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Abstract 

Fourth Industrial Revolution (4IR) technologies have elevated the capabilities and possibilities of 
improvement and efficiency in the energy sector. This paper interrogates how energy companies in South 
Africa, Germany and China apply 4IR technologies. A total of 26 energy companies in those countries were 
surveyed. An analysis was carried out using the Cronbach Alpha, Kruskal-Wallis and Mann-Whitney tests. 
Survey results indicate that 85% of companies acknowledge good levels of participation in the 4IR, and were 
clear about which 4IR technologies are important, although few companies develop these themselves. 
Technologies enabling access to big, real-time data (BRTD) and BRTD analysis software, are valued the most 
in measured importance, efficiency, reliability and ability to be integrated across the energy system. The 
transfer of data using the Internet of things ranked highly as a 4IR technology, whereas artificial intelligence, 
robotics and machine-human integration (also referred to as machine-human interaction) are considered less 
important, efficient, and reliable. China rates 4IR technologies as more important than South Africa and 
Germany do. For South Africa to be competitive in the global energy sector it needs to engage with and 
embrace 4IR technologies to a greater extent. 
 
Keywords: 4IR technologies; energy sector; Internet of things; big, real-time data; artificial intelligence;  
robotics; machine-human integration 

Highlights: 

• 4IR technologies are applied within the energy sector. 
• China rates 4IR technologies higher in importance than South Africa and Germany. 
• The Internet of things is a highly ranked 4IR technology. 
• South Africa needs to embrace 4IR technologies within the energy sector. 
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1. Introduction 

The global technological landscape is flourishing 

and the Fourth Industrial Revolution (4IR) is 

providing a pathway to this change (Ng et al, 2020; 

Pfeiffe, 2017). A ‘hyper-connected’ world enabled 

by 5G and complex digital interfaces are connecting 

electricity grids with multiple digital devices and 

systems (Shapsough et al, 2020; ESI Africa, 2018; 

Chen et al, 2016) and improving their resilience. 

Figure 1 illustrates the advanced 4IR technologies 

leading innovation in the production and distrib-

ution of renewable energy. New build for energy 

production plants is more efficient and cost-

effective, and 4IR technologies have created 

conditions under which these plants may be man-

aged and maintained remotely, in real time, using 

devices such as unmanned aerial vehicles (UAVs), 

remotely operated underwater vehicles (ROUVs), 

autonomous underwater vehicles (AUVs), and 

drones to collect live data on environmental 

conditions. The ability to access and analyse big, 

real-time data (BRTD), which according to Sigwadi 

(2020) may be presented as data science, is applied 

in energy plant operations.  

There has been a move towards expanding 

smart energy (Knieps, 2017). Smart devices, sensors 

and microgrids, connected to multiple mobile and 

other technical devices, enable consumers and 

producers to interact in real time to better manage 

their demand and supply of electricity, improving 

resource efficiency and sustainability (Ng et al, 

2020; United States Department of Energy, 2015). 

A ‘bi-directional flow of power’ has emerged with 

consumers accessing electricity from the grid and 

supplying electricity to the grid (Lund et al, 2017).  

Artificial intelligence (AI) presents a huge oppor-

tunity for developing smart solutions for energy 

production and distribution. Dong et al (2021: 2) 

define AI as ‘the science of simulating a series of 

human intelligent behaviors, such as autonomous 

learning, decision making, and judgments’. AI is 

incorporated into the design, production and 

distribution of wind, solar, geothermal, hydro, 

ocean, bio, hydrogen, and hybrid energy (Jha et al, 

2017). Voyant et al (2017) speak of machine 

learning (or AI) techniques that may be used to 

better forecast solar radiation, which allows solar 

plants to optimise productivity. Yunfeng and 

Mingming (2019) and Liao et al (2019) explain how 

AI (or virtual reality) is being used to reproduce 

various operational environments in the power 

system for power grid simulation teaching and 

training, safety and rescue training, and virtual 

maintenance testing of power system equipment, as 

well as addressing training-related challenges such 

as lack of personnel and the need for expensive 

testing equipment. Machines are being developed to 

carry out what Makala and Bakovic (2020, 2) refer 

to as ‘deep learning’ to ‘help discern patterns and 

anomalies across very large datasets – both on the 

power demand and power supply sides – that 

otherwise would be nearly impossible to achieve.’

 Figure 1: 4IR technologies in the energy sector 
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Robotics, according to Lyu and Liu (2021: 2) ‘is 

at the intersection of computer science and engin-

eering, involving design, construction, oper-ation, 

and use of robots, increasingly adopted in the 

energy sector to reduce set-up time and cost and 

improve quality and productivity’. Intelligent patrol 

robots are used to patrol outdoor power substations 

remotely, detecting defects in equipment and ma-

chinery in real time (Yunfeng and Mingming, 2019). 

