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Abstract

In view of the close association between energy and

economic growth, South Africa’s aspirations for

higher growth, more energy is required; formulating

a long-term economic development plan and imple-

menting an energy strategy for a country /industry

necessitates establishing the correct relationship

between energy and the economy. As insufficient

energy or a lack thereof is reported to be a major

cause of social and economic poverty, it is very

important to select a model to forecast the con-

sumption of energy reasonably accurately. This

study presents techniques based on the develop-

ment of multilayer perceptron (MLP) and radial

basis function (RBF) of artificial neural network

(ANN) models, for calculating the energy consump-

tion of South Africa’s industrial sector between

1993 and 2000. The approach examines the ener-

gy consumption in relation to the gross domestic

product. The results indicate a strong agreement

between model predictions and observed values,

since the mean absolute percentage error is below

5%. When performance indices are compared, the

RBF-based model is a more accurate predictor than

the MLP model.
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1. Introduction

In 1995, South Africa found itself among the top 50
countries (developed and developing countries) in
the world, and first in Africa among countries south
of the equator in terms of the per capita commercial
energy consumption in 1995 (2 405 kg of oil equiv-

alent per capita in 1995). However, where energy
efficiency is measured as the ratio of real GDP to
energy use (1 US$ GDP at 1987 values per kg of oil
equivalent), South Africa’s ranking was very low
(among the last 50 out of a possible 150 countries)
(World Bank, 1998). Long-term development can
only take place when there is access to affordable
energy. Insufficient energy or a lack thereof has
been reported to be a cause of social and econom-
ic poverty, so it is very important to select a model
to forecast consumption of energy reasonably accu-
rately.

Accurate forecasting is important to both gov-
ernment and industry who need to provide viable
estimates on future revenue, cost, demands
(Wedding and Cios, 1996) and energy consump-
tion. A lack or a shortage of energy is perceived to
have a detrimental effect on the economy and gross
domestic growth (Anonymous, 2003). Energy is the
basis for sustainable development and the means to
ensure a healthy economy (Wang, 2009). Imple-
menting a long-term economic development plan
and an energy strategy for a country/industry
requires establishing the optimal relationship
between energy supply and the economy. 

It is worth noting that economic events and
regime changes in the economic environment, in
energy policy and fluctuations in energy prices can
lead to structural changes in the pattern of energy
consumption in a period under study(Chiou-Wei et
al., 2008), consequently, the relationship between
energy consumption and economic growth (Chiou-
Wei et al., 2008; Lee and Chang 2005) should be
regarded as non-linear.

A sound forecasting technique is crucial to
develop an accurate plan and to formulate an ener-
gy strategy. To date, the most popular modelling



technique used to predict energy consumption has
been regression analysis. To predict energy con-
sumption based on adequate data analysis, this
study has used data from the gross domestic prod-
uct (GDP) of South Africa’s industrial sector, as well
as total energy consumption in neural network
analysis, to achieve more reliable results.

Using an artificial neural network method rather
than a traditional classification method derives from
the success in estimating the non-linear function
(Mabel and Fernandez 2008). However, apart from
estimating the non-linear function in a shorter peri-
od of time, the advantage of the artificial neural net-
work (ANN) approach is that energy applications
are more viable, making them more attractive to
potential users such as energy engineers (Kaukal et
al., 2011).

ANNs are computer programs that are designed
to recognize both linear and non-linear relationships
between the input and the output variables in a
given data set (Al-Alawi et al., 2003). ANNs are able
to process information and provide models even
when the information and data are complex, noise-
contaminated, non-linear or incomplete. The goal
of an ANN is to map a set of input patterns against
a corresponding set of output patterns. The network
accomplishes this mapping by learning from a
series of examples and defining the input and out-
put sets for a given system (Amir Heydari et al.,
2006). The network then applies what it has learnt
to a new input pattern to predict the appropriate
output (Amir Heydari et al., 2006; Zuptan and
Gasteiger 1999).

