
Abstract

The unique properties of solar energy have led to
increasing demands in various countries. In order to
use solar energy effectively, environmental and geo-
graphical circumstances related to solar intensity
must be considered. Different factors may affect the
selection of suitable locations for solar plants. These
factors must be considered concurrently for opti-
mum location identification. This article presents an
approach for the location of solar plants by data
envelopment analysis (DEA). Efficiency scores over
a twelve month period were evaluated by using a
modified similarity to ideal solution (TOPSIS)
method. This approach was applied to 30 different
cities in different regions of Turkey. 

Keywords: solar energy, Data Envelopment
Analysis,, super efficiency, TOPSIS

1. Introduction
Renewable alternative energy resources are expect-
ed to play an increasing role in future scenarios for
energy production. The environmental and techni-
cal benefits of solar energy have made it a promis-
ing alternative to conventional energy resources.
Solar energy is freely available and is easily har-
nessed using both passive and active designs,
reducing our reliance on hydrocarbon-based ener-
gy. The Sun is an ancient energy source and is the
root cause of almost all fossil and renewable energy
types. Sunlight has influenced building design since
the beginning of architectural history. Solar archi-

tecture and urban planning methods were first
employed by the Greeks and Chinese, who orient-
ed their buildings toward the south to provide light
and warmth. 

Solar energy is set to develop robustly all over
the world. One of the most useful applications of
solar power is the energy generation of solar plants.
These facilities have huge potential for harnessing
energy in remote sunny regions.

Location decisions are used in all fields of facili-
ty establishment. Determining the relative suitability
of different locations has special importance in the
case of solar systems. The term “location” in this
case refers to the modelling, formulation, and solu-
tion of a class of problems that can best be
described as siting facilities at a particular spot with-
in a given region.

The International Energy Agency said that the
development of affordable, inexhaustible and clean
solar energy technologies will have huge long-term
benefits. It will increase a country’s energy security
through reliance on an indigenous, inexhaustible
and mostly import-independent resource,
enhance sustainability, reduce pollution, lower the
costs of mitigating climate change, and keep fossil
fuel prices low. The early development of solar tech-
nologies, starting in the 1860s, was driven by an
expectation that coal would soon become scarce.
However, development of solar technologies stag-
nated in the early 20th century in the face of the
increasing availability, economy, and utility of coal
and the development of the petroleum industry.
The 1973 oil embargo and 1979 energy
crisis caused reorganization of energy policies
around the world and brought renewed attention to
the development of solar technologies. Since the
cost of investment in a solar plant is high, feasibility
studies prior to implementation of a project are
important. Several physical, economic, social, envi-
ronmental and political factors must be considered
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in the development of solar energy resources.
Scientific studies examining ideal geographical
location selection in terms of maximizing efficiency
and yield are essential parts of this complex deci-
sion making process. There are two important crite-
ria in the selection of the solar plants; efficiency of
the area in terms of the amount of sunlight and the
minimization of energy production costs. The cost
of the land at which the solar plants might be estab-
lished is one of the fundamental features of the sec-
ond criterion. Proximity to transformer centres,
topography, land cover, slope, maintenance costs,
the presence of ecological conservation areas, land-
slide areas and residential areas are other significant
factors in the economic aspects of site selection.

Deriving a model of the relationships between
these factors provides investors the opportunity to
understand the feasibility of a given project. In this
study, data envelopment analysis (DEA) and the
TOPSIS model were applied to provide a quantita-
tive characterization of the utilization of solar ener-
gy, cost and distance to power distribution net-
works. The results of this analysis will help in the
determination of the most appropriate sites for solar
plants in Turkey. The cost of energy, which is the
basic variable of second criterion, must be consid-
ered in the assessment. There have been a number
of previous studies of location problems (Domschke
and Drexl, 1985; Bhatnagar and Sohal, 2005).
Several surveys of the applications of location mod-
els have been performed (Eiselt, 1992; Jacobsen
and Madsen, 1980; Marks and Liebman, 1971;
Wirasinghe and Waters, 1983; Hopmans, 1986;
Kimes and Fitzsimmons, 1990; Huxley, 1982;
Tryfos, 1986; Vasko et al., 1987; Hogan, 1990;
Azadeh et al., 2008). In this article, DEA was used
as a multi-criteria method for location of solar

plants. The DEA efficiency scores over a twelve
month period were ordered by TOPSIS for selection
of the best site.