Machine-human integration (MHI), referred to 

by Yunfeng and Mingming (2019) as machine-

human interaction, has developed from simple 

switches that used analogue systems to using 

computer systems to collect and analyse data at 

power terminals to dispatch this power within the 

grid, and to the use of voice to promote knowledge 

learning and transmission of data. Today, fifth 

generation MHI technology facilitates the friendly 

interaction between users and various systems with 

information tasks being exchanged between 

humans and various systems, such as computers 

and mechanical systems (Yunfeng and Mingming, 

2019). Here, multi-sensor fusion technology is used 

as the interface for more intelligent interaction 

between staff and robots, initiated by robots 

themselves. The fifth generation of MHI, although 

still in the early stages of implementation, includes 

robot-human interaction, such as the AI power 

supply service robot, to integrate the ‘basic abilities 

of speech recognition, dialogue management, real-

time communication, image recognition, process 

automation and professional knowledge aggre-

gation to ‘understand customer demands, under-

stand grid indicators, control power system business 

processes, issue command orders, transfer service 

information and remind abnormal behaviour’ (Liu 

et al 2018 and Yin et al 2015, as cited by Yunfeng 

and Mingming, 2019: 3). MHI in energy may also 

be applied to gamification. Here, energy users 

interact with the energy system, through games such 

as Energy battle, that encourage households to take 

cogniscence of their behaviour towards energy 

consumption and in turn change such behaviour to 

reduce their energy usage and associated costs as 

well as their carbon footprint (AlSkaif et al, 2018).  

Germany, China, Australia, the Netherlands and 

Japan have implemented systemic changes, choos-

ing to decentralise energy, using computer chips 

installed in individual households allowing these 

households to control their energy grid and 

distribution via the internet (Burger et al, 2020; 

Viétor et al, 2015; Kafle et al, 2016). Nigeria is 

researching how to integrate AI into the regression 

analyses of solar energy estimation studies and to 

apply artificial neural networks to develop time-

series data (Ozoegwu, 2018). India has identified 

the use of remotely piloted aircraft-based infrared 

imaging for monitoring and analysing photovoltaic 

energy systems in less accessible locations 

(Rahaman et al, 2020). The German Energiewende 

policy is driving the expansion of renewable and 

decentralised energy systems (Kuittinen and Velte, 

2018; German Federal Ministry of Economic Affairs 

and Energy, 2019). The co-ownership of German 

energy production facilities, enabled by a decen-

tralised energy sector and rising demand-side 

management of energy resources by consumers, has 

promoted the development and use of renewable 

energy (Roth et al, 2018). China continues to drive 

Renewable Energy Technologies particularly in 

industrial regions, such as Jiangsu Province, facing 

bigger climate change challenges (Lin and Zhu, 

2019). Through nationwide policy initiatives such as 

the Made in China 2025 strategy, the Chinese 

government is driving Renewable Energy Tech-

nologies through investments in ‘smart manufac-

turing’ (Wübbeke et al, 2016, 15). China is using 

virtual power plants that combine gas turbines, 

renewable energy units and flexible loads using ad-

vanced technologies and software (Liu et al, 2018).  

Globally, there has been a shift towards using 

new technologies across most sectors. The energy 

sector is no different. Fourth Industrial Revolution 

technology in South Africa likewise offers oppor-

tunities for improving the production and distri-

bution of renewables, whilst at the same time 

enabling the achievement of the United Nations 

Sustainable Development Goal 7 – referring to 

expanding access to ‘modern’ and ‘sustainable’ 

forms of energy (United Nations, 2020). The focus 

of research in energy over the past decade has 

predominantly been on expanding the capacity of 

the South African electricity public utility, Eskom, 

and not private sector partnerships. The result has 

been increased power failures and load-shedding 

(Joffe, 2012). The United States Energy Information 

Administration (cited by Urban, 2018) has calcu-

lated the economic loss of income in South Africa 

due to the energy crisis to be between USD 253 and 

USD 282 million. A centralised and highly mono-

polised energy industry, driven by Eskom, has 

concentrated risks and challenges incurred relating 

to energy production and distribution, especially for 

renewables. South Africa, as an industrial power-

house in Africa, depends on energy efficiency for 

economic development and on making energy more 

sustainable in terms of being efficient, more reliable 

and integrated across the system with minimal 

detriment to the natural environment. What is not 

known is the extent to which the energy sector in the 

country has leveraged these 4IR technologies and 

whether technologies applied are improving levels 

of efficiency, reliability and sustainability in the 

South African context. 
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In South Africa, industry leaders have studied the 

wider impacts of the 4IR on employment and society 

at large (O’Reilly et al, 2018; Aspen Institute, 2019). 

Central to this research was achieving a clearer 

understanding of whether countries are ready for the 

4IR and what its socio-economic impact will be on 

society as we know it (Deloitte Insights, 2018; World 

Economic Forum, 2017). In addition to the effects 

of 4IR on the production and distribution of goods, 

research includes how curricula, as well as teaching 

and learning, need to change to incorporate the 

skills and knowledge needs of industry within the 

4IR (Penprase, 2018; Stewart and Stanford, 2017; 

Chinese University of Hong Kong, 2020). To 

reiterate, this review does not focus on the education 

sector but on manufacturing in the energy industry. 

In addition to academic research, there have also 

been a number of studies conducted by institutions, 

such as the World Bank (2019), on how to harness 

the digital revolution to eradicate poverty in Africa. 

The argument presented is that digital technologies 

‘offer a chance to unlock new pathways for rapid 

economic growth, innovation, job creation, and 

access to services in Africa’ (World Bank, 2019, 81). 

