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Abstract

In this paper, seasonal autoregressive integrated
moving average (SARIMA) and regression with
SARIMA errors (regression-SARIMA) models are
developed to predict daily peak electricity demand
in South Africa using data for the period 1996 to
2009. The performance of the developed models is
evaluated by comparing them with Winter’s triple
exponential smoothing model. Empirical results
from the study show that the SARIMA model pro-
duces more accurate short-term forecasts. The
regression-SARIMA modelling framework captures
important drivers of electricity demand. These
results are important to decision makers, load fore-
casters and systems operators in load flow analysis
and scheduling of electricity.

Keywords: daily peak demand; SARIMA; regres-
sion-SARIMA; short term load forecasting

1. Introduction

Modelling daily peak electricity demand is impor-
tant as it provides short-term forecasts which will
assist system operators in dispatching of electrical
energy. Prediction of load demands is very impor-
tant for decision making processes in the electricity
sector. Decision making in this sector involves plan-
ning under uncertainty. This involves, for example,
finding the optimal day to day operation of a power
plant and even strategic planning for capacity
expansion. The demand of electricity forms the
basis for power system planning, power security
and supply reliability (Ismail et al., 2009). It is
important therefore, to produce very accurate fore-

casts as the consequences of underestimation or
overestimation can be costly. Underestimation has a
serious negative impact on the national electricity
supply system of a country. It may result in the
national electricity supply system becoming unsta-
ble thus leading to supply interruption if left
unchecked. This may even lead to further loss of
business as restoration of a plant or construction of
new plants takes a long time before generation can
start. If the entire national electricity supply system
were to shut down, it would take days, possibly
even weeks to restore. Overestimation results in
wastage of resources due to excess production. As
noted by Taylor (2008), accurate short-term fore-
casts are needed by both generators and retailers of
electricity particularly, during periods of abnormal
peak load demand. Accurate forecasts will enable
effective load shifting between transmission substa-
tions. In order to improve forecast accuracy it is
important to combine statistical forecasting meth-
ods together with judgmental techniques. Through
experience, the judgmental experts develop intu-
itive relationships between electrical load and
weather parameters, time of day, day of week, sea-
son and time lag of response, (Ismail et al., 2009).
On the other hand, statistical techniques provide a
scientific approach for producing consistent and
accurate forecasts.

Load forecasting has been studied extensively
for over four decades using classical time series,
regression and neural network methods. Amaral et
al. (2008) developed a smooth transition periodic
autoregressive (STPAR) model and this was evalu-
ated against alternative load forecasting models
using electricity load series data from Australia.
STPAR proved to be a useful tool when forecasting
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the electricity load. In their paper, Sumer et al.
(2009) developed ARIMA, SARIMA (seasonal
ARIMA) and regression models with seasonal latent
variable in forecasting electricity demand of the
data from ‘Kayseri and Vicinity Electricity Joint-
Stock Company’. Their results show that the regres-
sion model with seasonal latent variable is more
efficient than ARIMA and SARIMA. Taylor (2008)
used minute-by-minute data on British electricity
demand to evaluate 10-30 minutes ahead predic-
tion methods. It is argued that such short lead times
are important for the real-time scheduling of elec-
tricity generation. ARIMA models, an adaptation of
the Holt-Winters’ exponential smoothing model and
an exponential smoothing method that focuses on
the evolution of intraday cycle, are used. Out of
these methods, the double seasonal adaptation of
the Holt-Winters’ exponential smoothing model
gives the best results and this is consistent with
results from previous studies. Soares and Medeiros
(2008) consider a two-level method for hourly elec-
tricity load. A Two-Level Seasonal Autoregressive
(TLSAR) model is developed and compared with a
modified version of a SARIMA model called
Dummy-Adjusted SARIMA (DASARIMA). A specif-
ic class of seasonal ARIMA models (the benchmark
model) and the generalized long memory (GLM)
model discussed by Soares and Souza (2006) are
better than DASARIMA. A possible extension of this
methodology to combining forecasts, interval fore-
casts and forecast density evaluation is suggested.
Use of regression based methods and neural
network models are also discussed in the literature.
A hybrid neural network model for daily electrical
peak load forecasting (PLF) is presented by Amin-
Naseri and Soroush (2008). A novel approach for
clustering data by using a self-organizing map is
proposed, for which a feed forward neural network
(FFENN) is developed for each cluster to provide the
PLE It is concluded that the proposed hybrid model
produces superior forecasts than those of the linear
regression. The modelling and short-term forecast
of daily power demand in the state of Victoria,
Australia, is discussed in Truong et al. (2008). A
two-dimensional wavelet based state dependent
(SDP) modelling approach is adopted to formulate
a compact mathematical model that is used to fore-
cast daily peak power demand from 9 to 24 August
2007. With a MAPE of 1.9%, the model is found to
be effective. A non-linear multivariable regression
model for mid-term energy forecasting of power
systems in annual time base is developed by
Tsekouras et al. (2007) and applied to the Greek
power system using different categories of low volt-
age customers. The model includes a correlation
analysis of the selected input variables and per-
formed an extensive search to select the most
appropriate variables. Ismail et al. (2009) use a
rule-based forecasting approach for forecasting

