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Abstract

Extra-terrestrially, there is no stochasticity in the
solar irradiance, hence deterministic models are
often used to model this data. At ground level, the
Box-dJenkins Seasonal/Non-seasonal Autoregressive
Integrated Moving Average (S/ARIMA) short mem-
ory stochastic models have been used to model
such data with some degree of success. This success
is attributable to its ability to capture the stochastic
component of the irradiance series due to the effects
of the ever-changing atmospheric conditions.
However, irradiance data recorded at the earth’s
surface is rarely entirely stochastic but a mixture of
both deterministic and stochastic components. One
plausible modelling procedure is to couple sinu-
soidal predictors at determined harmonic (Fourier)
frequencies to capture the inherent periodicities
(seasonalities) due to the diurnal cycle, with SARI-
MA models capturing the stochastic components.
We construct such models which we term, harmon-
ically coupled SARIMA (HCSARIMA) models and
use them to empirically model the global horizontal
irradiance (GHI) recorded at the earth’s surface.
Comparison of the two classes of models shows that
HCSARIMA models generally out-compete SARI-
MA models in the forecasting arena.

Keywords: irradiance, Box-Jenkins methodology,
harmonic, periodogram, forecasting

1. Introduction

Sunshine levels, incident on a photovoltaic (PV)
panel have the overriding influence on electrical
output. This output is affected by the unpredictabil-
ity of the prevailing whether conditions, which in
turn, leads to the fluctuating nature of the solar
resource. Hence, its efficient use requires reliable
forecast information of its availability in various
time and spatial scales depending on the applica-
tion. Forecasts are critically important for use in
monitoring solar systems, energy system sizing and
optimization and utility applications. Utilities and
independent system operators use forecasting infor-
mation to manage generation and distribution.
Therefore, appropriate solar data modelling and
reliable forecasting of solar radiation is essential for
the design, performance prediction and monitoring
of solar energy conversion systems. One class of
models used successfully in the literature to achieve
this are the short memory Box-Jenkins
Seasonal/Non-Seasonal Autoregressive Integrated
Moving Average (S/ARIMA) stochastic models
(Craggs et al., 1999; Zaharim et al., 2009; Voyant et
al.,, 2013a).

In the forecasting domain, literature shows that
S/ARIMA models out-competed many competing
models. Pedro and Coimbra (2012) found that the
improvement in 2-hours ahead forecasting using
the ARIMA model with respect to the persistent
model as measured by the decrease in Root Mean
Squared Error (RMSE) was comparable to that of
Artificial Neural Networks (ANN), i.e., 10.3% and
11.3% respectively. Reikard (2009) compared the
S/ARIMA model to five other forecasting techniques
in predicting high resolution data and found the
SARIMA models to give the best results in four out
of six test stations in the study. Actually, in the liter-
ature S/ARIMA and ANN models are considered to
be the most preferred prediction methods (Alados et
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al., 2007; Altandombayci and Golcu, 2009; Bale-
strassi et al., 2009).

Extra-terrestrially, there is no stochasticity in the
solar irradiance, hence, deterministic models are
often used to model this data. At ground level, the
success of SARIMA models is attributed to their abil-
ity to capture the stochastic component of the irra-
diance series due to the effects of the ever-changing
atmospheric conditions. However, such irradiance
data recorded at the earth’s surface is rarely entire-
ly stochastic as weather phenomena cause varying
degrees of stochasticity and deterministic compo-
nents in solar irradiance. One plausible modelling
procedure is to couple sinusoidal predictors at
determined harmonic (Fourier) frequencies to cap-
ture the inherent periodicities (seasonalities) due to
the diurnal cycle with SARIMA models capturing
the stochastic components. To model this unpre-
dictable mixture, Badescu et al. (2008) used a sinu-
soidal predictor to model seasonality and then rep-
resented the resulting standardized residuals by an
ARMA model. However, this approach is limiting.
We therefore generalize this approach by combin-
ing a sinusoidal predictor(s) to model major sea-
sonalities and then fitting SARIMA models to the
resulting residuals. We term this class of models
Harmonically Coupled SARIMA (HCSARIMA)
models. Another motivation for the proposal of
HCSARIMA models is that ARMA models give
unacceptable errors for distant horizon forecasting
such as for more than 2 hours in the hourly case
and 2 days in the daily case (Voyant et al., 2013b).
In order to minimize the forecast errors for a longer
horizon, i.e., 2 cycles-ahead (28 and 24 hours in
the case hourly data; 168 and 132 10-minutely
intervals for 10-minutely data (see Table 1)), in the
SARIMA models we include seasonal parameters to
model seasonality while in HCSARIMA models the
major seasonalities are modelled by sinusoidal
components. By modelling the seasonality in this
way, distant horizon forecasts of up to 24 hours or
more essential for power dispatching plans, opti-
mization of grid-connected PV plants and coordina-
tion control of energy storage devices (Wang et al.,
2012) will be valid as seasonal models are able to
capture the entire seasonal swing.

