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Eswatini, as the rest of southern Africa, is being frequented by drought over the last decade, 
and modelling experts are predicting that drought years will become more and severe. The 
expected increase in extreme climatic events makes the use of drought indices essential for 
drought monitoring and early warning. To enable Eswatini to better prepare, analyse and 
respond to drought, this study analysed the use of Normalised Difference Vegetation Index 
(NDVI) and Standard Precipitation Index (SPI) for near-real-time drought monitoring through 
the development of a model for drought severity. Meteorological stations across all agro-
ecological zones with data for the period 1986–2017 were selected for analysis. The SPI 
computation was achieved through DrinC software. Primary NDVI data sources were CHIRPS 
gridded rainfall dataset and the MODIS NDVI CMG data. Results of the 3-month SPI indicated 
that moderate droughts were experienced in 1990/1991, 2005/2006, 2011/2012, 2012/2013 and 
2015/2016. The Highveld and Middleveld had the lowest drought occurrence percentage of 
3.3%, whereas the likelihood of having a moderate, severe and extreme drought was higher in 
the Lowveld. The study determined a positive correlation between the SPI and the NDVI at 
3-month time scale, and a value of Y (drought severity) greater than 0.54 indicated a significant 
dry spell and could be used as a drought trigger threshold for early warning. The combined 
use of NDVI and SPI was deemed capable of providing a near-real-time indicator for drought 
conditions allowing planners to provide timely information for drought preparedness, 
mitigation and response planning, thereby helping to lower the eventual drought relief costs, 
protect food security and reduce the humanitarian impact on the population.

Keywords: drought; Standard Precipitation Index; Normalised Difference Vegetation Index; 
drought monitoring; early warning.

Introduction
Eswatini, as the rest of southern Africa, is being frequented by drought over the last decade. This 
phenomenon has become more frequent and severe leading to the increased interest by climate 
scientists as well national governments and UN agencies as devastating effects of a drought event 
on the local economy and life of the people can be severe and needs strategic and emergency 
planning and response. Climate scientists and modelling experts have predicted that drought 
years will become more and severe in southern Africa (Carty 2017), and this has already been 
experienced with the droughts in 2001, 2005, 2007 and 2015 in Eswatini.

The impact of drought in Eswatini can be severe only because almost 70% of the population rely on 
rain-fed agriculture (SNVAC 2015) and over 40% of the country fall in the Lowveld agro-ecological 
zone which receives an annual average rainfall of below 500 mm. The Eswatini Vulnerability Assessment 
reports have indicated that yields, especially in the Lowveld, can be reduced by over 50% during 
drought years, thereby affecting the overall country food security situation. This reduction in agriculture 
production, especially for the maize (the staple crop), results in the government importing grain and 
the UN and non-governmental organisations providing 20% – 30% of the population with food aid. 
The extent of the food aid distributed as well as imports needed requires effective and timely planning 
by the government and stakeholders, ensuring that the required food is available on time and the 
populace does not go hungry. This makes the aspect of drought monitoring and early warning critical.

Accurately and efficiently monitoring drought has been difficult mainly because of the difficulty in 
determining its onset, development and end. The expected increase in extreme climatic events, 
especially drought, makes the use of drought indices essential for drought monitoring. 
Integrating retrospective analysis with real-time monitoring could be extremely beneficial in the 

Integrating Standard Precipitation Index and 
Normalised Difference Vegetation Index for 

near-real-time drought monitoring in Eswatini

Read online:
Scan this QR 
code with your 
smart phone or 
mobile device 
to read online.

http://www.jamba.org.za
https://orcid.org/0000-0002-7803-1793
https://orcid.org/0000-0002-5169-7851
https://orcid.org/0000-0002-7701-4027
mailto:dmlenga@yahoo.com
https://doi.org/10.4102/jamba.v11i1.917
https://doi.org/10.4102/jamba.v11i1.917
http://crossmark.crossref.org/dialog/?doi=10.4102/jamba.v11i1.917=pdf&date_stamp=2019-12-12


Page 2 of 9 Original Research

http://www.jamba.org.za Open Access

development of response, mitigation strategies and awareness 
plans. Traditionally drought disaster management took a 
“crisis management” approach, where focus was on actions 
taken immediately before, during and shortly after a disaster 
(WMO 2006). Embracing of the Hyogo Framework for Action 
2005–2015 (UNISDR 2005) globally has led to a fundamental 
change in drought disaster risk management from emergency 
response to an inclusive approach including preparedness, 
where drought monitoring is important, and preventive 
approaches to acknowledge and reduce risk (WMO 2014).