peak load electricity demand. The authors conclude
that rule-based forecasting increases the forecast
accuracy when compared to the traditional SARI-
MA model and that improvement depends on the
conditions of the data, knowledge development
and validation. Ramanathan et al. (1997) develop a
simple and flexible set of models for hourly load
forecasting and probabilistic forecasting. These are
multiple regression and exponential smoothing
methods. The models developed perform well
against a wide range of alternative models.

Some research has been done on South African
electric load data. Notable contributions in this area
are those of Amusa et al. (2009) who apply the
bounds testing approach to co integration within an
autoregressive distributed lag framework to exam-
ine the aggregate demand for electricity in South
Africa during the period 1960-2007.

Hahn et al. (2009) gave an overview of some of
the methods used in demand load forecasting. The
methods were classified into regression based, time
series, state space and kalman-filtering. Artificial
and computational intelligence methods are also
suggested. Neural networks and support vector
regression methods fall into this class. However, the
current trend is to develop hybrid models as they
are seen to be more robust. A most recent review
forecasting is given in Munoz et al., (2010) and
Suganthi and Samuel (2011).

The paper discusses the application of the SARI-
MA and regression with SARIMA errors (regression-
SARIMA) to daily peak demand (DPD) forecasting
in South Africa. The regression-SARIMA modelling
framework captures important drivers of electricity
demand. These factors are weather variables, eco-
nomic and calendar effects and are known to influ-
ence electricity demand. An extension of the regres-
sion-SARIMA modelling framework is discussed in
detail in (Sigauke and Chikobvu, 2011). The rest of
the paper is organized as follows. A detailed discus-
sion of the data including fitting a probability distri-
bution is presented in Section 2. SARIMA and
regression-SARIMA models are then developed in
Section 3. Empirical results from the study are cov-
ered in Section 4. A comparative analysis of the two
models together with the Winter’s triple exponential
smoothing model is discussed in section 5. The
summary and conclusion of the paper are covered
in section 6.

2. Data

It is important that the amount of electricity drawn
from the grid and the amount generated balances
(Cottet and Smith, 2003; Taylor, 2006) and this
amount is called electricity load which is equal to
electricity demand in the absence of blackouts and
load-shedding. Aggregated DPD data from all sec-
tors of the South African economy for the period
January 1996 to December 2009 is used in this
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Table 1: Descriptive statistics for DPD

Mean Median Max Min Std Dev Skew Kurtosis
DPD 27406 27289 37158 16601 3809 0.0703 2.2710
Table 2: Comparison of alternative distributions
Distribution Log Likelihood AIC Estimated parameters
Normal -49257.4 98518.8 Mean = 27406.05 (53.23)
Std dev = 3808.76 (37.69)
Lognormal -49275.28 98554.55 Meanlog =10.2087 (0.001972)
Sdlog = 0.1408 (0.001394)
Weibull -49368.46 98740.93 Shape = 7.9097 (0.0844)

Scale = 29074.87 (54.399)

paper. The data is from Eskom, South Africa’s
power utility company. DPD is the maximum
hourly demand in a 24-hour period. There are
5097 observations. Table 1 gives a summary of the
descriptive statistics of DPD.

The time series plot of DPD in Figure 1 shows a
positive linear trend and strong seasonality. The
null hypothesis of a stochastic trend is accepted
under the Augmented-Dickey Fuller unit root test.