We undertake a comparative study of these two
classes of models viz., SARIMA versus HCSARIMA
in modelling and forecasting the horizontal solar
irradiance (GHI) (comprising of both direct normal
irradiance (DNI) and diffuse horizontal irradiance
(DHI)) data series recorded at the University of
KwaZulu-Natal (UKZN) Howard College (HC) cam-
pus (Durban, South Africa) Faculty of Engineering’s
recently established (February, 2010) radiometric
broadband ground station. This station is located at
29.9° South, 30.98° East with elevation, 151.3m.
Measurements recorded were obtained from the
Greater Durban Radiometric Network (GRADRAD)

database (www.gradrad.ukzn.ac.za). A shadow
band type Precision Spectral Pyranometer (Model
PSP) is used to obtain the three irradiances. The
DHI obtained by blocking the direct solar beam
must be corrected for additional sky band blockage;
hence the DNI obtained by subtraction from GHI is
less accurate than that obtained from
Pyrheliometers. Therefore, we study the more accu-
rate GHI.

Although most of the studies in the literature
used a calendar year’s historical data series
(Zalwilska and Brooks, 2011) to learn repeatable
patterns that may be inherent in the series, in some
instances it is also useful to use a shorter historical
data series to learn strongly fluctuating patterns that
may be inherent in a shorter period such as a sea-
son, month or less (Craggs et al., 1999; Yona et al.,
2013). We follow the later approach and make use
of the February (summer) and July (winter) 2011
data series. The data series are in two time scales,
viz., hourly and 10-minutely which we adjudged to
provide a fair compromise between the now-casting
solar irradiance problem on very short time inter-
vals (15 seconds to 30 minutes) and one day ahead
forecasts crucial for controlling a PV plant operation
(Paulescu et al., 2013).

In the next section, we give a brief overview of
SARIMA models. In Section 3 we elaborate on the
periodogram as well as its use in searching for peri-
odicities in data series leading to the building of the
HCSARIMA model. Model selection based on in-
sample diagnostics and forecasting accuracy are
given in Section 4, data series modelling is carried
out in Section 5, model comparisons are carried in
Section 6 and conclusions are given in the last sec-
tion.

2. SARIMA Models
The generalized form of a multiplicative SARIMA
model can be specified as

Dp(L)pp (L)1 = L)P (1 = L)X, = &6 +
0y (L)0,(L)Z,

(2.1)
(Cryer and Chan, 2008), where

Dp(L5) =1 — DgLS — dygl?S — oo — Dp LS|
$p(L) =1 — gL — poL2L — - — ¢, L7,

0o(L%) = 1 — L5 — Oygl®S — - — 5L,

8,(L) =1— 8,1 — 0,12L — 8,18,

are the seasonal AR, non-seasonal AR, seasonal
MA and non-seasonal MA factors, respectively, the
constant & coincides with the mean of the series

and S is the seasonality. The operator, L is the
backward shift operator such that L*X, = X, d
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and D are the non-seasonal and seasonal order
differences, respectively, taking positive integer
values. For instance, (1 — L)X, = A%X, =X, —
X, and (1-L5)°X, =48X, =X, - X,_s for
d =D =1. The powers PS, p, QS and g denote
the seasonal AR, non-seasonal AR, seasonal MA
and non-seasonal MA orders, respectively. It is
assumed that Z, is white noise, i.e., Z,~N(0,0%).
This model in (2.1) is usually abbreviated
as SARIMA(p,d, q) % (P,D,Q)s. Note that the
seasonal and non-seasonal AR and MA factors in
{2.1) may be additive.