2. Materials and methods
2.1 Materials (selection of parameters)

Some factors that are effective for selecting the loca-
tion of solar plants were proposed. These parame-
ters were then used for determining the priority of
cities for location of a solar plant. After careful con-
sideration of previous studies into the plant location
problem, certain quantitative and qualitative factors
were selected for focus. These factors were utilized
by techniques aimed at prioritizing different possible
locations of solar plants. In this article, a DEA
approach using a number of pre-set indicators was
applied. Ten different parameters were used. These
parameters were primarily related to economic fac-
tors, ranging from vulnerability to natural disaster
hail, etc.) to more application-based variables such
as convection, transformers, and the price of the
land. These parameters were as follows:

Inputs

Distance to power distribution networks (km): Low
distance to power distribution networks is a benefit
in location selection. Because the cost of electrifica-
tion from the central power network is very high,
supplying energy from local power generators with
low maintenance and operational costs is preferred.
Thus, placing solar plants in sunny locations is an
excellent solution. With this assumption, this
parameter has an input structure.

Land cost: Land is the base infrastructure for con-
struction of any plant. This is more important for
solar than other plants because they need consider-
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Figure 1. Selected cities in Turkey
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Figure 2: Areas which could not establish central for Icel (Mersin)

Figure 3: Comparison of efficiency scores by average monthly solar energy over 12 months for
Antalya and Muğla City

a) Efficiency score for Antalya b) Efficiency score for Muğla

c) Average monthly solar energy over 12 months

for Antalya 

d) Average monthly solar energy over 12 months

for Muğla 



ably more land than other methods of energy gen-
eration (Ramanathan, 1999).

The number of earthquakes: The number of earth-
quakes that occurred within in 100 km of cities from
1990 to 2008, under the assumption that number
of past earthquakes is an indicator of future earth-
quakes. The number of earthquakes was consid-
ered as an uncontrollable input.

The number of flooding rains: The number of tor-
rential rains which caused flooding between 1960
and 2000. The number of flooding rains was also
considered as an uncontrollable input. 

The number of severe hailstorms: The number of
damaging hailstorms between 1960 and 2000 was
considered as an uncontrollable input.

Snow and blizzard: The number of days with snow
and blizzard between 1960 and 2000 was also con-
sidered as an uncontrollable input.

The number storms and severe hurricanes: The
number of storms and severe hurricanes which
resulted in damage and economic loss between
1960 and 2000 was considered as an uncontrol-
lable input.

Other adverse natural events: The number of wild
fires, drought and freezing, severe fogs, etc. that
occurred between 1960 and 2000 were considered
as an uncontrollable input.

Human and financial losses: This input represents
human and financial losses from 1960 until 2000
and was considered as an uncontrollable input.

The single output (Solar monthly average): The pri-
mary index for locating solar plants is solar month-
ly average, which is equal to solar global radiation
multiplied by solar duration and divided by month
days.

2.2 Methodology (data envelopment

analysis)

Technical, geographical, and social factors for loca-
tion optimization detailed in the literature were con-
sidered. This study utilized DEA for assessment of
solar plant locations in the selected cities according
to each city’s unique characteristics. DEA has been
previously used in such applications (Cook et al.,
1998). For this purpose, a number of parameters
were defined and considered as inputs and outputs
of the DEA model. 

Data envelopment analysis is a linear program-
ming based technique which aims to measure the
relative performance of decision units in times
when it is hard to make a comparison between

inputs and outputs which have been measured by a
number of different measures or which have differ-
ent measurement units. “Decision Units” are man-
agement or economic organizations whose per-
formances will be compared (Zhou et al., 2008;
Sozen and Alp, 2013). The method was developed
firstly by Charnes Cooper and Rhodes. in order to
measure and compare technical efficiencies
(Charnes et al., 1998). While an ordinary statistical
method evaluates the producers according to an
average producer with the measures of central ten-
dency approach, the DEA technique compares
each producer only with the “best” producers. The
most important specification of this method is the
identification of the inactivity rate and the sources
in each decision making unit. By means of this
characteristic, the method may provide direction to
managers in regards to decreasing the input and/or
increasing the output. The most important innova-
tion that the method brings is measurement without
predicting any predetermined analytical production
function in environments where a high output is
obtained by using high input. Additionally, the
inputs and outputs are free from the measurement
unit, which is why it is possible to measure different
dimensions simultaneously. There are three basic
methods used in data envelopment analysis; CCR
(Charnes-Cooper-Rhodes) Method, BBC (Banker-
Charnes-Cooper) Method and Additive Method.