A Scopus search for the years 2019-2021 yielded 

interesting results. A search on ‘4IR+ South+ 

Africa’ brought up a total of 58 publications, but 

none referred to 4IR and the energy sector. A search 

on ‘4IR+technologies+South+Africa’ presented 33 

publications. These referred to the impact of 4IR on 

certain sectors including education (Pretorius and 

Kotze, 2021) and the future of the workplace 

(Scopus, 2021); O’Reilly et al, 2018; Aspen Institute, 

2019). A refined search on ‘4IR+energy+South+ 

Africa yielded zero results. By searching for 

‘renewable+energy+technology’, a total of 220 

publications, from the past three years, were 

displayed. At a quick glance, these publications are 

centred on developments in particular types of 

renewable energy such as tidal (Sewnarain et al., 

2020), solar (Obiora et al., 2020) and wind (Neshat 

et al., 2021); the creation of hybrid energy systems; 

access to energy (Monyei and Akpeji, 2020); 

decentralisation of the energy system in the country 

and using individual technologies such as 

solarvoltaics in specific sectors such as agriculture 

(Obiora et al., 2020). This Scopus search, then, 

suggests that there is little research on using a range 

of 4IR technologies across the energy sector in South 

Africa. 

As the global energy sector steers its way through 

4IR, it is critical to examine how renewable energy 

companies apply 4IR technologies. Research behind 

this paper examined this relationship by exploring 

the applicability of 4IR technologies in the energy 

sector in Germany, China and South Africa. It 

investigated what renewable energy companies 

understand by 4IR, and the contribution that the 

application of such technologies make towards their 

companies becoming more efficient, reliable, and 

integrated. 

2. Methodology 

A quantitative research design was applied, 

surveying 26 German, Chinese and South African 

energy companies, online. The analysis was carried 

out through the Statistical Package for the Social 

Sciences, using the Cronbach Alpha test, fre-

quencies and descriptives, and the Kruskal-Wallis 

test. The data collected was all validated. It was 

Cronbach Alpha tested for internal consistency – in 

other words, whether the variables (different 4IR 

technologies) are all measuring the same underlying 

construct identified in each question, these being, 

the importance of these technologies to the global 

economic sector (GES), the importance of using 4IR 

technologies within individual companies, and the 

levels of efficiency, reliablility and integration of 4IR 

technologies within companies. An ordinal, Likert 

scale was used to test respondents’ perceptions of 

the different sections – with 1 being the most 

important and 7 the least important. A descriptive 

statistical analysis was the first step in the data 

analysis process. The nature of the variables used in 

the survey was explored through an assessment of 

the response frequencies, percentages and means. 

This provided details on how respondents perceived 

different 4IR technologies and what the average, 

overall view was concerning these technologies. A 

clear set of descriptors of 4IR technology was used. 

The 4IR descriptors were: the interactions between 

human and machines (MHI) to improve productivity 

in industry; creating technology to connect globally; 

developing and using AI in industry; developing 

other, new technologies to improve efficiencies; all 

of these; and none of these. Respondents ticked the 

appropriate descriptor box based on the one which 

was best aligned with their understanding of 4IR. 

The Kruskal-Wallis test was used to test for country-

specific similarities and differences in the measured 

importance of using 4IR technologies within the 

GES and companies themselves. The test was based 

on the country in which each company was located.  

2.1 Sampling techniques 

Using purposive sampling, of the 26 companies 

surveyed and compared, nine were Chinese (five of 

them based in South Africa and the other four in 

China), eight German (all based in Germany), and 

the remaining nine South African, situated across 

the country. The German and Chinese companies 

were selected based on their leading role in using 

4IR technologies and their prioritisation of 

expanding digital renewable energy solutions in 

their countries. South Africa was chosen because of 

the gap in the literature on whether and how 4IR 
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technologies are being applied across the energy 

sector and the impact of these technologies on 

enhancing efficiency in the energy system. 

Germany has been a ‘highly industrialised, 

pioneer of Industry 4.0’ (Beier et al., 2017, 227). 

Industry 4.0 has affirmed its commitment, at all 

levels of society, business, unions and government, 

toward promoting digitisation as a socio-economic 

growth discourse that is driven nationally. Its strong 

participatory and cooperative links with business, 

civil society and unions, a defining feature of the 

German industrial model, make it very different 

from most other leading and emerging economies 

such as the United States and China (Schroeder, 

2016). Germany was selected as a research subject 

for several reasons. There are ideological, policy-

based, similarities between the participatory nature 

of Industry 4.0 and the social compact envisaged for 

South Africa in its National Development Plan 

(Presidency of South Africa, 2012); historical ties 

exist (South African-German Energy Partnership 

Secretariat, 2018); and interest has grown in the 

way the German energy sector is constituted – 

highly decentralised, driven by local municipalities, 

displaying a mix of private and public sustainable 

energy provision (Viétor et al., 2015; Beerman and 

Tews, 2017; Burger et al., 2020; South African 

Local Government Association, 2018; all priorities 

highlighted in the 2019 Integrated Resource Plan 

(South African Department of Mineral Resources 

and Energy, 2019). Local firms and leaders are 

driving renewable energy developments through 

‘regional spillovers’ (Horbach et al., 2018: 404).  

