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Dynamic behaviour of
damaged reinforced
concrete beams and
application of white noise
analysis to crack detection

MA Lotfollahi-Yaghin, R Shahinpar, H Ahmadi

Vibration monitoring is a useful and precise method for non-destructive evaluation of defective

members. The fundamental concept underlying this method is that the dynamic properties and

responses of the structure will change if any defect occurs. The aim of this paper is to investigate
the responses of damaged reinforced concrete members to dynamic excitation and to identify

the location of probable defects. A powerful multi-purpose finite element (FE) package,
COSMOS/M,, is used for the analysis of the damaged concrete cantilever beams studied in this
paper. The mechanical and geometrical properties of all beams are the same, but the location
and the depth of the cracks are changed in these members. The analysis process is performed
in the frequency domain. Initially, a modal analysis is performed to determine and compare
the natural frequencies and mode shapes of the various defective members. Each member is
then excited by an individual vertical force, with the specifications of white noise located at the
end of the member, and the responses are monitored at different locations along the member.
These responses are used to investigate the dynamic properties of the defective members and

to identify the crack location.

INTRODUCTION
The development of cracks in a concrete
structural element during its lifetime is
always a probability. In this situation, reha-
bilitation of the damaged element is neces-
sary, otherwise the structural functions of
the member will be in jeopardy. Identifying
the location and the dimensions of the
cracks is the first stage of recovery. This
process may be performed through either
direct observation or structural tests (ACI
Manual of Concrete Practice 1996). These
tests are divided into two main categories:
destructive tests and non-destructive tests.
There are various types of non-destructive
test, such as ultrasonic, radiography and
dynamic identification tests (Liew &
Wang 1998).

In this paper, a dynamic identifica-
tion technique is used to investigate the
responses of damaged reinforced concrete
(RC) members to dynamic excitation and to
identify the location of probable defects. A
powerful finite element method (FEM) soft-
ware package, COSMOS/M, is used to ana-
lyse the samples studied here. These samples
are cracked RC cantilever beams with the
same mechanical and geometrical properties,
but with different locations and depth of the
cracks. The analysis process is performed
in the frequency domain. Since the study

of natural frequencies and mode shapes of
damaged concrete beams can be useful in
understanding their dynamic behaviour,
initially a modal analysis is performed to
determine and compare the natural fre-
quencies and mode shapes of the different
defective members. A random vibration
analysis is then performed to identify the
crack location. In this process each member
is excited by an individual vertical force, with
the specifications of white noise located at
the end of the member, and the responses
are monitored at different locations along
the member. A study of the changes in
these responses can be useful not only for
determining the dynamic properties of the
defective members, but also for identifying
the crack locations.

LITERATURE REVIEW

Reinforced concrete (RC) structures are
often exploited as partly cracked. Typical
examples are RC bridges in which the cracks
develop gradually from the moment they are
erected as a result of sudden overloading,
seismic effects (Zembaty 1997), corrosion,
excessive temperature effects, etc. There is
also an opposite phenomenon as concrete
strength increases over many years after
casting (Castellani 1992). Consequently,
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the actual, overall elastic properties of RC
structures are difficult to predict. Since
some of the RC structures will crumble
suddenly or have to be put out of operation
without an early warning, the problems

of Non-destructive Damage Evaluation
(NDE) of these structures become ever
more important.

During the last 20 years, methods
of system identification and modal
analysis have developed into quite a large
interdisciplinary field. Ewins (1986) and
Maia et al (1997) have also studied the
problems involved in NDE. For example,
it is now routine to use rotating machines
to detect damage even without taking
the elements out of service (Wauer 1990).
However, the practical application of these
methods for large engineering structures
has met with some difficulties (see the
Los Alamos state-of-the-art reports by
Doebling et al (1996) and Sohn et al (2003)).
Nevertheless, the search for effective ways
of implementing these methods continues
(see, e.g., the state-of-the-art review by
Salawu (1997)). For RC structures such
research started as early as the 1950s
(Penzien & Hansen 1954), but even more
experimental research took place from
the early 1980s. For example, Wang et al
(1998) experimented with impact tests on
small beams (61 cm) with various boundary
conditions. They noted a 25% drop in
the natural frequencies and a substantial
increase in structural damping. Maeck &
De Roeck (1999) investigated 6-m-long RC
beams after damage had been imposed
statically at several levels. They included an
analysis of the curvature of the beams, as
well as investigations into the bending and
reduction of torsional stiffness resulting
from the damage that occurred. They noted
a drop in stiffness reaching 50 and 40% for
bending and torsional stiffness respectively.
Recently, Ndambi et al (2002) also carried
out an analysis of 6-m-long RC beams,
but with the general aim of localising the
statically inflicted damage.