A spectral analysis is carried out to investigate
the periodicity in the data. The spectral density
shows a seven day periodicity. We fit a probability
distribution to the sample data. Table 2 shows a
comparison of alternative distributions fitted. The
normal distribution is the best fitting distribution
since it has the largest log likelihood and smallest
Akaike information criterion statistics. The estimat-
ed parameters of the normal distribution together
with the standard errors in parentheses are: mean
= 27406.05 (53.23) MW and standard deviation =
3808.76 (37.69) MW. Empirical and theoretical
cumulative distribution functions (CDFs) for the
Weibull, normal and lognormal distributions given
in Figure 2 also show that the normal distribution is
the best fitting distribution.

The probability density function of DPD was
estimated using kernel density estimation (Silver-
man, 1986) and is plotted in Figure 3.

3. The models

3.1 SARIMA Model

The general SARIMA model can be represented
analytically as:

d(B)P(B*)VVYz, =

8(B)0(B%)a, a, ~NO,0?) 1)

where z, represents DPD at time t, a, ~N0O,g?) is
the error term at time t, s is the seasonal length, B
is a backshift operator (Bz; =z,_4). &(B) =
(1 —oB—-— d)po) is the nonseasonal auto-
regressive (AR) operator, ®(B®) = (1 - ®,B° —
-+ — ®,BP) is the seasonal AR operator, 8(B) =

CDF
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Figure 1: Time series plot of daily peak electricity
demand (01-01-1996 to 14-12-2009)
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Figure 2: Empirical and theoretical CDFs for the
Weibull, normal and lognormal distributions
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Density

(1-6,B—-— ©,B7) is the nonseasonal moving
average (MA) operator, O(B*) = (1 - 0,B5—..—
0,B%) is the seasonal MA operator. V¢ and V2 are
the nonseasonal and seasonal difference operators

of order d and D respectively, where V¢= (1 — B)¢
and V2= (1 — B%)P.
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Figure 3: Probability density of DPD. The x-axis
represents daily peak electricity demand in
megawatts

3.2 Regression-SARIMA Model
Regression-SARIMA models are multivariate linear
regression models which work well when the rela-
tionship between demand and the predictor vari-
ables is linear. Electricity demand is generally divid-
ed into short-term, medium-term and long-term
forecasting. The regression-SARIMA model is one in
which the mean function of the time series is
described by a linear combination of regressors.
The covariance structure of the series is that of the
SARIMA process. The regression-SARIMA model
reduces to a SARIMA model if the regressors are not
used. The regression-SARIMA model captures
important drivers of electricity demand such as cal-
endar, weather and economic factors.

The paper concentrates on short-term forecast-
ing and the inclusion of calendar effects in the mod-
elling framework. Weather variables such as tem-
perature are not included in this study. A detailed
discussion of the influence of temperature on elec-
tricity demand in South Africa is given in (Sigauke
and Chikobvu, 2010). Several papers in literature
have adopted the same strategy of not including
temperature (Carpinteiro et al., 2004; Taylor et al.,
2006; Sores and Souza, 2006; Soares and
Medeiros, 2008). The regression-SARIMA model
used in this study is given as:

26

P (B)P(B*)VIVE

[Yt - 211:21 Amy — ZZ=1 Tr9r
—yH;_; —uH; — pH;

= 6(B)O(B%)a, (2)

where V4V2= (1 — B)4(1 — B%)? , y, is the depen-
dent time series, m; and g, are the twelve monthly
and seven day regression variables respectively.
The monthly seasonal effects are modelled by m,,
while g, models the day of the week effects. In
order to overcome the problem of multicollinearity
in the dummy variables m; and g,, 11 months in a
year are used and January is taken as the base
month, while 6 days are used with Monday as a
base day. H;, H;_; and H;,; are dummy variables
used to model the holiday effect, the day before
and after a holiday effects respectively. A, 1,7, u
and p are regression parameters and the other
variables are as defined in equation (1). A deri-
vation of equation (2) is given in the Appendix.