In this study, CCR and input-oriented models
were used. Using an input-oriented CCR DEA
model, by minimizing inputs, the cities which can
have maximum output are indicated as efficient.
The CCR method is based on the assumption that
“constant returns to scale”. If the activity of the jth.
decision making unit is hj, the goal should be the
maximization of this value. Thus, the goal function
can be stated as in the formulation (Eq.1) under the
input-oriented assumption (Tarım, 2001):

(1)

(2)

The solution of the fractional programming set is
more difficult compared to the linear programming
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set. When the model is stated with linear program-
ming logic, (Eq.3) and (Eq.4) formulations can be
achieved:

Considering whether the model is input-oriented
or output-oriented, if a decision maker wants to
make a decision for the activities of the decision
points using the CCR method, application of the
above model for all decision points is required.
When the model is solved for each decision point,
total activity standards will be obtained for each
decision point. The standards being equal to 1’
indicates activity for decision points, whereas those
being smaller than 1’ indicates inactivity for deci-
sion points. 

2.2.1 Super efficiency
If most of the DMUs are efficient, then ranking of
efficient DMUs with respect to each other with the
concept of super efficiency is important. The idea of
super efficiency was first presented by Andersen
and Petersen (1993). They offered a model for
assessing efficiency that incorporates basic DEA
principles while relaxing the upper bound of 1 for
efficient units, thereby restoring full information for
such units. This method has been denoted ‘‘Super-
efficiency Analysis”. Various discussions and appli-
cations of the method have appeared in the litera-
ture. 

Suppose, we have n DMUs where each DMUj,
j=1,2,...,n. Produces s output. Yrj (r=1,2,...,s) using
m input, xıj (i=1,2,...,m). The efficiency of a specif-
ic DMUo, oε{1,2,..,n} can be evaluated by the BCC
model. This model is as follows:

The only difference between the Andersen and
Petersen (1993) super efficiency model and
CCR/BCC model is the disregard of the DMU that
is being evaluated in the constraints. All of the
CCR/BCC inefficient DMUs have the same weights
and efficiency score results as the Andersen and
Petersen super efficiency model. An input-oriented
super-efficiency DEA model evaluates the input
super-efficiency when outputs are constant at their
current levels. An output-oriented super-efficiency
DEA model evaluates the output super-efficiency
when inputs are constant at their current levels
(Chen, 2005). For a more complete explanation of
super efficiency DEA models, please refer to Seiford
and Zhu (1999), which provides a complete list of
super efficiency DEA models (Zhu, 2001). In this
article, we compared twelve efficient cities which
had efficiency scores equal to one by using the scale
efficiency. 

2.2.2. Modified TOPSIS Method
The TOPSIS method was proposed by Hwang and
Yoon in 1981 and is applied to many decision-mak-
ing problems (Boran and Boran, 2013). A modified
TOPSIS method proposed by Deng and Willis in
2000 was used in this paper. The reasons for using
TOPSIS are its rational and comprehensible design
and the simplicity of its computations (Deng and
Willis, 2000). TOPSIS allows for comparison of
objective weights. The concept of TOPSIS is that
the most preferred alternative should not only have
the shortest distance from the positive ideal solu-
tion, but also have the longest distance from the
negative ideal solution. The TOPSIS method con-
sists of the following steps (Shyur & Shih, 2006):

Step 1: Establish a decision matrix for the ranking.
The structure of the matrix can be expressed as fol-
lows: where Aj denotes the alternatives j, j=
1,2,...,J; Fi represents ith attribute or criterion, i=1,
2,..., n, related to ith alternative; and fij is a crisp
value indicating the performance rating of each
alternative Ai with respect to each criterion
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F1 F2 ... Fj F

(6)

Step 2: Normalize the decision matrix. The normal-
ized value {rij} can be computed by:

(7)

Where j = 1, 2 ... ,n; i = 1, 2 ..., m
The above step is not necessary if DEA efficien-

cy scores are between 0 and 1.

Step 3: Calculate the weighted normalized decision
matrix by multiplying the normalized decision
matrix by its associated weights. The weighted nor-
malized value vij is calculated as:

vij = wi × rij, j = 1, 2, ... J; i = 1, 2, ..., n (8)

where wi represents the weight of the ith attribute or
criterion.