Litorowicz (2006) reported a method for
identifying and quantifying crack patterns
in concrete by means of optical fluorescence
microscopy and image analysis using
impregnated reground polished sections.
Observation of the concrete surface under
ultraviolet light using an optical microscope
at a 10x magnification is sufficient to detect
fine cracks. This technique generates
images with good contrast, which are
convenient for automatic quantitative
analysis.

The data obtained by means of image
analysis methods are not obtainable
from conventional test procedures.

Litorowicz’s (2006) proposed method
provides a quantitative determination of
the crack system using parameters such

as dendritic length, area, average width,
density, area fraction, degree of orientation
and distribution of crack widths. This
researcher obtained evidence of concrete
damage due to freezing during the
hydration and hardening period.

Torigoe et al (2005) proposed and
investigated a signal-processing method
which has the ability to distinguish
automatically a vibration signal output by
an LDV-based detector used to observe
the surface of a concrete structure that
has been excited by a shock tube. It
was confirmed that the system detects
exponentially decaying sinusoids
corresponding to the flexural vibrations
generated when an internal crack is present
in the concrete, and is capable of calculating
the frequencies of the exponentially
decaying sinusoid. Also, it was predicted
that the system could be applied in a
scanning-type detector for observing large
concrete structures. Although this method
has been discussed only in the context of
crack-inspection procedures, it could also
be extended to other uses of the impact-
echo method where the conditions are,
in terms of signal theory, the same as the
above conditions (Torigoe et al 2005).

NUMERICAL MODELLING
OF RC BEAMS

FE modelling procedure
A multi-purpose FE package, COSMOS/M,
was used for the modelling and analysis
of RC beams. COSMOS/M presents 29
different types of element for structural
modelling for the purpose of dynamic
analysis (COSMOS/M Advanced Modules
1995). In this study, TRUSS 2D and
PLANE 2D were selected to create the
model. PLANE 2D is a two-dimensional
quadrilateral element which can have
either four or eight nodes. This element is
applicable to plane stress, plane strain and
axially symmetrical structural problems.
In this research, four-noded PLANE 2D
elements were used for modelling of the
concrete. TRUSS 2D is an axial element
which has two nodes. It was used here
for modelling of the reinforcing bars
(COSMOS/M Advanced Modules 1995).
Since the modelling is two-dimensional,
the material properties and the equivalent
area of the reinforcing bars are assigned to
TRUSS 2D elements.

Initially, the surface of the concrete
and the reinforcing bars must be meshed.

Table 1 General specifications of the beams

Length 200 cm
Height 40 cm
Width 30 cm

Modulus of elasticity of concrete | 2 x 10> kgf/cm?

Poison’s ratio of concrete 0,1

Modulus of elasticity of steel 2,1 x10° kgf/cm?

Poison’s ratio of steel 0,3

Reinforcing bars (top/bottom) 3¢18

Then the bar elements must be merged into
the adjacent concrete elements using the
NMERGE command. It must be noted that
before the bar and the concrete elements are
merged, the elements located on the face of
the crack must be displaced adequately to
avoid merging these elements together. Once
the bar and the concrete elements have been
merged, the crack face elements are returned
to their initial location. Since the aim of this
research was to investigate the macroscopic
behaviour of RC beams and the study was
restricted to the elastic zone, the interface
between the concrete and reinforcing bars
was not modelled.

Specifications of samples

All the samples are cantilever beams having
the same geometric shape, dimensions and
materials. Selected beam height and width
are the common values in typical framed
reinforced concrete buildings and the value
of the beam length is the maximum length
of the cantilever beams used in the balconies
and stairs of typical buildings. The number
and size of the bars are selected to be
proportional to the beam dimensions. The
distance between the centre of the tensile/
compressive reinforcing bars and the top/
bottom of the beam section is 5 cm. General
specifications of the beams are presented in
Table 1.