Many studies on energy demand and consump-
tion forecasting exist in the literature. Among these
studies, linear and non-linear statistical models,
including ANN programs, have been used by Pao
(2006) to determine the influence of four economic
factors on the electricity consumption in Taiwan and
to develop an economic forecasting model. An
ANN model that has four independent variables,
namely GDP, population, and import and export
costs has been used by Geem and Roper (2009) to
estimate the energy demand in South Korea accu-
rately, and Bianco et al., (2009) took into account
the influence of several economic and demograph-
ic variables related to the annual electricity con-
sumption in Italy, to develop a long-term consump-
tion forecasting model.

The industrial sector is at the core of developing
projects because it is the most important end-user in
developing countries, to ensure economic growth
(Lee and Chang, 2007).This study aims to deter-
mine the empirical factors affecting estimation of
energy consumption in the industrial sector of
South Africa by using the multilayer perceptron
(MLP) and radial basis function (RBF) of artificial
neural network (ANN) models, and comparing the
prediction capabilities of the models.

It was found from the comparison of perform-
ance indices, based on the statistical measures
namely, mean absolute percentage error (MAPE),
coefficient of correlations  and visual inspection,
that prediction performance of the RBF model was
superior to that of the MLP function.

2. Data

In this paper, the industrial sector of South Africa, a
developing country was assessed. Annual data from
1993 to 2000 reflected in Table 1 on total energy
consumption and real GDP were used. These were
obtained from the Integrated Energy Plan for the
Republic of South Africa, and the Department of
Minerals and Energy (Anonymous 2003). Total
energy consumption is measured in Peta Joules
(PJ) with renewable and waste excluded and for
GDP, 1995 was used as the base year.

3. MLP neural network and RBF neural

network

3.1.  MLP structure and design

Since their inception in the 1940s, different neural
network models have been developed, but the MLP
is still the most widely used (Mata, 2011). This net-
work consists of three layers namely, input layer,
hidden layer and output layer, with each layer hav-
ing one or more neurons. In addition, bias neurons
are connected to the hidden and output layers as
shown in Figure 1.

The computational procedure of the network is
described below(Hsu and Chen, 2003):

Yj = ƒ(ΣiwijXij) (1)

where Yj is the output of node j, ƒ(.)the transfer
function, wij the connection weight between node j
and node i in the lower layer and Xi the input signal
from the node i in the lower layer. The backpropa-
gation is based on the steepest descent technique
with a momentum weight (bias function) which cal-
culates the weight change for a given neuron. It is
expressed as follows (Hsu and Chen, 2003; Huang
et al., 2002): let ∆wp

ij(n) denote the synaptic weight
connecting the output of neuron i to the input of
neuron j in the pth layer at iteration n.

The adjustment ∆wp
ij(n) to wp

ij(n) is given by

∆wp
ij(n) = η(n) (2)

where η(n) is the learning rate parameter. By using
the chain rule of differentiation, the weight of the
network with the backpropagation learning rule is
updated using the following formulae:

∆wp
ij(n) = η(n)δp(n) Xp-1

i(n)m(n)∆wp
ij(n-1) (3)

∆wp
ij(n+1) = wp

ij(n) + ∆wp
ij(n) (4)

δE(n)

δpij
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where δpi(n) is the nth error signal at the jth neuron
in the pth layer, Xp-1

i(n) is the output signal of neu-
ron i in the hidden layer, and m is the momentum
factor.