Step 4: Determine positive and negative ideal solu-
tions. The positive ideal solution and negative ideal
solution are determined, respectively, as follows:

(9)

(10)

Where I1 represents benefit criteria, and I2 repre-
sents cost criteria.

Step 5: Obtain the weighted separation measures
for positive and negative ideal solutions. Separation
measures based on weighted Euclidean distance
are calculated for positive and negative solutions,
respectively:

(11)

Step 6: Calculate the relative closeness to the ideal
solution and rank the alternatives. The relative
closeness for alternative Ai according to A+ is
defined as follows:

(13)

where the index value lies between 0 and 1. The
larger the index value means the better the per-
formance of the alternatives.

3. Results and discussions
Cities used in the proposed model are presented in
Figure 1. Selected cities were those that have warm
weather in Turkey, which led to wide coverage of
the model. Land cost, distance to power distribu-
tion networks and numbers of earthquakes, heavy
rains, hailstorms, storms, avalanches, landslides,
fog, drought, thunderstorms, frost and lost life and
financial losses are presented in Table 1. The values
of distance to power distribution networks were
based on the scores determined by the experts for
each city. 

The maximum and minimum values along with
the standard deviations of the fundamental indica-
tors for the selected cities are given in Table 1. With
this table, the study population for the analysis is
defined.

Selected indicators for cities given in Table 1
were determined by considering the allowing of
central establishment areas. In Figure 2, which dis-
plays the Içel region, areas in which centrals could
not be made are shaded grey. 

The required data indicators used in the pro-
posed model were gathered from the Turkish State
Meteorological Service. For the values of indicators
such as land cost, there was no exact data available.
The combination of the measured indicators
ensures adherence to the DEA convention that the
minimum number of DMU observations should be
greater or equal to three times the number of inputs
plus outputs (Raab and Lichty, 2002). For this
study, 30 observations were equal to three times the
sum of the input and output variables
(30≥3(9+1)). 

By analysing the results, critical indicators for
each DMU were identified. Land cost and distance
to power distribution networks were the most criti-
cal indicators for about 60% of the cases and the
other indicators were most important in the remain-
ing 40% of cases. The efficiency score results are
presented in Table 2. As seen from Table 2, the
cities with efficiency scores of 1 were those that
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attained the maximum efficiency for solar plant
construction according to the determined variables.
In other cities, an efficiency score below 1 revealed
that one of the indicators would be able to attain an
efficient value if, for a given output level, no equi-
proportionate reduction of inputs could result in the
same level of output. For example, the city of
Adana failed to be efficient in January and attained

an efficiency score of 0.97, which was near to the
efficiency score of 1. As a city’s efficiency score
decreased, the attainment of efficiency became
more difficult. According to results obtained for
2010, Kayseri, Diyarbakır, Rize, Hakkari, Sanliurfa,
Usak, Gaziantep, Tunceli, Nigde, Konya, Karaman,
Siverek are the most ideal cities in the order shown.
The efficient cities were evaluated according to the
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Table 1: Summary statistics of variables used in DEA model

Land Distance Earth- Heavy Hail Snow and Storm Avalanches, land- Loss of life Monthly
cost (TL) (Km) quake rain cold slides, fog, drought, & goods solar

thunderstorms, frost
average

MAX 700 214 371 212 117 148 141 78 28 8884

MIN 20 5 10 10 3 3 2 1 2 201

Standard 151.7 49.8 100.5 55.7 29.7 28.1 36.2 16.8 7.4 2210.2
deviation

Table 2: The efficiency score results of DEA for 12 Months of 2010

Months DMU 1 2 3 4 5 6 7 8 9 10 11 12 Max Min *Std
Dev

Diyarbakir 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Gaziantep 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Hakkari 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Karaman 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Kayseri 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Konya 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Nigde 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Rize 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Siverek 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Şanliurfa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Tunceli 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Usak 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Adana 0.97 1 1 1 1 1 0.9 1 1 1 1 1 1 0.9 0.03