To build SARIMA models via the Box-Jenkins
methodology (Box and Jenkins, 1976), time
domain techniques are made use of. On the other
hand, to build HCSARIMA models spectral
methods (periodogram analysis) are used to
determine the inherent periodicities in the data
series.

3. The periodogram

Frequency Domain techniques are used to search
for periodicities in data. The standard tool to carry
out such an analysis is called the spectrum, which
is a Fourier transform of the autocorrelation
function (ACF). In practice, the sample estimator
of the spectrum, the periodogram first introduced
by Schuster (1898), is used to determine
periodicities in data. An efficient way to compute
the periodogram is to make use of the Fast Fourier
transform (FFT) (Chatfield, 2003). For a real-

ization of a time series, ‘I[Xr }JIJ . the periodogram is

defined as:
1 n iter, |~ 1= 2
I(w )=—{ X' =—|X(w)[ s (3.1)
(@p o Z’:I : mr‘ 5 l
where :gf_f;i,}-; =1,...,[n/2] are harmonic fre-
i
quencies, )?((up)z ;?___IX,JH(U“ is the FFT and

[.] denotes the integer part. Using the well-known
result from the analysis of variance (ANOVA), the

total sum of squares (SST) of the series can be
partitioned into sum of the error terms (SSE) plus
sum of squares due to a periodic component

(I(@,)) viz.,

Z;ll (X, - X)? = SSE + Sum of squares due to
periodic component at @, (3.2)
Dividing (3.2) by n throughout clearly, a large
contribution of the sum of squares due to the
periodic component to SST implies a large
contribution to the variance of the series by I{«,)
(Chatfield, 2003: 127). If this is the case, then
much of the variability in the data series is
attributable to the periodic component.
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3.1 Searching for periodicities and
construction of the HCSARIMA model
Suppose that a time series is dominated by a
periodic sinusoidal component with a known
wavelength. Then the natural model is:

X, =y +Reos(wpt +¢)+ Z;, (3.3)

where @, is the frequency of the sinusoidal
variation, R is the amplitude of the variation, ¢is
the phase and {Z,} as in (2.1). Equivalently, (3.3)
can be expressed as:

X, =acosw,l+ fsinoy+Z,, (3.4)

where o = Rsing and f# = Rcos¢ with g =0.In

practice, a series may contain multiplicities of per-
jodicities and the generalized form of (3.4)
becomes

m
X, = Z(a,v‘. cosayl + B sinay ) + 7, -
k=l

(3.5)

Note that @, has to be a harmonic frequency since
ordinary least squares and ML (under normality)
estimators at different general frequencies @, and
@ are not independent because the sine-cosine
and complex exponential systems are complete
and orthogonal only over Fourier frequencies.

For the model (3.5), if in a periodogram analysis, a
particular intensity [(a,) is the largest one, we can
test the hypothesis whether the parameters & and
[ are indeed zero, at this frequency i.e.
Hyrag=0,=0 vs Hy:p,#00r a, #0

by making use of The Fisher's Kappa statistic
Fuller (1976).

To detect general departures from white noise,
Bartlett's Kolmogorov-Smirnov statistic can be
used. Also, the usual F-test can be used to test the
significance of any periodogram ordinate of
interest e.gq. the 2" largest say I(e) (Wei,
2006:292). Now, the seasonalily at significant
periodogram ordinates [(e,) is modelled by
equations (3.4) or (3.9). In practice {4} is rarely
white noise such that it is described by a SARIMA
model. The non-stationary residuals are denoted
by {W,}. Thus, combining (3.4) or (3.5) with a
trend component, and (2.1) gives a HCSARIMA
model, viz.,

Xi = +acosw,t+ fsinm,t +
@ p(L5)g, (L)1 - 5P (1-L)w,
=5+0,(L5)0,(1)7,. (3.6)
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If there are multiplicities of seasonalities in the
data series (3.6) becomes
h
X,=p+ Z (ay cosayt + ) sinayt) +
=1
O p(L8)g, (L)1 - 25)P (- LYW,
=5+0,(L%)0,(L)Z,. (3.7)
where g is the trend function which is dropped if
nonsignificant.