In this study 45 beams were analysed.
Each beam has a single transverse crack.
Five different crack depths are chosen
such that they range from a relatively
important crack depth (e.g. 10 cm) to a
significantly critical one (e.g. 30 cm) for
the beam height considered (40 cm). As
the width of the crack is very small, it can
only be considered as a discontinuity. The
crack is placed at nine different distances
from the fixed end so that its effect can
be investigated at any location along the
beam. The crack direction is chosen to be
perpendicular to the beam axis because
the flexural cracks will develop in this
direction. Specifications of the cracks are
listed in Table 2.
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Table 2 Specifications of the cracks

Beam No Depth (cm) D*(cm) Beam No Depth (cm) D*(cm)
Al 10 20 (&) 20 120
A2 10 40 Cc7 20 140
A3 10 60 C8 20 160
Ad 10 80 C9 20 180
A5 10 100 D1 25 20
A6 10 120 D2 25 40
A7 10 140 D3 25 60
A8 10 160 D4 25 80
A9 10 180 D5 25 100
Bl 15 20 D6 25 120
B2 15 40 D7 25 140
B3 15 60 D8 25 160
B4 15 80 D9 25 180
B5 15 100 El 30 20
B6 15 120 E2 30 40
B7 15 140 E3 30 60
B8 15 160 E4 30 80
B9 15 180 E5 30 100
Cl 20 20 E6 30 120
C2 20 40 E7 30 140
C3 20 60 E8 30 160
C4 20 80 E9 30 180
C5 20 100 * Distance of the crack from the fixed end
47,486
47484
N
=
= 47,482
Q
]
g
S, 47,480
&
=
47,478
47,476 T T T T
6*6 3*3 22 11
Element size (cm)

Figure 1 Results of the first natural frequency for four different mesh sizes

An intact beam (N1) was also modelled in
order to compare its dynamic response with
that of the damaged beam.

Mesh size optimisation

The size, shape and number of elements
used in the model directly affect the con-
vergence and the accuracy of the results.
Obviously, when smaller elements are
used, the number of elements is increased
and the results will be more accurate.

But it must be remembered that the use
of smaller elements will lead to increased

calculation time. For each problem, there
is a specific element size below which the
accuracy of the results will not be increased
significantly.

Since the most important factor affecting
the accuracy of the results in a modal-
based problem is the natural frequency,
the criterion for optimisation of the size
of the elements is the accuracy of natural
frequencies obtained. To investigate this
factor, four different sizes are selected for
elements and a modal analysis performed
by using each of them. The results of the

\

Figure 2 15t natural mode shape for beam A1

Figure 3 2" natural mode shape for beam A1

Figure 4 3'd natural mode shape for beam A1

Figure 5 4th natural mode shape for beam A1

Figure 6 5t natural mode shape for beam A1

Figure 7 6th natural mode shape for beam A1

Figure 8 7th natural mode shape for beam A1

Figure 9 8t natural mode shape for beam A1

Figure 10 9th natural mode shape for beam A1
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Table 3 Change of the first ten natural frequencies (Hz) of intact beam N1 due to change in element size

AL b 66 cm?2 3*3 cm?2 2*2 cm? 1*1 cm?
Element Size
1 47,478 47,483 47,484 47,485
2 256,841 256,885 256,893 256,895 Figure 11 10t natural mode shape for beam A1
3 371,467 371,488 371,491 371,493
Evolution of 1st natural frequency as ion of location and depth of crack
4 613,596 613,818 613,859 613,874
5 1 020,880 1 022,080 1 022,280 1 022,390
6 1112,980 1113,670 1 113,800 1113,870 gi
7 1 452,250 1 455,710 1 456,370 1 456,720 ;T
8 1 849,550 1 852,840 1 853,460 1 853,810
9 1 882,490 1 890,320 1 891,820 1 892,660
10 2 292,290 2 305,180 2 307,700 2 309,120 Crack depth (cm) 0 Crack location from support (cm)
Figure 12 Change of 1st natural frequency due
Table 4 Natural frequencies, periods and the type of mode shapes for beam N1 to the change of crack location and
Mode Frequency (rad/s) Period (s) Type crack depth
! 298 0,0211 Lateral periods and the type of mode shapes for
2 1610 0,00389 Lateral beam N1 are listed in Table 4.
3 2330 0,00269 Axial It can be seen that the majority of mode
shapes are flexural and three of them (the
4 3860 0.00163 Lateral 3td, 6th and 8th) are axial. Since the problem
5 6420 0,000978 Lateral is two-dimensional, torsional mode shapes
6 7000 0,000978 Axial do not exist.
l The mode shapes of oscillation for beam
7 9150 0,000898 Lat . .
arera A1 are shown in Figures 2 to 11. The left end
8 11 600 0,000687 Axial in these figures is the fixed end of the beam.
9 11 900 0,00054 Lateral It can be seen that the fiI'St to flfth
0 12500 0000529 ateral mode shapes are similar to those obtained
X atera . .
in the case of beam N1, but the sixth and

