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Abstract

Wind energy is one of the most signi[]cant and rap-
idly developing renewable energy sources in the
world and it provides a clean energy resource,
which is a promising alternative in the short term in
Turkey. The wind energy potential in various parts
of Turkey is becoming economical due to reductions
in wind turbine costs, and in fossil fuel atmospheric
pollution. This paper is to present, in brief, wind
potential in Turkey and to perform an investigation
on the wind energy potential of the Kutahya region.
A wind measurement station was established at
Dumlupinar University Main Campus in order to
[gure out the wind energy potential in the province.
This study analyses the electricity generation capac-
ity of the Kutahya region, Turkey, which uses the
wind power system. In the study, the wind data col-
lected from wind measurement stations between
July 2001 and June 2004 (36 months) were evalu-
ated to determine the energy potential of the region.
Using this energy potential value, the power gener-
ation capacity of Kutahya was investigated for 17
different wind turbines. In this analysis, an ANN-
based model and Weibull and Rayleigh distribution
models were used to determine the power genera-
tion. In the ANN model, different feed-forward back
propagation learning algorithms, namely Pola-
Ribiere Conjugate Gradient, Levenberg-Marquardt
and Scaled Conjugate Gradient were applied. The
best appropriate model was determined as
Levenberg-Marquardt with 15 neurons in a single
hidden layer. Using the best ANN topology, it was
determined that all the turbines were profitable
except turbine type 1. The system with the turbine
type 3 was decisively the most profitable case as
determined at the end of the study according to Net
Present Value concept.

Keywords: Levenberg-Marquardt; Net Present
Value; Pola-Ribiere Conjugate Gradient; Rayleigh
distribution; Scaled Conjugate Gradient; Weibull
distribution

1. Introduction

The most important issue of today is to use natural
energy sources in an efficient way which will not
pollute the environment. The energy producers
have an obligation to solve the environmental prob-
lems caused while producing energy for humanity’s
need today as well as tomorrow. There is a relation
between energy and the environment. Environ-
mental pollution increases with energy production
and consumption; therefore, both the subjects must
be handled together. In this regard, energy
resources are necessary to be evaluated in terms of
reserves, geographic distribution, production rates,
pricing stability, business conditions, source credi-
bility, and environmental interaction. Under these
conditions, a sustainable and environmentally clean
use of energy sources is urgently needed.

The wind potential assessment of a site requires
the knowledge of the distribution law of the wind
speed measured on the site. The statistical treat-
ment of these measurements makes it possible to
have a discrete distribution law. However, to obtain
a more accurate analysis of the wind potential, a
continuous distribution law is essential. For this pur-
pose, the Weibull and Rayleigh models are often
used (Thiaw, 2010). Previous studies have proven
that the Weibull distribution function has its merits
in wind resource assessment due to its great flexibil-
ity and simplicity, but particularly, it has been found
to fit a wide collection of recorded wind data (Ulgen
and Hepbasli, 2002; Dorvlo, 2002; Karsli and
Gecit, 2003; Sulaiman et al., 2002; Celik, 2004;
Keyhani et al., 2010; Arslan, 2010; Ouammi et al.,
2010; Ozgur and Kose, 2006; Jaramillo and Borja,
2004; Chang et al., 2003 ).

Wind energy potential is not easily estimated
because, contrary to solar energy, it depends on the
site characteristics and topography to a large
degree, as wind speeds are influenced strongly by
local topographical features. The classification and
characterization of an area as having high- or low-
wind potential requires significant effort, as wind
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speed and direction present extreme transitions at
most sites and demand a detailed study of spatial
and temporal variations of wind speed values.
Before determining the wind farm site, the hourly
and monthly mean wind speed, wind speed distri-
butions as well as the wind power densities should
be analysed carefully (Keyhani et al., 2010).