4. Model selection criteria

Model selection criteria are two-fold, i.e., we make
use of in-sample diagnostics as well model predic-
tion accuracy measures.

4.1 In-sample diagnostics

The selection of the best SARIMA model was car-
ried out using the principle of parsimony (select the
model with the least number of parameters), high
R-square value and two Information Criteria, viz.,
Akaike’s information criterion (AIC) and the
Schwarz’s Bayesian criterion (SBC) (Akaike, 1983;
Schwarz, 1978) also known as the Bayesian infor-
mation criterion (BIC). The lower the values of
these statistics the better the model is. The SBC is
preferred over AIC since the AIC criterion overesti-
mates the order of auto-regression (Wei, 2006).

4.2 Prediction accuracy

We make use of four common measures, viz., Mean
Bias Error (MBE) in W/m2, Mean Percentage Error
(MPE), Mean Absolute Percentage Error (MAPE)
and Root Mean Squared Error (RMSE) in W/mZ, in
assessing the model out-of-sample two 2 days
(cycles)-ahead forecast errors. The smaller the val-
ues of these measures the better the forecasts. The
formulations of these forecasting measures are:

MBE ==Y, (F()-Y,) W /m’, (4.1)
MPE = %‘3%2;1:' KU)' ym‘ 4 (42)
-
mapE ="y (EO-Y) (4.3)
-+
RMSE = {230, (-1, } 2 wim®,  (44)

where ¥, and ¥ (/) are the actual and forecasted

[ -steps ahead forecasted values, respectively.

5. Data modelling

All the data analysis is done using a statistical analy-
sis system (SAS). The readings are taken instanta-
neously at 6 seconds intervals and then averaged
minutely. We further average the minutely data in
60-minutely and 10-minutely. The details of the
data series are presented in Table 1, along with their
daily cycle lengths.

The February 60-minutely daily data spans from
0500 hours to 1800 hours and that for July spans
from 0600 hours to 1700 hours, while the February
10-minutely daily data spans from 0500 hours to
1850 hours and that for July spans from 0630
hours to 1720 hours. Most of the missing values
generally occur before around 0635 hours and after
around 1725 hours for the July month. This
explains the difference in the percentage of missing
values between the hourly and 10-minutely July
data series.

The February series from the 1%t to the 13t and
the July data series from the 3™ to the 9" were used
for model building. The next 2 days data series was
used for validation in each case. We adjudge these
days to have the best data quality by making use of
the following minutely data series profiles for each
day of the February and July months given in
Figure 1. These profiles can be obtained from
http://gradrad.ukzn.ac.za .

We confirm the periodicities evident by means
of time domain techniques such as time ACFs
(Figure 2) as well as search for hidden ones using
periodogram analysis in the next subsection.

5.1 Periodogram analysis

For brevity we only give results for the February 60-
minutely series. In Figure 3, the periodogram is
plotted against the harmonics, w,. Table 2 shows
the Fisher’s Kappa test and BKS test results. Lastly,
the F-test results for the same data series are given
in Table 3.

The largest intensity is at period 14, the second
largest is at period 7 and the third largest is at peri-
od 4.667 corresponding to harmonics w14 = 27/14,
w7 = 27/7 046667 = 27/4.667, respectively. Fisher’s
Kappa results in Table 2 show the presence of a
strong periodic component since the test statistic,
66.875, is greater than the critical value, 8.882 at
the 1% level of significance while the BKS statistic
has a p-value< 0.05 indicating that generally the
series is not white noise, i.e., the presence of at least
one periodic component. The strongest periodic
component is further confirmed by the F-test (p-val-

Table 1: Data details

60 min 10 min
Series Cycle % Series Cycle %
length length missing length length missing
Summer February 2011 210 14 5.79 1260 84 5.79
Winter July 2011 108 12 9.66 594 66 1.45

128 Journal of Energy in Southern Africa « Vol 26 No 1 « February 2015



TUE WED THUR FRI SAT SUH MON
2 3 5 b Fi

q 10 12 14

ra A M

19 21

-

b NN
y o LA

8

v

}nggzpﬂg EE§

15 16 19 20
22 23 24 26 27
AlLA LA ™

29 n
A
| — Global Beam Diffuse

Figure 1: Minutely data series daily profiles in W/im2. Upper panel February 2011 series; Lower panel
July 2011 series

ues< 0.05) in Table 5.3, which also shows both the
second largest and the third largest ordinates to be
significant.