Table 5 The type of mode shapes for beams A1 to A9 (A and L denote Axial and Lateral mode shapes,

respectively)

Mode 1 2 3 4 5 6 7 8 9 10
Al L L A L L A+L L A+L L L
A2 L L A L L A+L L A L L
A3 L L A L L A L A+L L L
A4 L L A L L A L A+L L L
A5 L L A L L A+L L A+L L L
A6 L L A L L A+L L A L L
A7 L L A L L A+L L A+L L L
A8 L L A L L A+L L A+L L L
A9 L L A L L A+L L A+L L L

first natural frequency are presented in MODAL ANALYSIS

Figure 1 and the results of first ten natural
frequencies are shown in Table 3.

It can be seen that although the 1 x 1
element leads to the most accurate results,
the difference between the results obtained
from the 1 x 1 element and the 2 x 2 element
is negligible. Consequently, the selected sizes
are 2 cm x 2 ¢cm for plane elements and 2 cm

for truss elements.

Consideration of the natural frequencies and
mode shapes of damaged concrete beams can
be useful for understanding their dynamic
behaviour. By using the subspace iteration
numerical method and assuming that the
masses are concentrated, a modal analysis

is performed. The maximum number of
iterations is 16 (Theoretical Manual for
COSMOS/M 1993). The natural frequencies,

eighth modes, which were axial oscillation
modes in beam N1, are transformed into a
combination of axial and lateral oscillation
modes. Also the seventh, ninth and tenth
mode shapes are lateral oscillation modes,
the same as they were in beam N1. It is also
obvious that the creation of a crack can lead
to some changes in the higher mode shapes
of oscillation. The type of mode shape may
be changed or two types may be combined.
Investigating the pattern of these changes
can be useful for identifying the damage to
the structures.

The types of mode shape for beams A1l
to A9 are presented in Table 5. It can be seen
that the majority of the changes occur in the
higher mode shapes. Thus the higher modes
are more sensitive to damage and suitable for
the study of damage effects in structures.

Once the results have been arranged
according to the location and depth of the
crack and then plotted in three-dimensional
diagrams, some remarkable results are
obtained. These diagrams are presented in
Figures 12 to 21.

The change of the first natural frequency
due to the change in the depth and location
of the crack is shown in Figure 12. It can
be seen that when the depth of the crack is
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Evolution of 2nd natural frequency as a function of location and depth of crack
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Figure 13 Change of 2nd natural frequency due
to the change of crack location and
crack depth

Figure 17 Change of 6th natural frequency due
to the change of crack location and
crack depth

Evolution of 3rd natural frequency as a function of location and depth of crack

Frequency (Hz)

150

Crack depth (cm) Crack location from support (cm)

Evolution of 7th natural frequency as a function of location and depth of crack
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Figure 14 Change of 3rd natural frequency due
to the change of crack location and
crack depth

Figure 18 Change of 7th natural frequency due
to the change of crack location and
crack depth

Evolution of 4th natural frequency as a function of location and depth of crack

600

Frequency (Hz)

Crack depth (cm) Crack location from support (cm)

Evolution of 8th natural frequency as a function of location and depth of crack

1800

1750

1700
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1600
1550

E bl 1 500
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1400
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Frequency (Hz)
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Figure 15 Change of 4th natural frequency due
to the change of crack location and
crack depth

Figure 19 Change of 8th natural frequency due
to the change of crack location and
crack depth

Evolution of 5th natural frequency as a function of location and depth of crack
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Evolution of 9th natural frequency as a function of location and depth of crack
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Figure 16 Change of 5th natural frequency due
to the change of crack location and
crack depth

increased, the rate of decrease in natural
frequencies increases, and when the location
of the crack comes closer to the free end of
the beam, the rate of the frequency decrease
is reduced. However, the change in the first
natural frequency due to the increase in the
crack depth and the change in the crack

Figure 20 Change of 9th natural frequency due
to the change of crack location and
crack depth

location occur at an approximately uniform
rate. Figure 13 shows the change in the sec-
ond natural frequency due to the change in
these factors. It can be seen that this change
does not occur at a uniform rate. The change
in the third natural frequency (the first axial
oscillation mode) is shown in Figure 14. In

Figure 21 Change of 10th natural frequency
due to the change of crack location
and crack depth

this case the changes in frequency occur at

a uniform rate too. The frequency values
vary from 310 to 370 Hz. Figure 15 shows the
change in the fourth natural frequency due
to these factors. It can be seen that when the
crack location is far from the fixed end, the
rate of the changes is increased, although it
generally decreases due to the increase in
crack depth.