In the literature, several studies dealing with arti-
ficial neural networks (ANNs) are available. One
such example is the work of Dombayci and Gélct
(2009). They developed an ANN model to predict
the ambient temperature for Denizli, another city in
Turkey. The results show that the ANN approach is
a reliable model for ambient temperature predic-
tion. Kalogirou et al. (1999) programmed an ANN
to learn to predict the performance of a ther-
mosiphon solar domestic water heating system. An
ANN was conditioned to use performance data for
four types of systems, all employing the same col-
lector panel under varying weather conditions. Li
and Shi (2010) investigated three different ANNs
namely adaptive linear element, back propagation,
and radial basis function to predict wind speeds.
The results show that even for the same wind data
set, no single neural network model outperforms
other universally in terms of all evaluation metrics.
Moreover, the selection of the type of neural net-
works for best performance is also dependent upon
the data sources. Mohandes et al. (1998) in their
study used neural networks technique for wind
speed prediction and compared its performance
with that of an autoregressive model. Results on
testing data indicate that the neural network
approach outperforms the autoregressive model as
indicated by the prediction graph and by the root
mean square errors. Oztopal (2006) in his study
presented the necessary weighting factors of sur-
rounding stations to predict about a pivot using an
ANN technique. The developed ANN model was
found to predict the wind speeds for the winter sea-
son very accurately. Cam et al. (2005) in their study
developed an ANN model to predict the average
wind speed and wind energy values for the seven
regions of Turkey. The network has successfully pre-
dicted the required output values for the test data;
the mean error levels for the regions differed
between 3% and 6%. Determining a distribution
law for the speeds can be considered as a nonlinear
regression problem, in which the distribution law
(Weibull and Rayleigh) is identified so as to get
nearer the discrete law. As regards function approx-
imation, the techniques based on the ANN
approach have, however, shown that they can
deliver very good performances (Thiaw, 2010;
Carolin and Fernandez, 2008; Jafarian and
Ranjbar, 2010).

In this study, the wind data collected between
July 2001 and June 2004 (36 months) was evalu-
ated to determine the energy potential of the

region. Using this potential, the power generation
capacity of Kutahya was investigated for 17 differ-
ent wind turbines. For this purpose, an ANN-based
model was used besides Weibull and Rayleigh dis-
tribution models. In the ANN model, different feed-
forward back propagation learning algorithms,
namely Pola-Ribiere Conjugate Gradient (CGP),
Levenberg-Marquardt (LM) and Scaled Conjugate
(SCG) Gradient, were applied. Finally, the models
were evaluated using the net present value (NPV)
analysis.

2. Materials and methods

2.1. Study area

2.1.1. Site description

The study area is the city of Kutahya, which is sur-
rounded by mountains from the east and south, is
located at an altitude of 969 m and has a popula-
tion of 200 000. Situated at 39°42' latitude and
29°93' longitude, it lies on the Western Central part
of the Aegean Region and therefore displays geo-
graphical properties similar to those of the Aegean,
Marmara and Central Anatolia regions. The main
campus of Dumlupinar University is the site of the
study; it is situated at 39°29'6,34" latitude and
29°54'4.04" longitude and located at an altitude of
1094 m as shown in Figure 1 (Kose et al., 2004;
Ozgur et al., 2009).

2.1.2. Wind characteristics of the region

According to data obtained between the years 1975
and 2010, average annual temperature, average
sunshine duration time and average rainfall in the
Kutahya province are measured as 10.8 °C, 5.8
hours and 45.4 kg/m?, respectively (DMI, 2011).
Kutahya has a transition climate (otherwise known
as a semi-continental climate). In general, Kutahya
has low wind speeds and therefore, limited wind
energy potential. However, there may be specific
sites and applications where wind is a cost-effective
option.

As seen in Figure.2a, average wind speed, blow-
ing from the direction of North (N) and South-
South-West (SSW) is 6.24 m/s and 6.00 m/s,
respectively. In this study, the prevailing wind direc-
tion was determined as East (E) with a frequency
distribution rate of 18.15% (see Figure.2b) (Ozgur,
2006).

The wind data used in the study was collected
between July 2001 and June 2004 in 10
minute intervals and from various parts of the
region (for detailed information see reference (Kose
et al.., 2004; Ozgur et al.., 2009; Ozgur, 2006;
Ozgur and Kose, 2006). The maximum monthly
average wind speed was recorded as 5.3 m/s in
February, when the minimum wind speed was
recorded as 3.9 m/s in September. The wind data
used in the study is as given in Figure 3.
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Figure.1: The main campus of Dumlupinar University, Kutahya
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Figure 2: The wind characteristics on the main campus of Dumlupinar University;
a) Average wind speed; b) Frequency distribution

2.2. Selected wind turbines

In the study, 17 different turbine models fabri-
cated by four different manufacturers were selected
to determine the power generation capacity of the
study area. The installed capacities (IC) of these tur-
bines range between 200 and 1650 kW, where the
hub heights range between 36 and 85 m. The tech-
nical characteristics of related turbines are given in
Table 1 (Ammonit, 2011).