Table 2: White noise test output for 60-minutely
series, February 2011

Test for white noise for variable global log

M-1 90
Max(P(*)) 263.305
Sum(P(*)) 354.354
Fisher’s Kappa: (M-1)*Max(P(*))/Sum(P(*))
Kappa 66.875

Bartlett’s Kolmogorov-Smirnov Statistic:
Maximum absolute difference of the standardized
partial sums of the periodogram and the CDF of a

uniform(0,1) random variable.

0.638

Test statistic

Test for whiote noise for variable global log

Approximate P-Value <.0001
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Table 3: Periodogram analysis for all four data

sets
Obs o Period, I(wy) p-value
60-min 14 0.449 14.00  263.305 0.000
Feb 27 0.898 7.000 53.495 0.000
2011 40 1.346 4.667 15.194 0.0196

The harmonics used in HCSARIMA models G to
H in subsection 5.2 were obtained in a similar fash-
ion.

5.2 SARIMA and HCSARIMA Modelling

Both SARIMA and HCSARIMA models with signifi-
cant (p-values< 0.05) parameters were fitted on all
four data series (see Appendices A and B, respec-
tively) via maximum likelihood (ML) estimation. To
check the adequacy of these models, tables of resid-
ual analysis based the Box-Ljung statistics (p-val-
ues< 0.05), histograms (bell-shaped) of residuals,
Q-Q plots (approximately straight line), and the
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Figure 2: ACF plot of the 60-minutely averaged irradiance series (in W/m?) for the period of the 1st
to the 13t Feb 2011
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Figure 3: Periodogram plot for the log of the 60-minutely averaged irradiance series (in W/m?) for
the period of the 15t to the 13t Feb 2011

Anderson-Darling normality test (p-values < 0.05). e Model A, 60-minuiely averaged February

Satisfying all criteria in parenthesis constitute ade- 2011 series:
quacy. For brevity, only results for Model A are
given in Appendix C. (1+ P53 + L2 + &, L1 — L)X,
= (1+6,L+ 0,17 + 0,51°%)Z, ,
SARIMA modelling
Parameter estimates for SARIMA models are given e  Model B, 60-minutely averaged July 2011
in Tables 4 to 7 in Appendix A. These are: series:
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(1+ PiL+ pial'? + gLV + Dy L +
¢36L36)(1 - LBﬁ)XL - (1 + BIL + GZLZ)ZP

e Model C, 10-minutely averaged February
2011 series:

(14 L+ @ul? + pyl?
+ Plo+ Pyl 04y L)
(14 Dg L3* + Dy gL' o®)
(1= I[39X, = (1 + 6,12 + 8,l9Z,,

e  Model D, on 10-minutely averaged July 2011
series:

A+ DL+ PrL7 + by L +p1p L 4y, L)1 +
Dg L5 + @13, L132)(1 — LOO)X, = Z,.

HCSARIMA modelling
Parameter estimates for HCSARIMA models are
given in Tables 8 to 11 in Appendix B. These are:

e Model E, 60-minutely averaged February
2011 series:

Xi = By + @, cos(2u/14)t + B, sin{2rw/14)¢t +
g cosr/7)t + (1 + ¢ L + D LSOW, + Z,,

e Model F, 60-minutely averaged July 2011
series:

X = Bo+aycos2m/12) t+ B, sin(2mw/12) t
+ (1 4+ ¢ L)1+ pys LW, + Z,,

e Model G, the 10-minutely averaged February
2011 series;

Table 9 shows parameter estimates for the

HCSARIMA model, G.

X, =Py +a,cos(2n/84) t + B, sin(2r/84) t
+ (14 oL+ pal? + sl
+ P Lo+, LYW, + Z,,

e Model H, the 10-minutely averaged July 2011

series;

Xe =Py + a, cos(2r/66) t + (1 + ¢yL + ¢ L7 +
Pol? + Py L)L+ ;g L10 + 05, LSDW, + Z,.