The selection of China in this study was also 

carefully considered. The Made in China 2025 

strategy (Wübbeke et al, 2016) exemplifies China’s 

remarkable strides in becoming a leader of the 4IR 

in sectors including new and renewable energy, with 

expanded efforts to develop ‘intelligent manu-

facturing’ (Institute for Security & Development 

Policy, 2018, 1). Already China is a leading, global 

manufacturer, exporter and installer of renewable, 

clean energy technologies, with plans to produce 

80% of these technologies in China by 2025 

(Wübbeke et al, 2016). There are valuable lessons 

to be learnt from China. Bilateral relations between 

South Africa and China are expanding through 

developments such as coal-fired energy plants in the 

Waterberg (Limpopo Economic Development 

Agency, 2019). Such relations may provide future 

spill-overs for renewable energy relations. 

2.2 Data collection methods 

The next part of the data collection process was the 

online sourcing of company names, again using the 

Google search engine to find company websites. 

Environmental conditions brought about by the 

COVID-19 global pandemic meant that the most 

efficient way to compile a list of companies and their 

details was via the internet, telephone calls to these 

companies, and word of mouth referrals. There were 

challenges experienced in communicating with the 

companies in Germany and China including 

communication challenges because of language 

differences. Access-related challenges emerged with 

these countries being identified as COVID-19 

hotspots, resulting in an extensive economic 

shutdown. These circumstances all contributed to 

delays in the collection of survey data. As part of 

addressing these challenges, the offices of both the 

German and Chinese High Commissions in 

Johannesburg were contacted for assistance in 

providing the names of German and Chinese 

companies and for facilitating participation in the 

survey. Once translated into Chinese and German, 

the survey was sent to 56 energy companies, of 

which 26 responded.  

3. Results and discussion  

The findings are based on an overall positive 

submission rate of 47%, with 26 out of 55 

companies responding positively to the survey. 

Again, the main reason for the sample size was the 

onset of the Covid-19 pandemic and the resultant 

poor response rate. Despite the smaller sample size, 

the data was considered reliable and statistically 

significant findings did emerge. 

The reliability of the data was tested using the 

Cronbach alpha coefficient for each construct (Table 

1), of which all are above the recommended value 

of 0.7 (Pallant, 2007), indicating the reliability of the 

data constructs. 

Table 1: Cronbach’s alpha values of the data 
constructs (importance, efficiency, reliability, 

and integration). 

Constructs Cronbach’s alpha 
coefficient 

The importance of 4IR 

technologies to the GES 

0.73 

The importance of using 4IR 

technologies for companies 

0.80 

The efficiency of 4IR 

technologies within companies 

0.70 

 

The reliability of 4IR technologies 

within companies 

0.78 

 

The integration of 4IR 

technologies within companies 

0.80 

 

3.1 Descriptive statistical analysis 

Almost 65% of all respondents described the 4IR to 

be a combination of the above survey descriptors 

(all of these). No respondent ticked ‘none,’ implying 
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the legitimacy of descriptors. Participants were then 

asked to indicate the level of importance of 4IR 

technologies, collectively, for the GES. The data was 

coded using a tick-box rating. Respondent 

percentages were used to break down the levels of 

importance of 4IR technologies in the GES (Figure 

2). The degrees of importance varied, yet all 

respondents agreed that 4IR technologies were 

important. 73% ticked very important, 23% ticked 

important and only 4% selected somewhat 

important. There were no respondents who believed 

that 4IR technologies were not important, indicating 

the high value placed on the importance of 

technology in the GES. 

Figure 2: The importance of Fourth Industrial 

Revolution technologies to the global energy 

sector. 

Technology categories were broken down into 

seven variables (Table 3). Three of the seven 

variables were tied to data access and usage. The 

remaining four comprised AI, ROB, MHI and the 

IoT. Participants were requested to rank each 

technology variable on a Likert scale of 1-7, with 1 

being the most and 7 the least important to the GES. 

The results showed that, instead of ranking 

technologies, respondents chose to rate each one. 

As such, the analysis of the ranking questions drew 

on calculated means and standard deviations. In 

Table 2, mean ranks all fell below 4, implying that, 

using the 1–7 ranking scale, all described tech-

nologies were considered important to the GES. 

RTD was ranked as most important to the GES. The 

survey results pointed to fundamental influencers of 

this result as being the development of drones and 

UAVs, rapid advancements of faster and more 

reliable mobile networks, and the creation of huge 

data storage facilities in the cloud. The importance 

of ROB and MHI was considered far less important, 

with means of 3.96 and 3.65, respectively. Further 

research needs to establish why this may be the 

case. 

There were two, key high-level conclusions 

linked to the global energy sector. The first was con- 

sistency in how respondents interpreted 4IR, with all 

describing it as one or a combination of interactions 

between machines and humans to improve 

productivity in industry; creating technology to 

connect globally; developing and using AI in the 

industry; developing other, new technologies to 

improve efficiencies. The global importance of 4IR 

technologies was clearly articulated. Secondly, 

leading in importance were the technologies 

providing access to real-time data (RTD), possibly 

influenced by the expansive use of drones, AUVs 

and ROVs in the sector. ROB and MHI fared the 

least in their importance to the GES. Interviews with 

experts in the sector will be important for 

determining why this may be the case. 

The survey then referred to individual companies 

and their involvement with 4IR technologies. 

Respondents rated their company’s involvement in 

the 4IR, in totality (Figure 3). Interestingly, most 

companies (85%) were confident about such 

participation, suggesting that the majority felt con-

nected to the 4IR. 8% were unsure, whilst 8% 

believed that they were not participating at all in 4IR. 