2.3. Classical method for wind potential and
energy generation

2.3.1. Weibull distribution function

Weibull probability density function (PDF) is a spe-
cial case of the generalized two-parameter gamma
distribution. The Weibull distribution can be char-
acterized by f(V) of PDF and F(V) of cumulative
distribution function (Bury, 1975; Fawzan, 2000).
The PDF of the two-parameter Weibull distribution
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Figure 3: Monthly mean values of wind speed
Table 1: Technical specifications of wind turbines
Turbine Turbine model Hub height IC Cut-in speed Cut-out speed  Rated speed N
type (m) (kW) (m/s) (m/s) (m/s) (vears)
1 NEG Micon NM750/44 55 750 4 24 17 20
2 NEG Micon NM750/48 60 750 4 24 16 20
3 Enercon E-30/200kWNH50m 50 200 3 25 12 20
4 Enercon E-30/200kWNH36m 36 200 3 25 12 20
5 Enercon E-40/200kW55m 55 500 3 30 19.5 20
6 NEG Micon NM600/48 60 600 3 20 17 20
7 NEG Micon NM1500/64 80 1500 4 24 17 20
8 NEG Micon NM900/52 70 900 4 24 16 20
9 Nordex N54/1000 68.5 1000 4 24 16 20
10 Nordex N60/1300 70 1300 4 24 16 20
11 Vestas V44/600 55 600 450 20 17 20
12 Vestas V47/660 55 660 4 24 17 20
13 Vestas V66-1.65MW 67 1650 4 24 18 20
14 Nordex N43/600 55 600 3 24 18 20
15 Enercon E-40/600kW78m 78 600 3 25 14 20
16 Enercon E-58/1000kW70.5m 70.5 1000 3 25 14 20
17 Enercon E-66/1500kW85m 85 1500 3 25 14 20
is given by the following equation: where 7 is the average wind speed. I(...)is the
Gamma function, and is given as
Ve At Pk
f(l'):(—‘][—] exp{—[—} :| 0<V<® (1) .
CAC ‘ ()= J-cf"' xdx (4)
where ¢, k and V are the scale parameter, shape 0

parameter, and wind speed, respectively. The

cumulative distribution function is given by the  The standard deviation of the wind speed (o ) is
equation (Hennesey, 1977; Stevens and Smulders,  determined by the following equation:

1979; Garcia et al., 1997):

F(ry=1-¢"' (2) o JTA+2/K)-T2(1+1/k)
Vo TA+1/k)

(5)
Here, the relation between cand k is as follows:

_ After calculating the parameters ¢ and k, the
K=F(1 +l) (3) most frequent wind speed and the maximum
¢ k energetic wind speed are given by Eq. (6) and (7),
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where ¥V is the average wind speed. I'(...)is the
Gamma function, and is given as

@)= J;e""x"' dx (4)
0

The standard deviation of the wind speed (o) is
determined by the following equation:

o TA+2/k)-T3(1+1/k)

(5)
Vv T(1+1/k)

After calculating the parameters ¢ and k, the
most frequent wind speed and the maximum
energetic wind speed are given by Eq. (6) and (7),
respectively, which are as follows:

1/k
k-1
1/k
k+2
VmaxE =C[ k j (7)

The shape parameter, &k, commonly ranges
between 1.5 and 3.0. When it assumes the value
2.0, it is called the Rayleigh distribution, and the
PDF for the Rayleigh distribution can then be
simplified as shown in Eq. (8).

k
f(V)=2'fepo—5} ] (8)
c” &

2.3.2. Power extracted from wind
The kinetic energy in air of mass ‘m’ moving with
speed V is given by the following in SI units:

1 ;
Kinetic energy = =m ¥? joules. (9)

The volumetric flow rate is A'V, the mass flow rate
of the air in kilograms per second is pA} , and the
power is given by the following (Patel, 1942):

P:%(pAV)VZ =%pAV3 watts. (10)

Here, p and A, respectively, define the density in
kg/m® and the area swept by the rotor in m?
Therefore, the wind-power density is given by the
Eq. (11) in terms of the Weibull PDF, and the
wind energy density is given by Eq. (12) for a
period T.