6. Models comparison

In-sample model selection diagnostics
In-sample diagnostics used here are given in Table
4 viz., AIC, SBC (BIC), R-square and parsimony.
The principle of parsimony selects the model with
the least number of parameters.

SARIMA Model A is superior to HCSARIMA
Model E in terms of criteria AIC and BIC but inferi-
or with respect to R-square. Furthermore, the two
models are equally parsimonious.

SARIMA Model B is superior to HCSARIMA
Model F in terms of the two criteria, AIC and BIC
but inferior with respect to the two measures, R-
square and parsimony. SARIMA Model C and
HCSARIMA Model G follow a similar pattern exhib-
ited by SARIMA Model B and HCSARIMA Model F
with respect to all measures, respectively. SARIMA
Model D fares better than HCSARIMA Model H
with respect to all diagnostics except R-square.

Prediction

Prediction accuracy diagnostics made use of here to
compare the SARIMA models and HCSARIMA
models are given in Table 5 viz., MBE, MPE, MAPE
and RMSE. Also, the SARIMA and HCSARIMA
models are compared graphically both with respect
to point estimation and the 95% confidence inter-
vals (Cls).

SARIMA Model A is out-performed by HCSARI-
MA E with respect to all the prediction accuracy
measures except MPE, while SARIMA Model B per-
forms better than HCSARIMA Model F in all the
given prediction accuracy measures.

For both HCSARIMA Models G and H perform
better than SARIMA Models C and D with respect to
the MBE and RMSE and otherwise with respect to
MPE and MAPE, respectively.

Graphically, the pair-wise forecasting accuracy
comparisons of SARIMA models and HCSARIMA
models are shown in Figures 4 to 7.

Note that the night times have been removed in
order to get rid of the zero values.

The point forecasts of SARIMA Model A and
HCSARIMA Model E in Figure 4 seem indistin-
guishable. However, the 95% CIs of SARIMA
Model A are consistently wider than those of

Table 4: In-sample diagnostics for the fitted models

In-sample model section diagnostics

Scale 2011 Month MODEL AIC SBC R-square Parameters
60-minutely Feb SARIMA A 1973.942 1992.686 0.946 6
HCSARIMA E 2072.112 2091.336 0.961 6
July SARIMA B 841.435 857.372 0.840 7
HCSARIMA F 946.258 958.413 0.883 5
10-minutely Feb SARIMA C 11613.350 11662.500 0.958 10
HCSARIMA G 12195.330 12235.290 0.968
July SARIMA D 4381.669 4409.486 0.911 7
HCSARIMA H 4955.966 4989.050 0.928 8
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Table 5: Prediction errors for the fitted models

Model forecast accuracy measure

Scale 2011 Month MODEL MBE(W/m?)  MPE (%) MAPE (%) RMSE(W/m?)
60-minutely Feb SARIMA A 39.757 10.866 50.641 143.673
HCSARIMA E 30.060 15.069 33.640 121.568
July SARIMA B -31.802 -26.321 63.111 45.935
HCSARIMA F -89.076 -66.620 66.620 104.235
10-minutely Feb SARIMA C 38.075 25.119 44.692 155.747
HCSARIMA G 17.134 47.301 64.775 146.817
July SARIMA D -94.178 -28.119 38.167 122.249
HCSARIMA H -92.547 5.526 59.335 109.234
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Figure 4: Forecasting accuracy comparison of SARIMA Model A and HCSARIMA Model E; 60-
minutely averaged irradiance series (in W/m?2) for the period of the 15t to the 13t Feb 2011 and
forecasts for the period 14t to the 15t Feb 2011

HCSARIMA Model E, hence the later model has a
competitive. The picture is somewhat different for
the 60-minutely series for July 2011, with respect to
interval estimation as shown in Figure 5.

In these series, the 95% Cls for SARIMA Model
B are wider those of HCSARIMA Model F in
approximately a third of the estimation data series.
Thereafter, both upper and lower confidents limits
(CLs) tend to be alternating in size. However, in the
hold out sample the upper CLs of SARIMA Model
B, are wider than those for HCSARIMA Model F
and vice-versa in the case of lower CLs.