4. The empirical results

In order to have a better understanding of the daily
demand patterns of electricity we calculate the daily
seasonal indices. A summary of these daily indices
is given in Table 3. Day 7, which is Sunday, had the
lowest seasonal index of 93.265% showing that, on
average, the consumption of electricity is 6.735%
below average consumption. The highest index of
103.078% on day 3, which is Wednesday, indicates
that there is an above average consumption of
3.078%. For the rest of the week days the load vari-
ations are small (see Figure 4).

Table 3: Daily peak electricity consumption

indices

Season Index
Monday 102.343
Tuesday 103.006
Wednesday 103.078
Thursday 102.915
Friday 100.224
Saturday 95.1683
Sunday 93.265

4.1 SARIMA model results

A summary of the estimates of the parameters of
the best fitting model together with some important
statistics are given in Table 4. The data was trans-
formed using seasonal differencing and also by tak-
ing natural logarithms. The transformed data was
also found to follow a normal distribution.
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Index (%)

Table 4: SARIMA model

Par P P ba ds 02 03 0 Oy B¢
Coef 0.838 0.385 -0.264 0.029 -0.434 -0.242 -0.807 -0.122 -0.046
(0.000) (0.000) (0.000) (0.035) (0.000) (0.000) (0.000) (0.000)  (0.000)
Table 5: Regression-SARIMA
Par C
Coef 54.07 1.64 -0.72 0.17 -0.17 0.07 0.69 -0.82
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Par 0, 0, ®1p Sunday Tuesday Wednesday Thursday
Coef -1.44 0.47 -0.02 -29.83 -24.90 -27.82 -24.56
(0.000) (0.000) (0.0515) (0.000) (0.000) (0.000) (0.000)
Par Friday Saturday October July H; H;;
Coef -25.11 -41.73 15941 -157.48 -388.09 -116.67
(0.000) (0.000) (0.0027) (0.0023) (0.000) (0.000)
Several SARIMA models are considered and the
102 7 best model has a root mean square error (RMSE) of
544.79, mean absolute error (MAE) of 370.81 and
100 7 a mean absolute percentage error (MAPE) of
1.39%.
98
4.2 Regression-SARIMA model results
96 Table 5 shows a summary of the estimates of the
variables of the regression-SARIMA model together
94 - with the p-values in parentheses. A day before a
holiday has a negative coefficient indicating a
9 reduction in electricity consumed. There is a signif-
icant reduction in electricity demand during holi-
% days as evidenced by the coefficient of the dummy
T T T T T T T variable Hj in table 5.
Mon Tue Wed Thu Fri Sat Sun After substituting the values of the parameters
Day into the developed regression-SARIMA model, we
get:
Figure 4: Weekly load profile
(1-1.65B+0.73B* -0.17B°
The model can be written as: +0.17B* —0.07B%)
7 7
. (¥, +157July —1590ctober +
(1_B7) an,Z(l—QzB'—Q_;B3) (3) [ (5)

(1-©,8"-0,8"-0,8") q,

and substituting the values of the parameters we
get:

(1 —0.84B-0.39B% +0.26 B* —0.0336)
(1-B7) Inz,=(1+0.43B*+0.24B) (4)

(1+0.81B7 +0.12B" +0.058%) q,
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25Tuesday + 28 Wednesday +
25Thursday + 25Friday +42Saturday
+30Sunday +388H ; +117H , )
=(1+0.82B)(1+1.45B" —-0.48B"
+0.02B™)a, +54

After considering several regression-SARIMA
models, the best model has a RMSE of 539.27,
MAE of 381.17 and a MAPE of 1.427%.

27



Table 6: In-sample evaluation of the models

Performance Forecasting models
criteria SARIMA model Regression-SARIMA model Exponential smoothing
MAPE 1.392 1.427 1.548
RMSE 544.794 539.274 599.072
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Figure 5: Graphical plot of the forecasts, actual peak demand with residuals and 95% confidence
limits. The x-axis represents the date and the y-axis is demand in megawatts

5. Comparative analysis

The paper concentrated on daily peak demand
forecasting, which is important for providing short
term forecasts which will assist in optimal dispatch-
ing of electrical energy. The mean absolute percent-
age error (MAPE) and the root mean square error
(RMSE) are used for comparing the models in
short-term demand forecasting up to seven days
ahead. The training period was 1 January 1996 to
30 October 2009. The performance of the devel-
oped models is evaluated by comparing them with
Winter’s triple exponential smoothing model with o
=0.8,p =0.2,y = 0.1. Table 6 shows a compara-
tive analysis of the SARIMA and regression-SARI-
MA models, together with results from using
Winter’s triple exponential smoothing model.