A study of these figures shows that the
pattern of frequency changes due to the
change in the crack location depends on
their corresponding mode shapes. When the
crack location approaches those points of the
system for which the deformation amplitude
is higher in a specific mode shape, the rate
of reduction of the corresponding specific
natural frequency will increase.

The values of the natural frequencies are
listed in Tables 6 to 15 for whole beams.

RANDOM VIBRATION ANALYSIS

General considerations

Study of the frequency response of an oscil-
latory system and dynamic identification can
be useful for determining the existence and
location of probable defects such as cracks in
a structural member. For this purpose, the
structure must be excited by a force source.
Then its response must be monitored at
various points and transferred to a frequency
domain to study the changes. Specific fast
Fourier transform (FFT) techniques are used
to transfer the responses.

Since the exciting force in both the
laboratory and in situ works is usually an
impact hammer, the excitation frequency
will be broad-banded. An individual vertical
force, with the specifications of the white
noise located at the free end of the beam, is
used to excite the member and to investigate
its response by random vibrational analysis.
In this case, the amplitude of the force will
be constant throughout the frequency band.
Random vibrational analysis is performed
in the frequency domain. Input and output
data are in the form of power spectral

6 Journal of the South African Institution of Civil Engineering « Volume 51 Number2 October 2009




Table 6 Values of 1st natural frequency for all of the beams N
i 1 2 3 4 5 6 7 8 9 a
wy
~
A, | 43,002 | 43,902 | 44,714 | 45373 | 45863 | 46,188 | 46,371 | 4645 46,471 _
Frequency -
B, | 41432 | 42,69 43,844 | 44,803 | 45533 | 46,026 | 46,307 | 46432 | 46,469
C; | 40,247 | 41761 | 43,154 | 44,333 | 45248 | 45876 | 46,242 | 46411 | 46,465 Figure 22 The white noise input signal
D; | 39645 | 41275 | 42,772 | 44,054 | 45,06 45763 | 46,183 | 46,386 | 46457 density (PSD), whose function is defined as
E | 39438 | 4108 | 42,501 | 43,892 | 44924 | 45659 | 46114 | 46,353 | 46447 follows:
+00 —iwt
Spw)= [ Rp(r)e “dr M
=g h

Table 7 Values of 2nd natural frequency for all of the beams

where Sf(w) is the PSD of random variable

i 1 2 3 4 5 6 7 8 9 f(t), and Rf(T) is the autocorrelation function
A, | 24634 | 24692 | 24723 | 24781 | 24834 | 24872 | 24942 | 249,82 | 250,52 of this random variable, which is expressed
as:
B, | 241,21 | 241,63 | 242,34 | 24312 | 24334 | 244,52 | 244,96 | 24584 | 24591 {
o0
C, | 23623 | 23674 | 23724 | 23707 | 23809 | 23943 | 239,88 | 240,82 | 241,31 Ry(r)= f —oo SO fe+m)dt @
D, 231,62 | 232,34 | 233,12 | 234,22 | 23523 | 236,11 236,23 237,25 237,32 It is noted that the units of “PSD of dis-

placement”, “PSD of velocity” and “PSD of

E, 226,94 227,14 228,63 229,34 230,35 231,34 232,12 233,24 233,25 acceleration” will be “[displacement unit]2/

[frequency unit]”, “[velocity unit]?/[frequency

it and “ lerati 121
Table 8 Values of 3rd natural frequency for all of the beams un% ],, an [a(?ce eration unit]*/[ requc?ncy
unit]” respectively. In such problems, in order

i 1 2 3 4 5 6 7 8 9 to increase the accuracy of the analysis, the

range of the white noise is determined in
A; | 35827 | 35767 | 35865 | 360,38 | 361,89 | 363,08 | 36417 | 36526 | 366,04 such a way that the frequency of the last

mode shape becomes at least 80% of the
B, 351,44 349,88 351,73 355,21 358,07 360,13 362,03 364,12 365,75 . s
upper limits of the excitation frequency

band (Bensalem et al 1996). In this paper

the maximum frequency considered, which

G, 341,28 338,65 341,78 347,64 352,37 355,65 358,69 362,3 365,29

D, | 32712 | 324,11 | 32894 | 33732 | 344,27 | 34928 | 354,04 | 359,77 | 364,64 is the frequency of tenth mode shape, is
approximately 2 000 Hz. Although the upper
E | 30787 | 3063 | 312,99 | 32337 | 332,71 | 34027 | 34782 | 35656 | 363,75 limit of the excitation frequency is 3 000 Hz

for all the beams analysed, the responses at

frequencies higher than 2 000 Hz are not

Table 9 Values of 4th natural frequency for all of the beams studied here. The white noise input signal is

shown in Figure 22.