The forecasting comparisons between SARIMA
and HCSARIMA models for the 10-minutely series
are given in Figures 6 and 7. The two figures exhib-
it a pattern similar to that in Figure 5, i.e., the point
forecasts of SARIMA m\Models (C and D) and
HCSARIMA Models (G and H) seem indistinguish-
able, while the 95% CLs for SARIMA models are
generally wider than those of HCSARIMA models.

132

Therefore, the HCSARIMA models have a compet-
itive edge to SARIMA models.

Discussion

There is no clear ‘winner’ between the two classes
of models, viz., SARIMA and HCSARIMA models,
with respect to in-sample diagnostics. Empirically, it
was observed that addition of a deterministic (sinu-
soidal) predictor would inflate the AIC and SBC
diagnostics. As a consequence, these two measures
were larger for HCSARIMA models compared to
SARIMA models, giving SARIMA models a compet-
itive edge in this regard. However, the opposite was
true for the in-sample measures R-square and parsi-
mony, where the HCSARIMA models performed
better. To keep the values of AIC and SBC margin-
ally larger we had to reduce the number of deter-
ministic predictors, i.e., allowing some periodicities
to be described by SARIMA model parameters in
the HCSARIMA models. Thus, it was only at the
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largest intensity (periodogram ordinate) that a sinu-
soidal predictor was used except for HCSARIMA
Model E where a second sinusoidal predictor was
added to model the seasonality at the second
largest intensity. The addition of a sinusoidal pre-
dictor gives HCSARIMA models superiority with
respect to R-square values and more or less better

with respect to parsimony as HCSARIMA models
have a single case of being marginally less parsimo-
nious (HCSARIMA H).

In the prediction scenario, HCSARIMA models
are found to be generally superior than SARIMA
models. It is only in one data series (60-minutely
July 2011) where SARIMA Model B out-performs
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HCSARIMA Model F in all prediction measures.
Furthermore, it was in this data series where in
terms of the 95% CI estimation there was no clear
better class of models. Otherwise in the other three
data series the HCSARIMA models were found to
be better than SARIMA models in the 95% CI esti-
mation. However, we have reservations on this out-
come of SARIMA model B versus HCSARIMA
Model F due to the fact that the least amount of
data series was available as well as the largest pro-
portion of missing values inherent in this case.

7. Conclusions

While short memory SARIMA models are useful on
their own, combining them with sinusoidal deter-
ministic predictors to form HCSARIMA models gen-
erally has some competitive advantages in the pre-
diction arena. However, the inclusion of sinusoidal
predictors results in relatively larger AIC and SBC
values. Using a smaller number of sinusoidal pre-
dictors gives a reasonable balance in the trade-off
between the inflation of AIC and BIC values, and
the improvement in forecasting. Alternatively,
another proposal around this is to use SARIMA
models for data generation and then use HCSARI-
MA models for forecasting. However, if the purpose
of the models is only forecasting then there might be
no need to restrict the number of sinusoidal predic-
tors. In this scenario, all the harmonics found to be
corresponding to significant periodogram ordinates
using frequency domain techniques can be used to
model the multiplicities of periodicities present.

Acknowledgements

Special thanks go to Michael Brooks of the UKZN School
of Engineering for providing data, information and sug-
gestions.

Appendix A: ML estimation for SARIMA
models

Table 5: Parameter estimation for SARIMA
model, A fitted on 60-minutely Feb 2011 series

Parameter Estimate Approx Lag
Pr > |t]
0, -0.590 <.0001 1
0o -0.447 <.0001 2
B8 0.491 <.0001 28
é3 0.182 0.0015 3
d12 0.121 0.0198 12
Dy -0.716 <.0001 14

Table 6: Parameter estimation for SARIMA
model, B fitted on 60-minutely July 2011 series

Parameter Estimate Approx Lag
Pr > [t]