P e . 1 3 k+3

;—J:P(l V()Y =2 pe F(TJ (11)

E 1 3 [k+3
— 5% fols 1"[ k ]T (12)

From the technological point of view, a wind
turbine that converts the kinetic energy of the wind
to electrical energy, starts to generate power at a
cut-in wind speed (7] ), and this process continues
until a wind speed of ¥V, at which the nominal
power generation P, is obtained. After this
nominal point, the turbine starts to decelerate itself
in a controlled manner until a speed of ¥, called
the cut-out wind speed, is reached. With reference
to these benchmarks, the energy achieved from an
ideal turbine is given as follows:

x Ve v,
By = TIP(V)_,((V)({V = T{j]’(t")_l(!")dl' - J.PR_I‘(I")dVJ
0 h Vi

(13)

Substituting the Eq. (10) in Eq. (13), it can be
rewritten as

Fo |
.[i[,_} e "‘rfl']
Fele

P Ve A - .

Eny =214 ;[1' ;[?J e gy 41,

(14)*

Because of the several losses occurring during

the transmission mechanisms of the wind turbine,

all the power carried by the wind can never be

converted to electricity. In this regard, the actual

power achieved from the turbine (P;) is

calculated from the turbine-performance curve
described by Eq. (15).

0 S <V
( 3 2 , ,
alVo +a, Vo +asl +(r4)PR, Vi sV <V,
Pr(V)= = :
Pr L, Ve SV <
0 V2
(15)

where a,, a,. a;,and a, are the regression con-
stants of the turbine-performance curves (Arslan,
2010; Wu, 2002). Combining the Egs. (1), (10),
and (15), Eq. (16) gives the actual energy released
from a wind turbine.

L ¥y k-1
" (v i
Epy = ?‘J'P,(l':m'mr = 7P, jm,;" +asb vayy H.,:i{—) e gy
H i c\ ¢

k=1
k(V ¢
+7'P,‘,J-_[;J eV gy
c\C

(16)

* Equations 14, 16 and 19 have been shrunk in order
to fit the column. They are given in their full size at the
end of the paper.
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Therefore, the efficiency of the turbine (7) is the
ratio of the real to the ideal energy-generation
processes and is given by the following equation:

_ Eq,
Epy

" (17)

As observed from Egs. (15)-(17), the turbine
efficiency is a function of not only the wind
characteristics but also wind distribution. In 1926,
Betz first discovered that the wind power
theoretically decreased with the wind speed.
According to Betz, neglecting the transmission
losses, the obtainable power from wind is
approximately 59% of the total carried by it. In
other words, the turbine efficiency cannot exceed
the value of 59% (Golding, 1955; Considine,
1977).

For the period T, the generated nominal wind
energy from a turbine operating with full capacity
is given by Eq. (18).

Ew =TP; (18)

After this classification, two important para-
meters — capacity and availability factor — should
be defined for the estimation of power generated
from a wind turbine. The capacity factor is defined
as the ratio of the real-energy generation to

nominal-energy generation and is given as follows
(Ozgur, 2006; Decher, 1994):

. Vy k-1
E; 3 »3 ; k(V
Cp="T= J-(ulJ" +a,V = +asl +(.'4)—£—1
e c\c)
I

(19)

The availability factor is the operating percentage
of a turbine and is given by the following
2quation:

Y, N
Ap =PV, SV <V;) = jk(I] e g (20)
7ele
f the wind speed measurement has been made
rom a height of H, above the ground, it is
sossible to assess the wind speeds at a height H,

»y the relation:

I’e - [,_rm[ }{3 J (21)
HI

vhere « is a parameter that depends on the soil
oughness (Thiaw, 2010; Ozgur et al., 2009;
Jzgur, 2006; Patel, 1942).

2.4. ANN modelling of wind power
generation

Artificial neural networks are examples of the way
that the biological neural system works. Nerve cells
contain neurons. Neurons are interconnected in
various ways and create a network. Likewise, ANN
is a network applied successfully in a number of
application areas such as medicine, economics,
engineering, neurology, meteorology, etc. The ANN
modelling is carried out in two steps: the first step is
to train the network whereas the second is to test
the network with data, which are not used for train-
ing. The unit element of an ANN is the neuron. As
in nature, the network function is determined large-
ly by the connections between the elements (Fu,
1994; Tsoukalas and Uhrig, 1997; Oztemel, 2003).