Overview of drought monitoring and early 
warning systems
The capacity to monitor and predict the drought attributes 
(onset, frequency and severity) is fundamental for spatial–
temporal (drought) analysis. Accurate monitoring of the spatial 
and temporal distribution of the onset, extension and severity 
of drought is an essential instrument for informed and 
calculated decision-making in drought mitigation and 
management (Covele & Sannier 2005). Most commonly, 
drought indices are used to monitor drought conditions with 
many indices in existence and utilised to forecast the possible 
development and progression of an existing drought. There are 
several indices that measure how much precipitation for a 
given period of time has deviated from historically established 
norms. Although none of the major indices are inherently 
superior to the rest in all circumstances, some indices are better 
suited than others for certain uses (NDMC 2014). Drought 
indices mostly are functions of precipitation and/or 
temperature, river discharge (Zehtabian et al. 2013). Precipitation 
is the most commonly used indicator for drought monitoring.

Well-established drought indicators exist that include the Percent 
of Normal, Palmer Drought Severity Index (PDSI) (Palmer 1965), 
the Standard Precipitation Index (SPI), the Standardised 
Precipitation Evaporation Index (SPEI) (McKee, Doesken & 
Kleist 1993), Deciles (Gibbs 1967), Crop Moisture Index (CMI) 
(Palmer 1968) and Reconnaissance Drought Index (RDI) (Tsakiris 
& Vangelis 2005). The SPI is one of the most common indexes 
used to monitor drought because it presents a quick measure 
with minimal data requirements. A single numeric value is 
assigned to precipitation that can be compared across regions 
and different climates (Komuscu 1999; MacKee et al. 1993). 

Reliance, however, on weather data alone might not be 
adequate to monitor drought in all the areas, especially in 
southern Africa, where data can be incomplete, unavailable, 
untimely and unreliable. It is therefore necessary to 
complement weather-based data with satellite imagery to 
identify the spatial and temporal dimensions of drought, and 
to attain a complete, up-to-date, comprehensive coverage of 
drought conditions (Peters et al. 2002). Satellite images can be 
utilised for determining the spatial and temporal variability 
of drought hazard, and the vulnerability of water resources, 
vegetation systems and society to drought is essential for any 
early warning and drought monitoring tool. The use of 
satellite technology is therefore significant for drought 

information systems for Africa so as to generate seasonal or 
monthly drought hazard maps; drought vulnerability maps; 
real-time drought monitoring based on indicators and real-
time drought early warning.

Utilisation of different satellite-based drought monitoring 
indices such as Normalised Difference Vegetation Index 
(NDVI) and its derivatives such as Vegetation Condition 
Index (VCI), Standard Vegetation Index (SVI), Vegetation 
Productivity Index (VPI) and other indices such as the FAO 
Agriculture Stress Index (ASI) are essential for drought 
monitoring or the detection of near-real-time onset, evolution, 
intensity and duration of drought in Eswatini and southern 
Africa. In other countries, the use of remote sensing for 
drought monitoring is one of the many examples where 
derived satellite data are currently used to derive police and 
government planning decisions. The NDVI, the Water Supply 
Vegetation Index (WSVI), VCI and SVI have been used for 
vegetation monitoring, crop yield assessment and estimation, 
early warning systems and drought monitoring (Bhuiyan 
2004; Brown et al. 2008; Covele et al. 2005; Jain et al. 2010; 
Moulin Bondeau & Delecolle 1998; Sing et al. 2003). The 
study focussed on the integration of NDVI and SPI for near-
real-time drought monitoring in Eswatini.