If 85% of companies felt that they were a part of the 

4IR, what were the reasons provided for the 

remaining companies that considered themselves to 

not be part of the 4IR? Data collected showed that 

the reasons were not that these companies had not 

heard of 4IR technologies but, rather, that the 

technologies were too expensive.

Table 2: Ranking the importance of each Fourth Industrial Revolution technology  
in the global energy sector 

Importance to 
the GES of: 

Big data Real-
time 
data 

Big real-
time data 
analysis 

Artificial  
intelligence 

Robo-
tics 

Machine-
human 

integration 

Internet of 
things 

Mean rank 2.50 2.00 2.12 2.81 3.96 3.65 2.42 

Std deviation 1.273 1.575 1.306 1.575 2.236 1.896 1.501 

 

 

73%

23%

4%

% RESPONDENTS

Very important Important Somewhat important
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 Figure 3: Company participation in the Fourth 

Industrial Revolution.  

Once the respondents had rated their company’s 

involvement in 4IR, they went on to describe their 

company’s usage of these technologies. Descriptors 

ranged from no use of 4IR technologies, partial use, 

good use, very good use, and pioneer or leader of 

4IR technologies development. Half (50%) of the 

respondents described their company usage as ‘very 

good’ or ‘good,’ whilst a third were more modest, 

with a rating of ‘fair or partial.’ Only one company 

believed they were a ‘pioneer’ or ‘leader’ in the 

development of 4IR technologies, despite their 

country of origin. The pioneer identified was a 

South African energy company.  

Respondents were asked to name specific 4IR 

technologies they used. Some referred to distinct 

names. Others were non-specific, broadly cate-

gorising the technologies into whether they could 

best be described as tools enabling the collection of 

BRTD, the analysis of BRTD, the IoT, AI, ROB and 

MHI. All responses, specific and non-specific, were 

then clustered according to these category 

descriptives. Specific technologies referred to 

included: remote-controlled drones, uncrewed 

aerial vehicle (UAV) inspection technology, smart 

thermal and infrared sensors, microcontrollers 

(MCUs), digital signal controllers (DSCs) and 

advanced computer chip technology. Drones for 

thermal capturing use special, thermal and infrared 

sensors to capture invisible temperature and other 

climate data. UAVs also use drones equipped with 

infrared and thermal sensors to inspect energy 

infrastructure and capture various geographical 

information. The latter comprises relief data of land 

and climatic conditions such as temperature, wind 

speed, rainfall, etc. The data are then used to create 

3D models and maps that provide important 

information for new, energy production site plan-

ning and current site management. It is accepted 

that technologies such as UAVs and robots are not 

new, but,the way in which they are being used is 

different and they offer a greater range of 

capabilities than general purpose technologies. 

UAVs and robots have been repurposed to collect 

large amounts of RTD that are transferred rapidly 

using 5G networks, to mobile devices and sophis-

ticated computers that use complex algorithms to 

analyse the data in ways that are more accurate and 

therefore reliable.  

The IoT is about connecting and integrating 

multiple smart devices and users across the globe 

through the internet. Examples of IoT identified by 

the survey respondents were 5
th
 generation mobile 

networking technology (5G) to transfer bigger 

quantities of data to a range of smart, digital devices 

(mobile phones, smart meters, smart grids, virtual 

power plants and smart, remote environmental 

sensors). It must be noted that access to 5G is still 

limited, particularly in rural areas of South Africa, 

and this presents an imbalance in terms of who 

benefits from 4IR technologies such as the IoT 

(facilitated by 5G). That said, Jordaan et al. (2019: 

12) indicate that, although 5G ‘applications pose a 

series of challenges including practical implemen-

tation, cost of implementation, and stakeholder and 

citizen commitment among others, the benefits that 

smart cities offer for the South African context, like 

smart resource management, energy efficiency, long 

term cost saving, improved services, etc. will 

definitely out-weigh the challenges.’  

Devices such as smart meters transmit data 

between consumers and suppliers in real time. 

Consumers themselves can measure their 

consumption of energy in real time. Energy suppliers 

can also use smart meters to monitor energy 

consumption patterns, adjust supply accordingly 

and subsequently draw an energy billing system that 

is more accurate and efficient. Smart sensors that are 

connected through the IoT are used to collect 

operational data relating to a particular energy plant 

to monitor operations and where necessary carry 

out maintenance remotely.  

BRTD analysis incorporates implementing 

intelligent information control and management 

systems, including grid management systems, 

remote monitoring and control systems, building 

information management systems, supervisory con-

trol and data acquisition systems, intelligent 

monitoring and controlling photovoltaic systems, 

and other advanced software tools to analyse large 

quantities of data as it comes in live time. Such tools 

are used for managing and supervising process 

operations remotely and in real time. Detailed 

84%

8%

8%

% RESPONDENTS

Yes No Not sure



8    Journal of Energy in Southern Africa • Vol 33 No 2 • May 2022 

images of energy site infrastructure are assessed 

when addressing maintenance-related matters for 

the plant.  

AI is associated with respondent references to 

using smart machines (that enable clean energy 

solutions), algorithms and algorithmic trading 

systems (where computers conduct complicated, 

online, electricity trading activities, at much faster 

speeds, based on live energy market data and 

without human intervention) and, of course, virtual 

power plants. Virtual power plants are used to 

relieve the electricity load on the grid by enabling 

the distribution of excess power generated during 

off-peak load times to individuals during periods of 

high demand. Excess electricity may then be traded, 

algorithmically, on the energy exchange system. 