Amasya 1 0.84 1 1 1 1 1 1 1 0.89 0.92 0.73 1 0.73 0.09

Hatay 0.76 0.66 0.91 1 1 0.96 0.97 0.93 1 0.85 0.94 0.85 1 0.66 0.11

Develi 0.85 0.43 0.56 0.7 0.66 0.7 0.57 0.83 0.65 0.85 0.48 0.53 0.85 0.43 0.14

Bolu 1 0.41 1 1 1 1 1 1 1 0.7 1 1 1 0.41 0.18

Antalya 0.55 0.6 0.74 0.67 0.53 0.47 0.53 0.59 0.65 0.53 0.49 0.38 0.74 0.38 0.1

Kastamonu 0.64 0.38 1 1 1 0.68 0.97 1 1 0.49 0.65 0.45 1 0.38 0.25

Agri 0.41 0.36 0.79 0.64 0.58 0.85 0.83 0.84 0.96 0.66 0.69 0.59 0.96 0.36 0.18

Çanakkale 0.57 0.84 0.82 1 1 0.86 0.91 0.97 0.83 0.54 0.48 0.33 1 0.33 0.23

Elazig 0.86 0.31 0.51 0.56 0.39 0.48 0.53 0.75 0.86 1 0.59 0.95 1 0.31 0.23

Afyon 0.56 0.58 0.7 0.7 0.83 0.61 0.81 0.82 0.74 0.76 0.42 0.28 0.83 0.28 0.17

Malatya 0.72 0.35 0.52 0.7 0.71 0.55 0.55 0.73 0.64 0.68 0.28 0.3 0.73 0.28 0.17

Artvin 0.49 0.55 0.64 0.58 0.64 0.62 0.52 0.67 0.59 0.32 0.38 0.27 0.67 0.27 0.13

Manisa 0.42 0.73 0.53 0.41 0.53 0.73 0.62 0.48 0.52 0.59 0.32 0.25 0.73 0.25 0.15

Ankara 0.48 0.23 0.58 0.73 0.75 0.44 0.71 0.85 0.77 0.49 0.56 0.31 0.85 0.23 0.19

Erzurum 0.32 0.24 0.29 0.22 0.22 0.23 0.24 0.3 0.28 0.21 0.24 0.23 0.32 0.21 0.04

Mugla 0.2 0.62 0.92 1 1 0.98 1 0.97 0.89 0.81 0.46 0.27 1 0.2 0.3

*Standard deviation



results of analysisies. A reference number was
assigned for each efficient city. These cities are
shaded in Table 3. Table 3 also shows how non-effi-
cient cities can be turned into efficient cities. To

reach desired efficiency for non-efficient cities, the
reference values of efficient cities (considered as ref-
erence for that city) are multiplied by the percent-
ages given in parenthesis and then all the results are
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Table 3: Efficiency scores for January, June and September

DMU Numbers on the right indicate the references for efficient DMUs (in cases with dark background colors); 
the peer names and weight values for inefficient DMUs are indicated by a white background

January June September

Bolu 0 0 5

Çanakkale Icel (0.28) Tunceli (0.24) Tunceli (0.53) Konya (0.23) Tunceli (0.51) Konya (0.22)

Ankara Icel (0.20) Rize (0.10) Icel (0.28) Sanliurfa (0.03) Bolu (0.06) Icel (0.65)
Diyarbakir (0.33) Diyarbakir (0.25) Şanliurfa (0.15) Diyarbakir (0.17)

Manisa Hakkari (0.01) Gaziantep (0.45) Sanliurfa (0.63) Usak (0.05) Bolu (0.68) Hakkari (0.09) 
Diyarbakir (0.20) Tunceli (0.Adana) Şanliurfa (0.Nigde) Tunceli (0.05)

Afyon Icel (0.35) Tunceli (0.26) Icel (0.25) Tunceli (0.32) Konya (0.10) Icel (0.37) Tunceli (0.35) Konya (0.09)

Kayseri 1 0 2

Malatya Hakkari (0.87) Tunceli (0.02) Hakkari (0.38) Tunceli (0.04) Hakkari (0.31) Tunceli (0.15)
Diyarbakir (0.18) Karaman (0.22) Diyarbakir (0.07) Karaman (0.28) Siverek (0.15) 

Adana (0.20) Adana (0.19) 

Icel 4 3 5

Hatay Icel (0.02) Rize (0.04) Icel (0.01) Tunceli (0.29)
Tunceli (0.24) Diyarbakir (0.20) Diyarbakir (0.28) 0

Develi Kayseri (0.27) Nigde (0.Kayseri2) Sanliurfa (0.Karaman) Kayseri (0.22) Nigde (0.02)
Karaman (0.56) Karaman (0.55)