Drought events in Eswatini
Drought is a normal part of southern Africa’s climate, and it 
is highly unusual for drought not to occur somewhere in 
southern Africa each year (Uganai 1994). During the last 
century, southern Africa, and Eswatini in particular, has 
been characterised by an increased frequency of droughts 
(EM-DAT 2018). Recorded drought years in the southern 
African region include that of 1982–1983, 1987–1988, 1991–
1992, 1994–1995, 1997–1998, 2002–2003 (Covele & Sannier 
2005), 2005–2006, 2007–2008, 2009–2010, 2012–2013, 2015–
2016 (EM-DAT 2018). Drought in Eswatini has almost 
followed a similar pattern to the whole of southern Africa. 
According to drought disaster declarations made by the 
government, and extreme drought events recorded for 1900–
2016 in EM-DAT, the drought years were experienced in 
Eswatini in the years 1981, 1984, 1990, 2001, 2007 and 2016. 
Droughts have impacted the country differently in space 
and time (SNVAC 2004, 2006, 2007, 2008, 2016). The drought 
in 1983 had the largest human loss of 500 people, whereas 
the 2005/2006 drought affected 410  000 people. With a 
population estimated at 1  403  362, it indicates 13% of the 
population being affected, which is significant considering 
that Eswatini is affected by many other hazards, most 
significantly HIV/AIDS (CIA 2018).

Standard Precipitation Index
McKee developed the SPI during the early 1990 (McKee et al. 
1993). The WMO in 2009 recommended SPI as the main 
meteorological drought index that countries should use to 
monitor and follow drought conditions (Hayes et al. 2011). The 
index is recommended because it allows the comparison 
between different climates and locations. It can be used to 
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analyse drought or anomalously wet periods at a particular 
timescale for any location in the world with daily precipitation 
records (McKee, Doesken & Kleist 1995; Moreira et al. 2008). 
These timescales, days, weeks, months and years reflect the 
impact of drought on the availability of the different water 
resources. The index can identify various drought types: 
hydrological, agricultural or environmental. Using the SPI as 
indicator for drought monitoring, early warning drought 
disaster declaration will limit the arbitrary decision-making of 
politicians with scientifically based criteria.

The Normalised Difference Vegetation Index
Normalised Difference Vegetation Index is a remote sensing-
based index that measures vegetation conditions (Rouse et al. 
1974). It uses the advanced very high-resolution radiometer 
(AVHRR) reflected red and near-infrared channels to 
calculate if the vegetation is healthy, or unhealthy and sparse 
(e.g. suffering from drought or insect infestation) (Zargar et 
al. 2011). The NDVI is generally recognised as a good 
indicator of terrestrial vegetation productivity and, for a long 
time, has been used for estimation of net primary production, 
crop growth conditions, land cover, crop yield estimation, 
rainfall and drought monitoring and early warning systems 
(Singh et al. 2003). It is also effective in monitoring climate 
variability, land use and vegetation type (Covele & Sannier 
2005). The identification of areas with vegetation more 
sensitive to drought can be applicable in drought risk 
management (Alamdarloo Manesh & Khosravi 2018), and be 
used to map areas that are affected by drought.

Research methods and design
Study area
The country is classified into four agro-ecological zones (AEZ) 
– Highveld, Middleveld, Lowveld and Lubombo Range – based on 
elevation, landforms, geology, soils, climate and vegetation. 
The rainy season is from mid-October to mid-April, with 
mean annual rainfall ranging from 700 mm to 1500 mm in 
Highveld to 200 mm in the southern Lowveld (Table 1). These 
large ranges indicate the fluctuating nature of Eswatini’s 
climate and make the country very vulnerable to 
meteorological hazards such as drought and floods (Figure 1).

Applied methodology
Computation of Standard Precipitation Index
The SPI was used for drought monitoring for the time series 
from the period 1986 to 2017. Representative meteorological 
stations of the Eswatini Meteorological Service were selected, 
with good data. The stations covered all agro-ecological 
zones and administrative regions in Eswatini. Only stations 
with full data were considered for analysis. There was 
therefore no data filling or corrective homogeneity enforced. 
The SPI computation was achieved through the use of DrinC 
software, and drought classification (Table 2) was based on 
the SPI classification (McKee et al. 1993) where a drought 
event occurs any time. The SPI is continuously negative and 
reaches an intensity of -1.0 or less (McKee et al. 1993, 1995).