i 1 2 3 4 5 6 7 8 9
The aim of this study was to investigate
A, | 60537 | 59805 | 591,24 | 600,89 | 605,5 590,33 | 57761 | 58597 | 603,08 the changes in the responses of damaged
members, such as accelerations, displace-
B, | 600,15 | 59366 | 586,13 | 59725 | 602,21 | 582,65 | 5654 574,84 | 599,8 ments and velocities, and to compare them
with the responses of an intact member.
C, | 58925 | 58854 | 58343 | 592,34 | 59532 | 57535 | 556,55 | 56523 | 595,38 .
Adequate care must be taken in choos-
D, | 57111 | 581,76 | 582,75 | 58496 | 583,05 | 56774 | 552,04 | 558,77 | 589,25 ing the location of the applied force and the
response recorders because this significantly
E; 544,67 | 571,56 | 582,31 | 572,5 562,56 | 556,71 | 550,54 | 554,43 | 580,05 affects the success of the work. Numerical

methods such as FEM can be useful for
determining suitable locations. These loca-
Table 10 Values of 5th natural frequency for all of the beams tions must be sufficiently far from the nodal

points. In this investigation the free end of
i 1 2 3 4 5 6 7 8 9 .
the beam was selected as the location for the

A | 100759 | 990,55 | 1010,76 | 998,44 | 9799 | 100898 | 9915 962,85 | 994,91 applied force. Since the force is vertical, it
is obvious that the axial mode shapes either
B, 995,72 | 982,02 | 1004,62 | 988,81 | 964,43 | 998,34 | 974,09 | 936,67 | 979,76 will not be excited at all or their response

amplitude will be very small.

c, | 97376 | 97585 | 99163 | 97625 | 95021 | 97633 | 94897 | 91056 | 961,66
Results of the random
D, | 94365 | 972,06 | 96677 | 958,36 | 93769 | 93983 | 91398 | 88435 | 941,19 o .
vibrational analysis
E, 910,86 | 97035 | 921,74 | 92077 | 92644 | 88776 | se470 | 85505 | o176 | L the displacement, velocity and vertical

acceleration responses are studied at the
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Table 11 Values of 6th natural frequency for all of the beams