Five of the 22 referenced technologies referred to 

the use of AI, one to algorithmic trading and two to 

running plants virtually.  

ROB is referred to twice without listing any 

technology names. South African firms surveyed are 

not using ROB in their operations. The two firms 

that are using ROB are from China and Germany. 

MHI-augmented reality using MHI that combines 

machine and human intelligence, was only 

mentioned by one respondent. Again, no tech-

nology names were provided. Like ROB, technolog- 

ies enabling MHI are used even less.  

A glance at the number of times certain 

technologies and technology groupings were named 

suggest a clear disparity between using technologies 

presented in categories one to four, focusing on 

accessing, storing, transferring and analysing BRTD 

and the technologies that drew on AI, ROB and 

MHI. Most of companies use 4IR technologies to 

collect and access plant data remotely, using drones 

and the IoT, and then analyse them using various 

data management systems. MHI appeared as an 

uncharted territory in energy, with one German 

company reporting to be using it. Further 

investigation is needed. ROB are also minimally 

applied in China and Germany. None of the South 

African firms are using ROB in the production and 

distribution of energy. The 4IR technologies 

recognised by South African firms all related to the 

collection, access and analysis of big, real-time data. 

Algorithmic trading stands out as underutilised, and 

the development of virtual power plants poor, with 

only two German companies adopting this.  

According to respondents, most of these used 

technologies originated in the United States, Europe 

(predominantly Germany) and China. Yet, the 

German and Chinese companies interviewed 

indicated that they were not involved in the 

production and development of these technologies. 

So, a question that remains is why this may be the 

case, and which types of companies are producing 

these technologies in Germany and China (for 

example, is this a function of company size?). 

Table 3 shows how respondents rated the level 

of company usage for each category of non-specific 

technology, from 1 being the most and 7 the least 

used. Calculated frequencies show that half of all 

respondents felt that using technology facilitating 

access to BD was of high importance. And those 

enabling access to real-time, live data was valued 

even more – in fact, the most. Rating levels 1 and 2 

taken together, for the same technologies, equated 

to 78% of total respondents. The IoT, as the enabler 

of data access, also showed high levels of 

importance with 62% of participants scoring this 1 

or 2. The inverse is true for AI, MHI and ROB. ROB 

was viewed by firms as being the least important to 

use. 

Calculated means in Table 4 display the ranking 

for each variable. Access to BRTD, with a lower 

mean of 2.50, is ranked the highest in terms of the 

importance of using these technologies in the 

surveyed companies. The use of ROB, with the 

highest mean of 4.73, is ranked the lowest for its 

importance in the companies, followed by using of 

MHI (mean = 4.50) and AI (mean = 3.69). This 

mirrors the global scenario described previously in 

the paper.  

Table 3: Respondent ratings of the level of usage for each criterion (non-specific technology)  
in their company. 

 Variables  Most 
important 

2 3 4 5 6 Least important 

BD (%) 19.2 30.8 7.7 15.4 11.5 7.7 7.7 

RTD (%) 38.5 38.5 0.0 3.8 7.7 0.0 11.5 

BRTD analysis (%) 19.2 26.9 23.1 19.2 7.7 0.0 3.8 

AI (%) 3.8 34.6 19.2 3.8 19.2 7.7 11.5 

ROB (%) 15.4 3.8 15.4 7.7 3.8 23.1 30.8 

MHI (%) 0.0 23.1 15.4 7.7 7.7 34.6 11.5 

IOT (%) 23.1 38.5 15.4 0.0 3.8 7.7 11.5 
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Table 4: Importance of companies using Fourth Industrial Revolution technologies. 

 Using: Big data Real-time 
data 

Big real-time 
data analysis 

Artificial  
intelligence 

Robotics Machine-
human 

integration 

Internet of 
things 

 Mean 3.23 2.50 2.85 3.69 4.73 4.50 2.92 

Std. deviation 1.92 2.00 1.49 1.87 2.25 1.86 2.04 

Table 5: Ranking the efficiency levels of company 4IR technologies. 

Efficiency of: Big real-time  

data 

Big real-time data 
analysis 

Artificial  
intelligence 

Machine-human 
integration 

Internet of 

 things 

Mean 1.73 1.54 2.16 2.20 1.80 

Std. deviation 0.667 0.582 0.624 0.645 0.577 

Table 6: Respondent ratings of the level of reliability for each criterion (non-specific technology)  
in their company. 

 Reliability of: Big real-time  
data 

Big real-time data 
analysis 

Artificial  
intelligence 

Machine-human 
integration 

Internet of things 

Mean 1.65 1.42 2.16 2.16 1.88 

Std. deviation 0.63 0.50 0.80 0.75 0.67 

Table 7: Respondent ratings of the level of integration for each criterion  
(non-specific technology) in their company. 

Integrating: Big real-time 
data 

Big real-time data 
analysis 

Artificial  
intelligence 

Machine-human 
integration 

Internet of 
things 

Mean 1.96 1.84 2.33 2.33 2.08 

Std. deviation 0.45 0.47 0.64 0.56 0.58 

 

After ranking the importance of using different 

4IR technologies in their companies. respondents 

had to consider how efficient they believed the 

technologies to be (Table 5). Technologies that 

enabled the analysis of real-time data collected by 

companies were seen to be the most efficient (mean 

= 1.54) as this is about how firms can use live data. 