The selection of software was based on its simplicity, such 
that it can be easily adopted for the use in Eswatini. DrinC is 
a user-friendly tool software package which was developed 
for providing a simple, though adaptable, interface for the 
calculation of several drought indices (Tigkas, Vangelis & 
Tsakiris 2015). The software operates on Windows platform 
and is programmed in Visual Basic. A series of data, at least 
for a period of 30 years, was used to determine the 3-month 
(October, November, March) SPI values.

Normalised Difference Vegetation Index application and 
mapping methodology
The primary data sources were CHIRPS gridded rainfall 
dataset produced by the Climate Hazards Group at the 

TABLE 1: Rainfall in ecological zones of Eswatini.
Agro-ecological zone Average rainfall
Highveld 700–1550
Middleveld 550–850
Lowveld 200–550
Lubombo Plateau 550–850

Source: FAO AQUASTAT Survey, 2005, Irrigation in Africa in figures, viewed 04 March 2017, 
from http://www.fao.org/ag/aquastat.

FIGURE 1: Map of Eswatini with agro-ecological zonation and the rainfall stations.
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TABLE 2: Drought classification based on Standard Precipitation Index.
SPI values Class

≥ 2 Extremely wet
1.5–1.99 Very wet
1.0–1.49 Moderately wet
-0.99 to 0.99 Near normal
-1 to -1.49 Moderately dry
-1.5 to -1.99 Very dry
≤ 2 Extremely dry

Source: McKee, T.B., Doesken, N.J. & Kleist, J., 1993, ‘The relationship of drought frequency 
and duration to time scales’, in Proceedings of the 8th Conference on Applied Climatology, 
American Meteorological Society, Boston, MA, January, Vol. 17, No. 22, pp. 179–183. 
SPI, Standard Precipitation Index.
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University of California, Santa Barbara, and the MODIS 
NDVI CMG data made available by NOAA-NASA and 
the NDVI based on Global Agricultural Monitoring 
(GLAM). The NDVI data in use are from the MODIS 
platforms Terra and Aqua, which provide global coverage 
since 2000 (Terra) and mid-2002 (Aqua) at about 5-km 
resolution with a temporal frequency of overlapping 16-
day periods. Normalised Difference Vegetation Index is 
based on GLAM, a collaboration between the United 
States Department of Agriculture (USDA) and the 
National Aeronautics and Space Administration (NASA), 
University of Maryland, Department of Geography, 
Goddard Space Flight Centre (GSFC) and the USDA 
Foreign Agricultural Service (FAS), that used satellite 
data and data products to monitor agriculture worldwide 
and to locate and keep track of natural hazards such as 
short- and long-term droughts, floods and persistent 
snow cover which impair agricultural productivity. For 
effective analysis and presentation, monitoring was done 
on a dekadal basis, with three dekads of January during 
the drought years.

Ethical considerations
This article followed all ethical standards for research without 
direct contact with human or animal subjects.

Results and discussion
Drought severity spatio-temporal dynamics 
based on Standard Precipitation Index
The 3-month SPI results indicate that moderate droughts 
were experienced in 1990/1991, 2005/2006, 2011/2012, 
2012/2013 and 2015/2016 rainfall seasons. Comparing the 
3-month SPI across AEZs, most drought events were 
experienced in the Middleveld and Lowveld zones. 
Moderate droughts were experienced in 1990/1991, 
2005/2006, 2011/2012, 2012/2013 and 2015/2016 rainfall 
seasons. Eswatini suffered a severe drought in the 2015 
and 2016 season, which was consistent with declaration of 
drought emergencies in the southern African region, 
largely because of the El Niño, one of the strongest on 
record (WFP 2016). When the 3-month SPI was calculated 
for the different AEZs, there were parallels with the 

SPI, Standard Precipitation Index.

FIGURE 2: Three-month Standard Precipitation Index values for the Highveld, Middleveld, Lowveld and Plateau agro-ecological zone.
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drought periods that were declared and documented 
in  the EM-DAT database. The spatial and temporal 
differences for moderate drought typify most of the 
droughts that were declared and experienced in the 
country (Figure 2).