Rize 4 2 1

Artvin Rize (0.08) Hakkari (0.25) Rize (0.10) Hakkari (0.32) Rize (0.13) Hakkari (0.26)
Tunceli (0.02) Diyarbakir (0.10) Tunceli (0.03) Diyarbakir (0.13) Şanliurfa (0.07) Tunceli (0.08) 

Karaman (0.03)

Mugla Tunceli (0.12) Diyarbakir (0.02) Tunceli (0.60) Diyarbakir (0.09) Bolu (0.51) Icel (0.Adana) 
Tunceli (0.06)

Hakkari 9 7 ICEL

Şanliurfa 0 3 4

Usak 0 1 0

Kastamonu Hakkari (0.42) Hakkari (0.46) Hakkari (0.67)

Erzurum Hakkari (0.46) Tunceli (0.10) Hakkari (0.29) Tunceli (0.02) Icel (0.03) Hakkari (0.37) 
Diyarbakir (0.04) Karaman (0.01) Diyarbakir (0.02) Tunceli (0.02) Karaman (0.01) 

Adana (0.12) Adana (0.12)

Elazig Hakkari (0.48) Tunceli (0.20) Hakkari (0.Karaman) Tunceli (0.10) Bolu (0.14) Icel (0.13)
Diyarbakir (0.30) Diyarbakir (0.17) Adana (0.02) Hakkari (0.46) Şanliurfa (0.17) 

Tunceli (0.16)

Amasya 0 0 0

Gaziantep 1 0 0

Tunceli 11 10 9

Nigde 1 0 2

Agri Rize (0.03) Hakkari (0.22) Rize (0.06) Hakkari (0.45) Bolu (0.31) Kayseri (0.21)
Tunceli (0.05) Diyarbakir (0.13) Tunceli (0.10) Diyarbakir (0.28) Hakkari (0.49) Nigde (0.03)

Konya 0 2 2

Karaman 0 4 5

Diyarbakir 11 9 1

Siverek 0 0 2

Antalya Hakkari (0.60) Tunceli (0.17) Hakkari (0.41) Karaman (0.03) Hakkari (0.20) Tunceli (0.27) 
Diyarbakir (0.12) Diyarbakir (0.08) Adana (0.31) Karaman (0.36) Siverek (0.06) 

Adana (0.30)

Adana Hakkari (0.18) Tunceli (0.50) Diyarbakir (0.02) 4 3



summed together, and the results has been shown
in Table 4.

Comparing average monthly solar energy with
efficiency values, it becomes clear that although
Antalya, Mugla, Diyarbakir, Agri and Malatya had
greater monthly solar energy values, they were not
accepted as efficient cities. The land price and the
distance from the nearest electricity distribution cen-
tre caused these cities to not be considered efficient.
The input values which these cities must reach in
order to be efficient are listed in Table 4. The target
values which are obtained by multiplying and
adding the percentile values given in parentheses in
Table 3 required for enabling the three selected
cities (Antalya, Mugla and Agrı) to attain 100% effi-
ciency are calculated and displayed in Table 4. For
example, for the city of Antalya, the distance of the
plant should be no more than 67.85 km from the
power distribution network. The unit land price for
the plant should be a maximum of 58.9 TL/m2. If
these values are met, Antalya will be able to be
among the cities which are efficient for solar plant
construction (Table 4).

Even cities which are efficient or are nearly effi-
cient are efficient in some months but inefficient in
other months. Efficiencies which are 1 or nearly 1
have a high potential for optimal location selection.
For the cities such as Antalya whose efficiencies are
nearly 1 for approximately 0.5-0.6 all months, effi-
ciency can be achieved by reduction of land cost,
distance to transformers or loss of life and goods.
Average monthly sunshine in southern Mediter-
ranean cities is very high, but none of these cities
are efficient. This is partly because land costs in the
Mediterranean cities are very high in contrast to the

efficient cities. Another reason is that they are far
from the electricity transmission networks. Keeping
input values constant, the efficiency value improves
with increases to average monthly solar energy 

For instance, the city of Agri could be efficient if
it changes certain input parameters such as land
prices, the distance to the electricity distribution
centre and loss of life and goods. For Agri, in the
first month, if the land price decreases from 100 to
40.6 Turkish Lira (1TL ≈ $2.4), the distance from
the electricity distribution centre decreases from
47km to 19.68km, and loss of life and goods
decreases from 8 to 2.78, this city will be efficient.
As an additional example, in the first month, Mugla
efficiency score is 0.20 and its benchmarks were
Tunceli with 0.12 and Diyarbakir with 0.02. This
means that Mugla could be efficient if inputs
reached 0.12 of input for Antalya plus 0.02 of input
for Diyarbakir inputs for the first month (January).