In an ANN, each unit is a basic unit of informa-
tion process. Units are interconnected via links that
contain weight values. Weight values help the neu-
ral network to express knowledge. There are sever-
al neural architectures. One of these architectures,
widely used in engineering applications, is multi-
layer neural network (MLNN).

The MLNN consists of three layers at least: an
input layer, an output layer and one hidden layer.
The input and output layers represent the input and
output variables of the model and the hidden layers
hold the network’s ability to learn the non-linear
relationships between the input and output
(Oztemel, 2003; Kalogirou, 2000). To obtain these
relationships, several learning algorithms are avail-
able, one of which can be used. The most widely
used algorithm is the feed-forward back propaga-
tion learning algorithm. It is a gradient descent algo-
rithm. The most widely used algorithms are
Levenberg-Marguardt (LM), Pola-Ribiere Conjugate
Gradient (CGP) and Scaled Conjugate Gradient
(SCQ) in the field of energy. LM algorithm appears
to be the fastest method for feed forward neural
networks. CGP and SCG algorithms are a version
of the Conjugate Gradient algorithm. Each of the
conjugate gradient algorithms that have been dis-
cussed so far requires a line search. This line search
is computationally expensive, since it requires that
the network response to all training inputs be com-
puted several times for each search (Hagan and
Menjah, 1994; Fletcher and Reeves, 1964; Moller,
1993). ANN with a feed-forward back propagation
algorithm learns by changing the connection
weights, and these changes are stored as knowl-
edge. The performance of the configured model is
determined using some statistical methods such as
the percent root mean square error (PRMSE),
covariance (Cou) and the coefficient of multiple
determinations (R?). These statistical parameters
are formulated in terms of output value (Voupu), tar-
get value (y,q), average of target (Ugenq) and pat-
tern (n) as follows (Arslan, 2011):
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In this study, different feed-forward back
propagation learning algorithms, namely Pola-
Ribiere Conjugate Gradient (CGP), Levenberg—
Marquardt (LM) and Scaled Conjugate Gradient
(SCG) were applied. Inputs and outputs were
normalized in the (0-1) range depending on the
non-linear transfer function; logarithmic sigmoid
(logsig), was used as given:

f(z)= l (25)

l+e*

where z is the weighted sum, and given in terms of
bias (b), weight (w) and output (y),

z;= Z Wiy + bf (26)
i=l

2.5 Economic analysis

The wind power plants handled herein have been
evaluated economically using net present value
(NPV) analysis. NPV is a powerful tool for the
feasibility studies and can be determined with the
following equation (Ozerdem et al., 2006; Zheng,
2009):

N

MEp= YLt (27)

il (1+r)

Where B, and C; are the benefit and cost in the tth
year respectively during the program, r represents
the discount rate and N is the timescale of the plant.

To this end, the cost parameters selected for the
on-grid configuration were the wind turbine (Cyr)
including installation and commissioning, and sal-
vage (C,,) where the benefits were greenhouse
gases (Ccpp), repair and maintenance (Cpgp), and
the electricity sale (C,). Accordingly, the general
cost (C) and the benefit (B) of the system are as
given in Equations (28) and (29).

C= CWT - Csal (28)
B = Ccoz + Ce — Cogm (29)

In this study, the unit costs used in the study
were taken as 88 US$/MWh for electricity sale (C,),
1250 US$/kW for wind turbine including installa-
tion and commissioning (Cyrt), %5 of cyr (Cey),
17.5 US$/MWh for operating and maintenance
(cogm) and 93.2 US$/MWh for greenhouse gases
(Ccoz) (Arslan, 2010; Green Economy, 2010;
Blanco, 2009).

3. Results and discussion

In the ANN modelling of a wind power plant, the
values of three inputs, turbine type, hub height and
wind speed, were used. Generated power of the
system was obtained as output. Different models
were performed by using the software MATLAB.
These models were built up using a dataset includ-
ing 314 patterns. In the training step, 220 of these
patterns (70% of total) were used. The remaining
patterns, randomly selected from a number of 94,
were used for testing. An increased number of neu-
rons (from 6 to 16) were used to define the output
accurately in a single hidden layer for 2000 epochs
in the training algorithms. According to statistical
performance evaluation, the summarized results are
given in Table 2.