Drought severity temporal and spatial 
dynamics based on Normalised 
Difference Vegetation Index
The MODIS NDVI average values for Eswatini indicate that 
for the months of January–May the NDVI values are high, 
indicating the growing season. The peak vegetative period 
is from February to April (GOS 2016), where the NDVI 
values fall between 0.65 and 0.75 (Figure 3), which 
correspond to dense vegetation. Analysing the month under 
study, January, it is observed that low-NDVI values 
correspond to the drought years (Figure 4) that have been 
indicated for Eswatini.

The 2015–2016 season experienced low rainfall which is 
reflected by the year 2016 having the lowest NDVI. This 
is  further corroborated by the declaration of a 
drought  as  national emergency in 2016 by the Eswatini 
government.

Relationship between Normalised Difference 
Vegetation Index and Standard Precipitation 
Index
The Pearson product-moment correlation coefficient (or Pearson 
correlation coefficient) was used to analyse the relationship 
between NDVI and SPI to see if the indices can be used in a 
model to determine drought severity. Using the formula below 
for calculating the correlation coefficient, the r value was 
calculated for the months of December for SPI values and NDVI 
for January for the selected drought years (Table 3; Figure 5). 
The scatter points are close to the line, indicating that the two 
variables have a positive correlation, which indicates only a 
moderate to positive linear relationship between the variables.
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FIGURE 3: MODIS NDVI (Terra) (MOD44 16 days) graph for 2000–2018.
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The value of R was 0.5544 which showed also a positive 
correlation, which meant that high X variable scores go with 
high Y variable scores (and vice versa). The value of R2, the 
coefficient of determination, was 0.52 (Table 4). By calculating 
the correlation between SPI and NDVI, it can be clearly noticed 
that they show a positive correlation at 3-month time scale. 
The results are consistent with results reported by Ji and Peters 
(2003), Dutta, Kundu and Patel (2013), Tamassoki et al. (2014), 
Dodamani, Anoop and Mahajan (2015), Yang et al. (2015) and 
Khosravi et al. (2017), who all confirmed that highly significant 

correlations were obtained between current NDVI and SPI of 
various time lags at the significant level of 95%.

Near-real-time drought monitoring
The analysis of remote sensing-based drought indices and 
SPI can provide a far-reaching understanding of the spatio-
temporal dynamics of large-scale drought patterns. 
Because of the strong positive correlation between NDVI 
and SPI, the two indices can be used to monitor and detect 
drought, thereby providing early warning information to 
stakeholders. To quantify the strength and duration of 
droughts that could have a significant impact on the 
population and the economy, the study derived statistical 
threshold based on parameters from NDVI, time series of 
SPI-3. Normalised Difference Vegetation Index and 
3-month (October–December) SPI, and precipitation data 
from 2001 and 2017 were used to develop the statistical 
threshold to classify drought periods. Normalised 
Difference Vegetation Index for all the drought periods, for 
the month of January, averaged 0.66. The 3-month SPI 
values for the month of December ranged from 1.76 
to -1.90.

TABLE 4b: Summary of outputs – ANOVA.
Model df SS MS F Significance F 

Regression 3 1.18 0.39 1.78 0.20
Residual 14 3.10 0.22 - -
Total 17 4.28 - - -

TABLE 4a: Summary of outputs.
Regression Statistics Value

Multiple R 0.52
R square 0.28
Adjusted R Square 0.12
Standard error 0.47
Observations 18

FIGURE 4: Lowest MODIS NDVI (Terra) (MOD44 16 days) for the month of 
January for 2000–2018.
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TABLE 3: Normalised Difference Vegetation Index and Standard Precipitation 
Index for selected drought years.
Year NDVI (January) SPI-3 (December)

2017 0.67 -1.54
2016 0.61 -1.90
2015 0.69 0.16
2013 0.67 0.27
2011 0.72 1.35
2008 0.69 0.45
2007 0.71 -0.44
2006 0.65 -0.48
2005 0.70 -0.28

NDVI, Normalised Difference Vegetation Index; SPI, Standard Precipitation Index.