The SARIMA model has the least MAPE, show-
ing that it is the best fitting model.

The graphical plot of the out of sample forecasts
using the SARIMA model, approximate 95% pre-
diction intervals and actual daily peak for the first
14 days of November 2009, are given in Figure 5.
LCL represents the lower 95% confidence interval
while UCL represents the 95% upper confidence
interval. The actual peak demand falls within the
prediction interval for all the 14 days. The SARIMA
model seems to be useful for making short-term
forecasts of daily peak demand. The probability
density of the forecasted values for the first fourteen
days of November 2009 is shown in Figure 6. The
density shows the full probability distribution of the
possible future values of peak demand over the 14

28

day period. The density is bimodal. This is impor-
tant for load forecasters and systems operators in
load flow analysis and dispatching of electrical ener-
ay.

6. Conclusion
In this paper, a time series methodology is present-
ed to forecast DPD for Eskom using SARIMA and

et isiy
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2e-04

1e-04

0e+00
1

T T T T T T
28000 29000 30000 31000 32000 33000

N =14 Bandwidth = 578.3

Figure 6. Probability density of the forecasted
values for the first 14 days of November 2009.
The x-axis represents daily peak electricity
demand in megawatts
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regression-SARIMA models. The regression-SARI-
MA model captures important drivers of electricity
demand. Empirical results from the study show that
the SARIMA model produces more accurate short-
term forecasts. The regression-SARIMA model can
be improved if weather variables such as tempera-
ture are included and also grouping holidays
according to their load reduction patterns. The
regression-SARIMA model is simple to implement,
reliable and provides information about the impor-
tance of each predictor variable. The results from
using a regression-SARIMA model are relatively
robust. Another interesting area for further study
would be density forecasting of daily peak electrici-
ty demand in which density forecasts provide the
estimates of full probability distributions of the pos-
sible future values of demand. These areas will be
studied elsewhere.
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Appendix

A general multiplicative SARIMA model for the
DPD time series z; can be written as:

P(B)D(BS)VIVDz, =
0(B)0(B%)a,, a,~N(0,c? (6)

An extension of the SARIMA model in equation (6)
involves the use of a time varying mean function
which we model through linear regression effects. A
linear regression model which can be used to ex-
tend the time varying mean function is given as:

Y = Z?:l Brxse + 24 @)

where y; is the dependent time series, x;; are the
explanatory variables, f; are the regression para-
meters and

Zt =Y — Z’;=1 ﬁfxft (®

We then substitute the expression for z; in equation
(6) to get

(B)P(B*)VIVY

[)’t i Z}fczlﬁfxft]
= 0(B)0(B%)a; 9)

H(BYP(BH)VIVy, —

Y1 Brp(BYD(BH)VVYxs,

= 0(B)0(B%)a, (10)
¢(B)D(B*)
[V4V2y, — Bf_1 BV V2 s ]
= 0(B)0(B%)a, an
where
V‘W?z a- B)d(l _ BS)D (12)

In order to capture the day of the week effect
dummy variables are introduced and defined as
follows:

1,7 = Mon,...,Sun
g :{ (13)

0, otherwise

The daily peak demand decreases during holidays.
Some companies do close earlier on a day before a
holiday. There is a reduction in electricity demand
a day before and after a holiday (Ismail et al,
2008). To take into account the effects of holidays
the following dummy variables, H,, H, and H;,;
are introduced

1, 7 =holida
N e (14)
/10, otherwise
o 1, j = day before holiday (15)
- 0, otherwise
= 1, j = day after holiday (16)
& 0, otherwise

If a holiday falls on a Sunday, the following
Monday is declared a public holiday. To take into
account the monthly seasonality effect a dummy
variable 1, is introduced.

%)

m, =

1,/ =Jan,...,Dec
0, otherwise

Our regression-SARIMA model is then written as:

H(BYD(B*)VIV

[yt - 211:21 }lel - ZZ:l TrDr
—YHj—y — uH; = pHjyy

= 0(B)0(B%)a,

where

vavl= (1 - B)4(1 — B%)?
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