18 000
16 000
i 1 2 3 4 5 6 7 8 9 £ 14000
E 12000
A, | 10785 | 109,07 | 109771 | 109596 | 1088,34 | 1073,32 | 107755 | 108594 | 1091,51 2 10000
ﬂ)
g 8000 7
B, | 106299 | 108558 | 109705 | 109377 | 1081,04 | 1052,9 | 1062,67 | 107751 | 1084,78 & 6000 !
A 4000 b1
G 1042,25 | 107755 | 1096,03 | 1090,16 | 1070,1 1025,19 | 1039,84 | 106503 [ 1074,11 £ 2000 LY
0
D, | 101669 | 1066,23 | 1094,52 | 1084,21 | 1053,68 | 989,04 | 1002,12 | 1046,33 | 1056,76 S e 8 d a5 83
S O O o O o O
n (=) n (=) wn o wn
E, 985,64 | 1050,15 | 10924 | 107461 | 102784 | 941,18 | 938,34 | 101724 | 102583 oo e e e e
Frequency (Hz)
Table 12 Values of 7th natural frequency for all of the beams Figure 23 The PSD of acceleration response at
the free end of the beam
I 1 2 3 4 5 6 7 8 9
18 000
A 1430,65 | 14374 1426,85 | 1410 1445,04 | 141575 | 1444,78 | 1404,46 | 1398,42 16 000
§ 14000
B, | 141956 | 1429,39 | 1411,13 | 1393,36 | 1430,68 | 1408,48 | 142725 | 13854 | 137093 £ 12000
2 10000
C, | 1403,66 | 1413,45 | 138722 | 1374,74 | 139575 | 140578 | 1386,42 | 1358,37 | 1348,76 g 8000
< 6000
2 4000
D, 1384,17 | 1377,69 | 1349,99 | 1348,58 | 1328,22 | 140547 | 1318,54 | 1301,47 | 1333,69 a 2000
o
0
E, | 1362,87 | 130,73 | 1296,86 | 1303,13 | 1226,76 | 1404,31 | 1239,81 | 1180,39 | 1323,70 ||
o o o o o o o o
S ©O O o O o O
wn o wn (=) wn (=) wn
— = N N o0 o
Frequency (Hz)
Table 13 Values of 8th natural frequency for all of the beams
i 1 2 3 4 5 6 7 8 9 Figure 24 The PSD of acceleration response at a
distance of 150 cm from the fixed end
A, | 179831 | 182843 | 1782,36 | 1783,32 | 178564 | 182843 | 1793,33 | 1782,88 | 1752,09
B, | 17783 | 182843 | 174764 | 174754 | 175516 | 182842 | 1768,27 | 1750 1696,77 18 000
. 16000
C, | 1756,73 | 1809,36 | 17053 | 169621 | 1721,72 | 1803,01 | 174014 | 1706,63 | 1634,06 S 14000
® 12000
D, | 173491 | 170759 | 165047 | 1614,35 | 168562 | 1682,44 | 171098 | 15978 | 153396 < 10000
g 8000
<
E, | 1713,52 | 160985 | 1582,88 | 1504,12 | 1647,39 | 1540,81 | 1683,54 | 1502,74 | 137725 5 2 888
Q e
@ 2 008 vA
Table 14 Values of 9th natural frequency for all of the beams — L —
S o O o O o O
w (=] w (=] wn (=] w
i 1 2 3 4 5 6 7 8 9 - e e e @
Frequency (Hz)
A 1867,22 | 1883,6 1857,94 | 1880,9 1860,32 | 1880,99 | 186562 | 1872,53 | 1850,64
Figure 25 The PSD of acceleration response at a
B, | 1864,63 | 1864,02 | 185674 | 1851,29 | 1859,64 | 1861,05 | 1859,89 | 183944 | 1850,05 distance of 100 cm from the fixed end
G 1859,15 | 1828,44 | 1852,88 | 177556 | 185795 | 182846 | 1845,05 | 1743,18 | 18454 . . .
different points along the beams, it can be
D, | 1849 | 182843 | 182719 | 166756 | 184788 | 182843 | 181458 | 165474 | 172934 | ~Seen that when the distance of the point
from the fixed end is increased, the ampli-
E, | 183412 | 182842 | 1731,66 | 1584,4 | 1780,16 | 182843 | 177296 | 1593,07 | 1590,26 tude of the responses is increased too. Also,
it can be shown that the displacement and
velocity responses are very small (approxi-
Table 15 Values of 10th natural frequency for all of the beams mately zero) at high frequencies in compari-
son with the responses at low frequencies.
i 1 2 3 4 5 6 7 8 9 . .
However, the acceleration response is more
A, | 227898 | 227392 | 227937 | 227156 | 229696 | 224475 | 2291,23 | 2291,84 | 220671 | | 1llustrative, having a high amplitude at high
frequencies. Investigating the acceleration
B, | 227492 | 2240,36 | 2240,26 | 2264,19 | 2242,07 | 2216,29 | 2282,53 | 2224,24 | 2144,6 PSD diagrams is therefore a suitable way to
study the change in the frequency response.
C;, | 227383 | 2173,08 | 2094,53 | 225442 | 208977 | 2173,19 | 2244,85 | 211898 | 1971,29 The acceleration responses at different
points along the beam A1 are presented in
D; | 227374 | 2093,69 | 1916,87 | 219735 | 191721 | 2081,3 | 2121,81 | 205771 | 185113 . .
Figures 23 to 26. The acceleration response
E | 227314 | 20505 | 186519 | 21455 | 185614 | 203278 | 203718 | 20308 | 183105 | At the free end of the beam is shown in
Figure 23 and the responses at the distances
8 Journal of the South African Institution of Civil Engineering « Volume 51 Number2 October 2009
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Figure 26 The PSD of acceleration response at a
distance of 50 cm from the fixed end

178590 ¢ )
1607,30 + Right edge
1428,70 | 3 g
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125010 | 10cm (right) <o

1071,50 |
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Figure 29 PSD of acceleration response along
the beam N1 (view 2)
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Figure 30 Change of the PSD of acceleration
response along the beam A1

Figure 27 The PSD of acceleration response at
the crack edges and the points located
at a distance of 10 cm from the crack

Evolution of acceleration response as function of the response location

Acceleration (PSD)

2500 ) 0

Frequency (Hz) Location *10 (cm)

Figure 28 PSD of acceleration response along
the beam N1 (view 1)

of 150, 100 and 50 cm from the fixed end are
shown in Figures 24, 25 and 26 respectively.
It can be seen that the peak responses are
considerably smaller than they were in the
intact beam. The reason is the reduction

in beam stiffness due to the existence of a
crack.