0, -0.256 0.0493 1

0o -0.350 0.0016

1 0.199 0.0109 1

12 -0.628 <.0001 12
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P15 0.132 0.0234 15 Table 10: Parameter estimation for HCSARIMA
Dy, -0.609 <.0001 24 model, F fitted on 60-minutely July 2011 series,
Dag 20.593 <0001 36 where SINTWO = sin[27/12)f] and COSTWO =
cos[27/12){]
Parameter Estimate Approx Lag Variable
Table 7: Parameter estimation for SARIMA Pr > |t|
model, C fitted on 10-minutely Feb 2011 series Bo 214.435 <.0001 0 global
Parameter Estimate Approx Lag $1 0.745 <.0001 1 global
Pr > |t d1s 0.277 0.0193 15 global
0 -0.422 0.0018 2 B1 -62.940 0.0009 0 SINTWO
04 0.132 0.0038 4 ay -210.121 <.0001 0 COSTWO
01 0.876 <.0001 1
do -0.597 <.0001 2 Table 11: Parameter estimation for HCSARIMA
s 0504 < 0001 3 model, G fitted on 19-minute|y Feb 2011 series,
o 0.094 0.0009 3 where SINTWO = s.ln[27r/84)t] and COSTWO =
sin[27/84)t]
d10 -0.138 <.0001 10
™ 0.097 0.0003 11 Parameter Estimate Iip]:rcm Lag Variable
28“ '8'2(7); :8881 18; Bo 498676  <.0001 0 global
168 — ‘ é1 0.858 <.0001 1 global
b -0.145 0.0002 2 global
Table 8: Parameter estimation for SARIMA #3 0.076 0.0167 3 global
model, D fitted on 10-minutely July 2011 series P 0.145 <.0001 6 global
Parameter Estimate Approx Lag ¢7 -0.067 0.0260 7 global
Pr> |t B -48.184 0.0034 0 SINTWO
& 0.863 <.0001 1 o -478.809 <.0001 0 COSTWO
¢7 0.112 0.0009 7
d11 -0.121 0.0155 11 Table 12: Parameter estimation for HCSARIMA
d12 0.198 0.0003 12 model, H fitted on 10-minutely July 2011 series,
bra 0.124 0.0009 14 where COSTWO = sin[27/66)(]
Dge -0.781 <.0001 66 Parameter Estimate Approx Lag Variable
D13 -0.323 <.0001 132 Pr> |t]
Bo 228.483 <.0001 0 global
010 -0.135 0.0140 10 global
Os4 0.150 0.0037 54  global
Appendix B: ML Estimation for HCSARIMA #1 0.832 <.0001 1 global
Models ¢7 0.130 0.0006 7 global
b9 -0.143 0.0016 9 global
Table 9: Ffarameter esti_mation for HCSARII\_IIA b1 0.091 00114 12 global
model, E fitted on 60-minutely Feb 2011 series, ) 211674 = 0001 0 COSTWO

where SINTWO = sin[27/14)f], COSTWO =
cos[27/14)tf] and COSTHREE = cos[27/7)f]

Parameter Estimate Approx Lag Variable
Pr > |t]

Bo 505.464 <.0001 0 global

#1 0.668 <.0001 1 global
Dsg -0.296 0.0002 56 global
B1 -151.068 <.0001 0 SINTWO
o -456.142 <.0001 0 COSTWO
as -31.363 <.0001 0 COSTHREE
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Appendix C: Checking adequacy for Model A

Table 13: Residual analysis for SARIMA model, A fitted on 60-minutely Feb 2011 series

Autocorrelation check of residuals

To Lag Chi-Square DF  Pr > ChiSq Autocorrelations
6 . 0 0.112 -0.026 0.032 0.043 -0.124 -0.097
12 8.280 6 0.218 0.003 -0.012 0.018 -0.014 0.075 -0.011
18 12.620 12 0.397 -0.074 -0.053 -0.016 0.072 0.086 0.045
24 18.990 18 0.393 -0.008 -0.084 -0.048 0.055 0.090 -0.109
30 29.440 24 0.204 -0.080 0.007 -0.080 -0.120 -0.155 0.012
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Figure 8: Normality check for the residuals of SARIMA Model A

Table 14: Fitted normal distribution for
RESIDUALS

Goodness-of-fit tests for normal distribution

Test Statistic p Value

Anderson-Darling A-Sq 2.15090163 Pr > A-Sq <0.005
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