This can only happen if firms have the tools to 

collect BRTD (with data access awarded a mean of 

1.73) and the IoT that connects both processes 

together (mean = 1.80).  

The technology variables were ranked according 

to their reliability (Table 6). The rankings were simi-

lar to those representing efficiency. Technologies 

used for analysing real time data were again con-

sidered the best in terms of being reliable (mean = 

1.42). With a mean of 1.65. technologies used to 

access such data ranked second. AI and technol-

ogies integrating machine and human learning held 

the lowest rank, with a mean of 2.16 for both 

variables, with the vast majority of respondents 

rating their reliability as poor. All respondents 

commended the reliability of data analysis tech-

nologies.  

The level of integration of each variable within 

the sampled companies is ranked in Table 7. The 

integration of data analysis technologies outranks 

other technologies, with a mean of 1.84. Levels of 

integration of technologies used for accessing data 

and connecting multiple devices through the internet 

(IoT) are ranked second and third. The least 

integrated of all technologies identified were those 

using AI and the combining of machine-human 

intelligence (mean = 2.33). 

The importance of using 4IR technologies within 

energy companies and their contribution to effici-

ency, reliability and integration were all similarly 

ranked and clear patterns emerged. Technologies 

enabling access to BRTD and the processing and 

analysis of such data were valued the most with 

respect to all contributing to perceived importance, 

levels of efficiency, reliability, and ability to be 

integrated across the energy system. Of course, any 

analysis of such data will first and foremost require 

the IoT to store data and enable its transmission to 

multiple mobile and other devices in real-time. As 

such, the importance of this IoT was ranked third. 

ROB was recognised as least important for use by 

companies. AI and MHI were seen to be profoundly 

less reliable, efficient and integrated within the sur- 
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surveyed firms. For the GES, the importance of 

these technologies was the most poorly ranked.  

3.2 Country analysis 

China rated the importance of 4IR technologies to 

the GES as being higher than South Africa and 

Germany, with a mean of 2.6 (Table 8). South 

Africa and Germany had similar mean values for this 

construct. China also rated the importance of using 

4IR technologies in their companies higher than 

both Germany and South Africa,. The means for 

Germany and South Africa were, again, much 

higher (3.9 and 4.4), indicating that they ranked 

these technologies as less important within their 

companies. Variances in the mean for the other 4IR 

technologies variables were minimal, indicating 

minimal country-level differences. 

The Kruskal-Wallis and Mann-Whitney tests 

were used to assess country-specific differences in 

the survey data collected. As shown in Table 9, the 

data analysis calculated a statistically significant 

difference in the respondents’ perceptions for two 

constructs. The first was in response to their 

perceived importance of 4IR technologies to the 

global energy sector. The p-value of 0.002 for this 

construct was lower than the recognised p-value of 

0.05 required for statistical significance.  

Secondly, there was a statistically significant 

difference in the responses of China, Germany and 

South Africa towards the perceived importance of 

using 4IR technologies within companies, with p-

value = 0.005. Variables measuring efficiency, 

reliability and integration between countries were 

not statistically significant as each of the p-values 

were larger than 0.05 and so are excluded from the 

analysis (Table 9). 

The Mann-Whitney test was used for post-hoc 

testing. This test was used to identify in which pair

 
Table 8: Kruskal-Wallis Test. 

 N Mean Std. deviation 

Importance to GES China 9 1.8 0.5 

Germany 9 3.1 0.9 

South Africa 8 3.4 0.8 

Total 26 2.8 1.0 

Use China 9 2.6 1.4 

Germany 9 3.9 0.9 

South Africa 8 4.4 1.0 

Total 26 3.6 1.3 

Efficiency China 9 1.8 0.3 

Germany 9 1.9 0.4 

South Africa 8 1.9 0.5 

Total 26 1.9 0.4 

Reliability China 9 1.8 0.6 

Germany 9 1.9 0.3 

South Africa 8 1.9 0.5 

Total 26 1.8 0.5 

Integration China 8 2.1 0.3 

Germany 9 2.2 0.3 

South Africa 8 2.1 0.6 

Total 25 2.1 0.4 

Table 9: Statistical significance of country differences. 

 Mean descriptives Importance to GES Use Efficiency Reliability Integration 

Kruskal-Wallis H 12.13 10.71 0.08 0.03 0.39 

Asymp. sig. (p-value) 0.002 0.005 0.960 0.986 0.823 
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Table 10: Mann-Whitney Test Statistics (China and Germany). 

 Importance to GES Use 

Mann-Whitney U 11.50 11.50 

Asymp. sig. (2-tailed) (p-value) 0.01 0.01 

Table 11: Mann-Whitney Test Statistics (China and South Africa). 

 Importance to GES Use 

Mann-Whitney U 3.00 7.50 

Asymp. sig. (2-tailed) (p-value) 0.00 0.01 

Table 12: Mann-Whitney Test Statistics (South Africa and Germany). 