Selection of the best location to test the accura-
cy and efficiency in addition to the super-TOPSIS
results was performed. Super efficiency scores and
standings for each month according to the city
which had the highest value of the smallest events
lined up correctly. These results are provided in
Table 5. The efficiencies of the efficient cities,
although they all had a score of 1, can be sorted
among themselves by employing the super-efficien-
cy concept. The super-efficiency scores are given in
Table 5. The sorted scores, which were obtained by
employing the 12-month averages, revealed that
the best place for solar plant construction in Turkey
was Nigde. The sorting of the other efficient cities
can be seen in Table 5. The priority list was validat-
ed by TOPSIS method. 
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Table 4: Analysis of efficiencies

Inputs 1 2 3 4 5 6 7 8 9 10 11 12

Antalya

Land cost (TL) 44.5 47.65 58.9 53.5 45.6 36.65 42.4 47.05 53.5 46.4 38.85 29.65

Distance from 50.4 53.74 65.6 60.02 51.7 42.79 47.65 53 60.02 67.85 43.93 34.14
distribution (km)

Loss of life & 5.5 11.5 12.8 14.1 7 9.82 7.4 10.04 14.1 5.86 10.12 7.51
goods (number)

Mugla

Land cost (TL) 9 49.5 40.5 * * 43.5 * 56 64.5 37 20 22.2

Distance from 1 1.9 4.31 * * 4.86 * 4.85 4.41 4.12 14.1 1.39
distribution (km)

Loss of life & 1.58 3.83 4.77 * * 7.83 * 5.21 6.95 6.56 2.37 2.18
goods (number)

Agri

Land Ccost (TL) 40.6 127.4 85.75 61.6 58 84.5 82.4 81.45 73.4 45.5 69.3 57.3

Distance from 19.68 9.84 38.23 29.92 15.4 40.43 38.71 39.81 45.66 31.05 32.44 27.81
distribution (km)

Loss of life & 2.78 4.38 6.29 4.7 2.92 5.74 5.59 4.35 6.1 4 4.66 4.06
goods (number)

* When city is efficient
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Table 5: Super efficiency scores (%)

DMU 1 2 3 4 5 6 7 8 9 10 11 12 Av. of 
12 months

Nigde 455.1 333.6 585.8 650.6 555.0 519.7 517.8 586.0 564.7 416.2 429.0 443.0 504.7

Tunceli 221.3 139.6 251.4 199.6 244.8 210.5 247.5 243.9 208.8 243.1 218.3 167.4 216.4

Hakkari 233.7 265.5 168.0 155.6 175.2 211.1 207.3 172.4 192.9 238.5 269.6 277.5 213.9

Kayseri 178.4 141.9 163.3 163.5 186.1 154.1 187.1 191.7 174.6 145.1 197.0 160.3 170.3

Sanliurfa 146.9 129.6 162.5 183.2 188.9 191.0 186.1 197.3 179.9 198.6 144.1 132.0 170.0

Diyarbakir 220.8 301.1 141.3 128.5 143.3 174.9 150.4 120.3 127.1 154.5 161.6 204.7 169.0

Icel 162.3 180.3 188.2 179.8 131.1 152.7 114.2 119.8 162.0 171.0 167.3 205.6 161.2

Gaziantep 184.4 131.7 150.4 157.6 149.9 138.8 145.6 148.2 158.8 167.7 207.2 147.9 157.4

Konya 119.0 111.8 128.6 137.4 151.6 146.3 168.8 161.5 156.0 122.5 117.9 113.2 136.2

Siverek 130.1 110.8 139.0 137.1 136.3 129.5 136.3 129.3 135.3 127.0 147.9 160.6 134.9

Karaman 105.2 181.3 157.8 130.8 153.0 127.7 131.0 133.5 134.8 129.0 130.6 101.2 134.7

Rize 100.6 100.8 101.6 101.8 100.9 102.0 101.4 101.0 101.3 101.85 101.7 102.0 101.4

Uşak 100.6 100.7 100.6 100.6 100.4 101.0 100.9 100.8 101.1 100.8 100.8 100.9 100.8