Newff is a Matlab code which creates a feed-for-
ward backpropagation network. This was used to
calculate a precise function of the MLP neural net-
work. The number of hidden neurons was deter-
mined by comparing the performance of different
cross-validated networks, with 1–15 hidden neu-
rons, and choosing the number that produced the
greatest network performance. This resulted in a
network with single input neuron (GDP), five hid-
den neurons and a single output neuron (energy
consumption). In the analyses, network parameters
of learning rate and momentum were set at 0.05
and 0.7, respectively. A variable learning rate with
momentum (trainlm) as the network’s training func-
tion, and tansig as activation functions for all layers
was used. The data used by the network must be
scaled for the network to be effectual. In theory, the
inputs to the network can be any value. However,
scaling values to the same order of magnitude (gen-
erally in the range 0 to 1 or -1 to 1) enables the net-
work to learn relationships more quickly (Hart,
1992). In this paper, the data was scaled to the
range -1 to 1 to ensure a consistent scaling regime
for input and output. The Matlab code for the
design is as follows:

p=[472 486 500 521 534 538 549 571];
t=[1766 1789 2016 1996 2071 2098 2026
2003];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
iitst = 2:4:Q;
iival = 4:4:Q;

iitr = [1:4:Q 3:4:Q];
val.P = pn(:,iival); val.T = tn(:,iival);
test.P = pn(:,iitst); test.T = tn(:,iitst);
ptr =pn(:,iitr); ttr = tn(:,iitr);
net = newff(minmax(ptr),[5 1],{‘tansig’ ‘tan-
sig’},’trainlm’);
net.trainParam.show=50;
net.trainParam.lr=0.05;
net.trainParam.mc=0.7;
[net,tr]=train(net,ptr,ttr,[],[],val,test);
an=sim(net,pn);
a = postmnmx(an,mint,maxt);
error=(t-a)

3.2. RBF structure and design

Due to their better approximation capabilities, sim-
pler network structures and faster learning algo-
rithms, RBF networks have been widely used in
many science and engineering applications
(Benghanem and Mellit, 2010; Mellit and
Kalogirou, 2008).

The RBF neural network is a kind of feed-for-
ward neural network (Tong et al., 2009). The RBF
neural network (Bishop, 1991; Wedding and Cios,
1996) comprises three layers: input layer, hidden
layer and output layer. Between the input and out-
put layers is a layer of processing units known as
hidden units. Each of these implements a radial
basis function (Tong et al., 2009). The distance
between hidden-layer neurons is connected with
the input of the weight  and the vector ap, multiplied
by the threshold  as their own input, as shown in
Figure 2.

A hidden layer of i input:

(5)

Table 1: Industrial sector data

1993 1994 1995 1996 1997 1998 1999 2000

GDP - All industries 472 486 500 521 534 538 549 571

Total final energy consumption (PJ) 1766 1789 2016 1996 2071 2098 2026 2003

All industries are listed at basic prices Rand (R) - billion (constant 1995 prices), Renewable and Waste are excluded. 

Figure 1: MLP Single hidden layer neural network structure
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The output:

(6)

Although RBF threshold d1 can adjust the sensi-
tivity function, in this work, another parameter C
(expansion constant) was used. To determine the
neural network, the relationship between C and d1
in the Matlab Toolbox is:

d1i = 0.8326/Ci (7)

The output of the hidden-layer neurons at this
point can be represented by the following equation: 

(8)

The weighted sum of the hidden layer neurons
output serves as input data for the output:

yp = Sn
i=1bi X w2i (9)

Training the RBF network entails two steps: the
first step is to learn without been taught, determin-
ing weight w1 between input layer and hidden
layer; the second step is to identify weight w2
between the hidden layer and output layer (Caiqing
et al., 2008).

Newrbe is a Matlab code which designs a radial
basis network with zero error in the design vectors.
The code was used to create a precise function for
the RBF neural network, which automatically
chooses the number of the hidden layer, making
predictions more accurate (Caiqing et al., 2008). In
the analysis, the network parameter SPREAD which
is the distribution density of RBF was set to 2.3 for
the network. The Matlab code for the design is as
follows:

p=[472 486 500 521 534 538 549 571];
t=[1766 1789 2016 1996 2071 2098 2026
2003];
p=mapminmax(p,0,1);
[t,ts]=mapminmax(t,0,1);
spread=2.3;
net=newrbe(p,t,spread);
yn=sim(net,p)

4.  Prediction performance comparisons

Two different statistical measures were employed to
evaluate the energy consumption prediction capa-
bility of each of the ANN models.