According to Table 2, all the studied ANN mod-
els are very satisfactory and can be used for the pre-
feasibility of a wind power plant with an acceptable
accuracy. The LM training algorithm with 15 neu-
rons in a single hidden layer was determined as the
best model. Different models with more hidden lay-
ers were also tested but none was as much accurate
as LM 15. The architecture of LM 15 is shown in
Figure 4.

In the training step of this topology, PRMSE was
determined as 0.4908% when the values of Couv
and R? obtained were 0.5074 and 0.9995. These
values were respectively 0.6475, 0.9606 and
0.9991 in the testing step. The statistical evaluation
shows that the trained ANN model can be used for
the designing of a wind power plant considered
suitable for Kutahya, since it has high accuracy. The
comparisons of the actual and ANN outputs are
shown in Figure 5.

In this study, the wind data, appropriate to
World Meteorology Organization (WMO) stan-
dards, collected between July 2001 and June 2004
in 10-minute intervals were evaluated to determine
the energy potential of the region. This data was
used to determine the power generation capacity
taking 17 different turbine models into considera-
tion in Weibull and Rayleigh distribution models.
Besides these, technical characteristics of these tur-
bines were also modelled using ANN to give the
power generation capacity. The results are given in
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Table 2: A comparison of error values for studied ANN topologies

Algorithm Train Test
CoV PRMSE R? CoV PRMSE R?
CGP 14 41213 3.8952 0.9694 5.2604 3.7239 0.9737
CGP 15 2.7089 2.6564 0.9867 3.6979 2.7567 0.9868
CGP 16 2.7272 2.7586 0.9865 3.9002 2.8213 0.9855
LM 14 0.6085 0.6000 0.9993 0.9963 0.6831 0.9990
LM 15 0.5074 0.4908 0.9995 0.9606 0.6475 0.9991
LM 16 0.5909 0.5630 0.9993 0.9472 0.6475 0.9991
SCG 14 3.1010 3.3463 0.9826 4.4538 3.4445 0.9816
SCG 15 2.9901 3.0489 0.9838 3.8324 2.7796 0.9868
SCG 16 2.2494 2.2151 0.9908 3.1519 2.2317 0.9905
Table 3: NPV results for a discount rate of 0.14
Turbine typeCapacity NPV Payback period
(kW) ($) (year)
// 1 750 68,979 >20
Turhine A . 2 750 128,959 12.69
Type y’,’f 3 200 225893 493
- : {,‘%‘?‘q i 4 200 23,737 14.14
Height \".\',’%‘ﬁ". 5 500 121,815 11.21
_— 6 600 255,349 877
Speed : ; 7 1,500 257,747 12.69
8 900 245,386 10.72
9 1,000 90,493 15.10
10 1,300 170,083 13.77
11 600 52,811 15.19
12 660 191,450 10.45
13 1,650 17,548 19.19
) ) 14 600 111,447 12.37
Figure 4: The architecture of the best ANN 15 600 212.654 957
topology
16 1,000 422,187 8.80
17 1,500 398,898 10.82

Figures 6-8. According to these figures, the results
of the ANN model are more accurate than those of
Weibull and Rayleigh (Arslan, 2010; Ozgur et al.,
2009; Ozgur, 2006; Ozgur and Kose, 2006).

For the economic evaluation of cost and benefit,
the NPV concept was used, which included the
greenhouse gas emission criteria. The calculations
were based on the average energy generation of
three years. The NPV results ratified for a discount
rate of 0.14 (TCMB, 2010) are given in Table 3.

According to Table 3, the wind power genera-
tion is profitable for the existing turbine type 1. NPV
values oscillate between US$ -68,979 and
422,187. Since the greater NPV means the more
profitable, the most appropriate case seems to be
the system with the turbine type 16. However, the
least payback period is obtained for type 3 with an
NPV value of US$ 225,893. So, this means that the
most appropriate case is actually the system with
the turbine type 3, when the capacities of the tur-
bines are taken into consideration.

