

0

Frequency (Hz)

20

3 000
2 500

2 000Location *10 (cm)

x 104

15

10

5

1 500
1 000

500
0

0

Figure 31  Change of the PSD of acceleration 
response along the beam A2

Evolution of acceleration response as function of the response location
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the structure depends on the correspond-

ing mode shape. For example, when the 

distance of a specific point from the 

fixed end of the beam is increased, the 

amplitude of response in the excitation 

frequency that coincides with the first 

natural frequency of oscillation will be 

increased and the associated response 

diagram will be quite similar to the first 

mode shape. This is also confirmed for 

higher natural frequencies.

The normal changes in the amplitude of  ■

the acceleration response along the beam 

will be changed in the vicinity of the crack, 

resulting in a local peak which can be use-

ful for identifying the location of the crack.
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