Table 6: TOPSIS score and average efficiency score for 12 months of 2010

DMUs TOPSIS score Average efficiency score for 12 months Super efficiency score

1 Niğde 1 1 504,7

2 Tunceli 1 1 216,4

3 Hakkari 1 1 213,9

4 Kayseri 1 1 170,3

5 Şanliurfa 1 1 170,0

6 Diyarbakir 1 1 169,0

7 İçel 1 1 161,2

8 Gaziantep 1 1 157,4

9 Konya 1 1 136,2

10 Siverek 1 1 134,9

11 Karaman 1 1 134,7

12 Rize 1 1 101,4

13 Uşak 1 1 100,8

14 Adana 0,970 0,994569

15 Amasya 0,906 0,969795

16 Hatay 0,866 0,954634

17 Bolu 0,831 0,954875

18 Çanakkale 0,712 0,879966

19 Kastamonu 0,710 0,881769

20 Mugla 0,685 0,894681

21 Agri 0,661 0,839207

22 Develi 0,639 0,795795

23 Afyon 0,635 0,810622

24 Elazig 0,624 0,793401

25 Ankara 0,566 0,762988

26 Antalya 0,559 0,749376

27 Malatya 0,555 0,739655

28 Artvin 0,521 0,724634

29 Manisa 0,510 0,719956

30 Erzurum 0,253 0,496087



The DEA results were verified and validated by
a ranking method (TOPSIS). Furthermore, the
results of super efficiency for determining the prior-
ity of the cities for construction of solar plants were
compared with the results of TOPSIS. For the TOP-
SIS application in this analysis, the efficiency analy-
sis was calculated separately for each month. By
applying these efficiency results and using the prior-
itizing method, the distances from the ideal answer
were specified. The TOPSIS priority was measured
for twelve months and specified with location (Table
6). In terms of efficiency scores for continuous
power production at solar stations, assessment for
twelve months would be a correct approach. For
this reason, even if the results of the TOPSIS
method are the same with average values   for each
of the 12 months, it can render the analysis more
valuable and give a new dimension to the analysis.
The location designation of high priority, however,
should be made according to the super-efficiency
results. The TOPSIS method was used for validat-
ing the efficiency scores without deriving any gra-
dation like super-efficiency. As seen from Table 6,
the cities with a 12-month average DEA efficiency
score of 1 are validated with the cities with an effi-
ciency score of 1 according to the TOPSIS results.
The priority of the effective locations, i.e. the loca-
tions which are ideal for solar plant construction,
should be compliant with the super-efficiency sort-
ing shown in Table 6.

5. Conclusions
Solar plants are very desirable as an alternative
source of energy. Hence, determination of optimum
locations for use of this resource is a vital issue.
Generally, solar global radiation and solar duration
is a primary tool used for determining the optimum
locations for solar plants. However, in this
approach, some local and social considerations are
ignored. Additional criteria such as distance to
power distribution networks, land cost, earth-
quakes, heavy rain, hail, storms, avalanches, land-
slides, fog, drought, thunderstorms, frost, loss of life
and goods and monthly average sunshine duration
are considered in this work. In this paper, a DEA
approach using a number of predefined indicators
was used to identity optimum locations of solar
plants in Turkey and to rank the capabilities of var-
ious locations with respect to some output and
input indicators for 30 cities in Turkey. The best
location is Nigde according to the ranking of super
efficiency, average efficiency over 12 months and
TOPSIS.

In the results for identifying the most suitable
areas for establishment of solar plant stations in
Turkey, there was no conflict with variables which
were not computable such as the vegetation, pro-
tected areas and residential areas. Land costs have
not been used much in the consideration of selec-

tion of provinces and their capital cities although
the importance of pricing of suitable land for the
establishment of stations and the distance to distri-
bution networks has been recognized. Before instal-
lation and implementation of solar power stations,
both economic and environmental factors should
be considered.

Nomenclature
h0 Efficiency measurement of DMUj
i Input index i = 1, 2 ..., m
m Number of inputs
r Output index 
s Number of outputs
Ur r th output weight
Vi i th input weight
Xi0 i th input for a DMU under evaluation
Xij Non-negative observed amount of input i 

of DMUj
Xi i th input values
Yr r th output values
Yrj Non-negative observed amount of output j of 

DMUr,
Yr0 r th output for a DMU under evaluation
λj Multipliers used for computing linear combi-

nations of DMUs’ inputs and outputs
θ0 Contraction factor that determines how 

much a DMU’s inputs can be reduced
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