4. Conclusion

A highly unique flexible ANN algorithm was pro-
posed to evaluate the wind power generation sys-
tems because of nonlinearity of the neural net-
works. The results analytically obtained were used
to train the several ANN algorithms such as CGP,
LM and SCG. The trained algorithms were then
tested and evaluated by the statistical methods such
as Cov, RMS and R?. These statistical values
showed that the best algorithm was LM. The degree
of accuracy, between the real data and training
data, is 99.95% for ANN algorithms, whereas the
degree of accuracy, between the real data and test-
ing data, is 99.91% for LM 15.

In this paper, the trained algorithms also show
that the predicted values can be used to install a
wind system with less data and high accuracy.
Besides these, the best ANN topology gives more
sensitive results in comparison to Weibull and
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Figure 6: A comparison of the values of electricity production (July 2001 — June 2002)

Rayleigh distribution models. So, the neural net-  analysis-based ANN topology shows that the wind
work topology can be used for the feasibility studies ~ power systems for different 16 turbine types are
of wind power projects. In this study, the NPV  profitable in Kutahya.
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Figure 7: A comparison of the values of electricity production (July 2002 — June 2003)

2000
Turbine Types
1800
1800 - |
. 1a00
E 1200 N
8
E 1000 [ [ L
2 3
&
% 300 - B
§ L
w500
400 4
200
U L1 A L1 L1 | 11| - L1 I L1 - L1 | L1
1 2 3 4 5 [:3 T 8 9 10 11 12 13 14 15 16 1T
@ Actual 673.1 |B47.3 | 2866 | 257.1 [5BB.7 [753.8 |1597.0|1086.3|1063.5({1423 7| 650.9 | 815.5 |1674. 4 665.0 | TB1.4 [135B.5/1852.5
B Rayleigh 5647 |734.1 |249.2 | 220.8 | 408.0 |658.4 (1457.0/953.8 |901.3 |1218.9| 5485 (697.9 (1402 .4 570.4 | 673.9 |1184.7]1584.2
aWeibull B87.2 |B53.4 | 287 4 | 250.4 [508.7 [757.9 [1711.2|1088.4|1075.5{1431.1| 662 4 | B24.5 [17122/672.3 | T90.9 [1372.1|1882.1
OANN model |830.1 |781.1 [359.3 [ 325.1 [551.4 | 747.2 [1582.6/1010.5(978.4 [1314.2|582.8 | 745.9 [1513.2)634.0 [ T11.8 [1240.1)1673.1

Figure 8: A comparison of the values of electricity production (July 2003 — June 2004)
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Nomenclature Vo cut-out wind speed (m/s)

A area swept by the rotor (m?) v output

ANN artificial neural network Youtput  OUtput value

Ar availability factor Vactual  target value

B benefit (US$) Uaetual  @verage of target

b bias number z weighted sum

C general cost (US$) I'(...) gamma function

c scale parameter (m/s) o standard deviation of wind speed

CF capacity factor n efficiency of turbine (%)

CGP  Pola-Ribiere conjugate gradient a ground surface friction coefficient

Cov  covariance p air density (kg/m3)

Ccoz  cost of greenhouse gases (US$)

C. cost of electricity sale (US$) References

Cal cost of salvage (US$)

Cogm cost of operation and maintenance (US$)
Cwr  cost of wind turbine (US$)

Ccoz  unit cost of greenhouse gases (US$/MWh)
Ce unit cost of electricity sale (US$/MWh)

Ceal unit cost of salvage (US$/MW)

CogM  Unit cost of operation and maintenance
(US$/MWh)

Cwr unit cost of wind turbine (US$/MW)

Ea actual energy released from turbine (kWh)

Etw energy achieved from an ideal turbine
(kWh)

F(V) cumulative distribution function
f(V)  Weibull distribution function
IC installed capacity (kW)

k shape parameter

LM Levenberg-Marquardt

m air of mass (kg)

MLNN multi-layer neural network
N lifetime of the plant (year)
NPV net present value (US$)

n pattern

PDF  probability density function
PRMSE percent root mean square error

Pr nominal power generation (kW)

Pr actual power achieved from the turbine
(kW)

r discount rate (%)

SCG  scaled conjugate gradient

Y, wind speed (m/s)

v, wind speed estimated at height Hy (m/s)

Vmp  most frequent wind speed (m/s)

the maximum energetic wind speed (m/s)

Vi wind speed measured at the reference
height H; (m/s)

Vg rated wind speed (m/s)

Vi cut-in wind speed (m/s)
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