The acceleration responses at the crack
edges and at the points located at a distance
of 10 cm from the crack are presented in
Figure 27. It can be seen that the amplitude
of the responses at the points located to the
right of the crack is higher than at the points
to the left of the crack. The reason is that
these points to the right are closer to the free
end of the beam.

For investigation of the response to
the white noise along the beam, 58 three-
dimensional diagrams are provided by the
program. As an example, the PSD of the

Evolution of acceleration response as function of the response location

Acceleration (PSD)

Location *10 (cm)

Frequency (Hz)

Figure 31 Change of the PSD of acceleration
response along the beam A2

acceleration response along the beam N1 is
presented in Figures 28 and 29.

The following noteworthy results are
obtained from these figures. The pattern of
the response changes along the beam at the
frequencies that coincide with the natural
frequencies of the structure depends on the
corresponding mode shape. For example,
when the distance of a specific point from
the fixed end of the beam is increased, the
amplitude of response in the excitation fre-
quency that coincides with the first natural
frequency of oscillation will be increased and
the associated response diagram will be quite
similar to the first mode shape. This is also
confirmed for higher natural frequencies. It
must be noted that the response amplitude
at excitation frequencies that coincide with
the axial natural frequencies is very low
(approximately zero).

Figure 30 shows the change in the
acceleration response along beam Al. In this
figure, a peak is observed at a frequency of
1 500 Hz at the point located at a distance of

20 cm from the fixed end, which represents
the location of the crack. Figure 31 shows the
change in the acceleration response along
beam A2. In this figure, a peak is observed at
a frequency of 1 000 Hz at the point located
at a distance of 40 cm from the fixed end,
which represents the location of the crack.

CONCLUSIONS

B The existence of a crack generally leads to
a reduction in the natural frequencies in a
damaged member in comparison with an
intact member. An increase in the depth
of the crack leads to an increase in the
decrement rate of the natural frequen-
cies. Whenever the location of the crack
comes closer to the free end of the beam,
the rate of the frequency decrement is
reduced because the rate of decrement of
the beam stiffness is increased.

B The rate of frequency changes due to
the change in crack location depends
on their corresponding mode shapes.
When the crack location comes closer to
those points for which the deformation
amplitude is higher in a specific mode
shape, the rate of the corresponding
specific natural frequency decrement will
be increased.

B The creation of a crack can lead to some
changes in the higher mode shapes of
oscillation, but the lower mode shapes
usually remain unchanged. The type of
mode shape may be changed or two types
may be combined. A study of the pattern
of these changes can be useful for identi-
fying the damage to the structures.

B When the displacement, velocity and ver-

tical acceleration responses are studied at
different points along the beams, it can be
seen that if the distance of the point from
the fixed end is increased, the amplitude
of the responses will be increased.

B The displacement and velocity responses

are approximately zero and are very small
at high frequencies in comparison with
the low-frequency responses. However,
the acceleration response is more illustra-
tive and has a high amplitude at high
frequencies. Investigating the acceleration
PSD diagrams is therefore a suitable way
to study the change of the frequency
response.

B The amplitude of the responses at the

points located to the right of the crack

is higher than that at the points to the
left of the crack. The reason is that these
points are closer to the free end of the
beam.

B The pattern of the response changes

along the beam at the frequencies that
coincide with the natural frequencies of
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the structure depends on the correspond-
ing mode shape. For example, when the
distance of a specific point from the
fixed end of the beam is increased, the
amplitude of response in the excitation
frequency that coincides with the first
natural frequency of oscillation will be
increased and the associated response
diagram will be quite similar to the first
mode shape. This is also confirmed for
higher natural frequencies.

B The normal changes in the amplitude of
the acceleration response along the beam
will be changed in the vicinity of the crack,
resulting in a local peak which can be use-
ful for identifying the location of the crack.
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