 Importance to GES Use 

Mann-Whitney U 29.50 21.50 

Asymp. sig. (2-tailed) (p-value) 0.50 0.16 

 
 

of countries the above differences lay. The p-values 

indicated in Tables 11 and 12 are lower than 0.05 

for both the China/Germany pair (0.01) and the 

China-South Africa pair (0.00) for both descriptor 

constructs. There are significant differences between 

China on the one end and Germany and South 

Africa on the other (with a p-value of 0.50 in Table 

12). In both cases, China has amplified the 

importance of 4IR technologies in energy globally 

and at the company level. The results of the Mann-

Whitney test also point to significant differences 

between China, on the one end, and Germany and 

South Africa (Table 12) on the other. In both cases, 

China has amplified the importance of 4IR 

technologies in energy globally and within their 

companies. What remains uncertain, again, is why 

this is the case. 

Variances in the variables measuring the effic-

iency, reliability and integration of 4IR technologies 

were minimal and of no statistical significance, and 

therefore excluded. 

In summary, and despite China placing a higher 

value on the importance of 4IR technologies within 

Chinese energy firms, there was still a complete 

recognition of the importance of 4IR technologies by 

all of the surveyed companies. In fact, 85% of these 

companies believed themselves to be a part of the 

4IR, although in the context of users and not 

pioneers of these technologies. When ranked 

according to how important it is to access and use 

4IR technologies in energy, particularly for adding to 

the reliability, sustianability, and interconnectedness 

of the sector, access to BRTD dominated.  

4. Limitations of the study 

A key limitation impacting the study was the 

challenges experienced during the data collection 

stage. All data were collected during 2020, when the 

effects of the Covid-19 pandemic in China, 

Germany and South Africa peaked. Economic 

lockdowns further reduced the number of responses 

received, resulting in a smaller than expected sample 

size. Despite this, the surveys were conducted online 

and the data findings and analysis concluded are 

considered statistically reliable. The second occur-

rence worth considering was that respondents rated 

variables in some survey questions, rather than 

ranking them. This did not present a significant 

limitation and was compensated for by using other 

forms of ranking techniques: in this case, mean and 

standard deviation calculations. 

5. Conclusions 

Despite the smaller than ideal size of the sample 

surveyed, clear conclusions emerged from this 

resarch. There was a shared understanding of the 

meaning of the 4IR and its relationship with the 

energy sector. Whether viewed separately or 

together, these meanings included the interactions 

between human and machines to improve pro-

ductivity in industry; creating technology to connect 

globally; developing and using AI in industry; and 

developing other, new technologies to improve 

efficiencies. Most energy companies (85%) believed 

themselves to be playing a recognisable role in the 

4IR, although only one (a South African company) 

described itself as a leader in 4IR technologies devel-

opment. Additional research should investigate 

which countries and which companies are involved 

in pioneering developments in 4IR energy tech-

nologies. Next, the analysis delivered conclusions 

about the measured importance of using these 

technologies, as well as the extent to which they are 

reliable, efficient, and integrated within the energy 

companies. Surveyed firms identified technologies 

providing access to and analysis of BRTD as being 
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most important for usage in the wider, global energy 

sector as well as at local, company level. Energy 

production and distribution technologies of least 

importance were MHI technologies, followed by 

ROB. For levels of efficiency, reliability, and ability 

to be integrated across the energy system, tech-

nologies enabling access to BRTD and the proces-

sing and analysis of such data were, again, valued 

the most. The IoT was ranked the third most 

important 4IR technology as it enables the storage 

and transmission of data to multiple devices in real-

time. AI and MHI were seen to be much less reliable, 

efficient and integrated within the surveyed firms.  

These conclusions suggest the need for further 

research on why there are these clear distinctions 

between the importance and usefulness (in terms of 

efficiency, reliability and intergratedness) of 4IR 

technologies linked to BRTD access and data 

analysis, and that associated with AI, ROB and MHI. 

Furthermore, it remains to be investigated why 

Chinese companies place more value on the 

importance of 4IR technologies in energy, than 

those of Germany and South Africa.  

We recommend that for South Africa to be 

competitive in the global energy sector it needs to 

engage with and embrace 4IR technologies to a 

greater extent. Before this point can be reached, 

however, there needs to be an understanding as to 

whether 4IR technologies are being applied in the 

South African energy sector and, if this is the case, 

how they are being applied. Research reflected in 

this paper has shown that South African companies 

value 4IR technologies as tools to facilitate and 

improve efficiency, reliability and integration within 

the energy production and distribution systems, and 

that a higher value is placed on access to and 

analysis of BRTD and the IoT. Other 4IR technol-

ogies are, however, according to the survey results, 

not being applied in the South African energy sector. 

This is despite the fact that literature has also shown 

that there is huge potential for AI, ROB and MHI to 

advance the energy sector and that there is much to 

learn from countries such as China and Germany, 

who are already using these technologies. Data 

collected showed that the reasons were not that 

these companies had not heard of 4IR technologies 

but, rather, that the technologies were either too 

expensive or linked to other conditions, or for 

reasons not given. These other reasons will be 

explored during the interview stage of this study. 

Moreover, although expansion in 5G technology 

and the IoT does imply huge upfront and imple-

mentation costs (particularly in rural areas where 

infrastructure is lacking), the opportunities that smart 

cities provide – improved efficiency, better resource 

management, improved service provision and long-

term cost saving (Jordaan et al., 2019) – are hugely 

appealing and must be explored. The focus of 

research in energy in South Africa over the past 

decade has predominantly been on expanding the 

capacity of Eskom. Research needs to expand into 

how 4IR technologies may be leveraged at different 

parts of the production and distribution systems to 

boost efficiency, reliability and integration.  
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