4.1. Coefficient of correlation R2 and mean

absolute percentage error (MAPE)

Table 2 reflects the R2 and MAPE for the energy
consumption for each model. The total sum of
squared deviations in Y (energy consumption) can
be decomposed into two qualities, the first, SSR,
measures the quality of x (GDP) as a predictor of Y,
and the second, SSE, measures the error in the pre-
diction. Thus, the square of the correlation coeffi-
cient between the response variable Y and the pre-
dictor x is: 

R2 = 1 –           = (10)

where SST = SSR + SSE (11)
SST = Total sum of squares, SSR = Sum of squares
due to regression and SSE = Sum of squares due
to error.

It should be noted that 0 ≤ R2 ≤ 1 because SSE
≤ SST. If R2 is near 1, then x (GDP) accounts for a
large part of the variation in Y (energy consump-
tion) (Chatterjee and Hadi, 2006).

The mean absolute percentage error (MAPE)
which is a measure of accuracy in a fitted series
value in statistics, is expressed in per cent

(12)

where Ai is the actual value, Pi is the predicted
value and N is the number of data. A MAPE below
5% is the measure of a highly accurate prediction.

Figure 2: RBF Neural network structure

SSE
SST

SSR
SST
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5. Results and discussion

Computer codes for MLP and RBF-models were
developed in Matlab Software (version 2010a). The
models were trained until the best performance was
obtained. The optimal parameters (weights and
bias) of the networks were saved and used for test-
ing and validating operation of the models.

In order to test and validate the different models,
two statistical tests (the correlation coefficient  and
the mean absolute percentage error ‘MAPE’)
between the measured and the estimated annual
energy consumption data using the MLP and RBF
network were carried out. The results obtained are
summarised in Table 2. From the simulations car-
ried out, it was found that better performance was
delivered by the RBF-model according to the corre-
lation coefficient between both sets of data (mea-
sured and estimated).The obtained  is 0.9998, is

higher than the corresponding one in the MLP-
model, while the MAPE is  lower than that of the
MLP-model. In order to demonstrate the efficiency
of the proposed RBF-model, a comparison was
done between the developed RBF, and MLP mod-
els in Figures 3 to 6. Figure 7 illustrates the devia-
tion from actual data of the two models. The RBF
model easily learnt to capture the industrial sectors’
energy consumption (with the least forecasting
errors).

Figure 3: Comparison between the actual and RBF predictions

Figure 4: Regression analysis between the actual and RBF predictions

Table 2: Performance indices for models

Model MAPE R2

MLP 3.3 X 10-2 0.9959

RBF 2.07 X 10-2 0.9998

MAPE = mean absolute percentage error, R2 = correlation

coefficient
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6. Conclusion

Forecasting energy consumption is essential for the
long-term development of South Africa, especially
for the industrial sector which plays a pivoted role
in the country’s economic growth. In order to estab-
lish accurately the relationship between energy con-

sumption and the economy of an industrial sector
for estimating the energy consumption, ANN mod-
els were employed. In this paper, MLP and RBF
models for estimating South Africa’s industrial
annual energy consumption were adapted. The
measured annual energy consumption was com-
pared with that estimated using MLP and RBF
models. The predictive performance of each model
was assessed using two statistical measures: R2,
MAPE and a study of the graphs were used. The
results of the statistical measures suggest that RBF-
model provides more accurate results than the MLP-
model.

It has been demonstrated that the RBF-model
gives more accurate results when compared with
those obtained using the MLP network model. Both
models deliver highly accurate predictions, since the
MAPE values are below 5%. The developed model
is suitable for South Africa’s industrial sector. It is
concluded that the predicted data generated by the
RBF network is evidently suitable for estimating the

Figure 5: Comparison between the actual and MLP predictions

Figure 6: Regression analysis between the actual and MLP predictions

Figure 7: Deviation from actual data of the two

models
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energy consumption of South Africa’s industrial
sector to formulate an accurate development plan
and to implement a viable energy strategy. 
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