FIGURE 5: Relationship between Normalised Difference Vegetation Index and 
Standard Precipitation Index
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The available data were used to develop as a drought trigger 
threshold for early warning. The method of analysis was the 
least squares (LS), which is simply a minimisation of the sum 
of the squares of the deviations of the observed response 
from the fitted response (Naoum & Tsanis 2003). This 
involved the initial assumption that a certain type of 
relationship, linear in unknown parameters, holds. With 
drought severity (Y) being the dependent (response) variable, 
the model function is of a specified form that involves both 
the predictor variables (NDVI and SPI) and the parameters. 
Interaction effects between the variables can also be 
considered. The unknown parameters or thresholds were 
estimated with assumptions with the help of available data 
so that a fitted equation was obtained. In the model, drought 
determination was based on three main parameters, SPI, 
NDVI and rainfall.

The general form of the final model was 

Y = β0 +β1 X1 + β2 X2 + β3 X3

where Y is drought severity, X1 is NDVI, X2 is SPI and X3 is 
temperature (ºC).

Based on the model, the study determined that the value of 
Y  (drought severity) that is greater than 0.54 indicates a 
significant dry spell, meaning the value will be recommended 

to be used as a drought trigger threshold for early warning. 
High Y values for the years 2007 and 2016 coincide with the 
two strongest El Niño events and one remarkable La Niña 
episode in 2010 and 2011 rainfall season. Similarly, the 
retrospective analysis of agriculturally relevant droughts 
over Africa shows that major drought events, which are 
mentioned in the literature or registered in the EM-DAT 
disaster database of 2018, are largely mirrored in the data in 
Table 5 which indicate the Y values for all the years under 
study.

Conclusion
Eswatini is being frequented by drought over the last decade. 
Accurate monitoring of the spatial and temporal distribution 
of the onset, extension and severity of drought is an essential 
instrument for informed and calculated decision-making. 
This study analysed the use of NDVI and SPI for near-real-
time drought monitoring in Eswatini. Similar research by 
Hayes et al. (1999) found out that because of the SPI versatility, 
it can be calculated on any timescale, thereby giving it the 
ability to monitor drought conditions. Jain et al. (2010) also 
demonstrated that remote sensing can be used to relate 
drought conditions when correlated with precipitation-based 
drought indices. The capacity to monitor and predict the 
drought attributes (onset, frequency and severity) is 
fundamental for spatial-temporal (drought) monitoring. 
According to the results of this research, the combined use of 
NDVI and SPI was deemed capable of providing a near-real-
time indicator for drought conditions within varying agro-
ecological zones and time periods. Results of the 3-month SPI 
indicated that the Highveld and Middleveld had the lowest 
drought severity percentage and the likelihood of having a 
moderate, severe and extreme drought was higher in the 
Lowveld. The results are compatible with findings by Jain 
et al. (2010), who determined that drought affects nearly all 
climatic zones with semi-arid regions being especially 
susceptible to drought because of their low annual 
precipitation and sensitivity to climate variability. The 
frequency, severity and temporal of the drought events across 
the different agro-ecological zones make the aspect of 
drought monitoring and early warning critical for drought 
mitigation and management. 

The positive correlation between the SPI and the NDVI 
enabled the use and optimisation of precipitation and remote 
sensing vegetation indices for analysing the spatial and 
temporal variability of drought and finding the positive and 
linear relationship between SPI and NDVI. Ji and Peters 
(2003), Dutta et al. (2013) and Khosravi et al. (2017) in their 
research also confirmed the positive relationship between the 

TABLE 5: Drought trigger threshold determination.
Year Drought severity (Y) Drought declaration 

status†
Recognised droughts 
based on yield and 

vulnerability†
2016–2017 0.356157 - -
2016–2017 0.06165 - -
2015–2016 0.538125 Official declaration √
2014–2015 0.635436 - √
2013–2014 0.239596 - -
2012–2013 0.34424 - -
2011–2012 0.599801 - √
2010–2011 0.22795 - -
2009–2010 0.546404 - -
2008–2009 0.651257 - √
2007–2008 0.690508 Official declaration √
2006–2007 0.295794 - -
2005–2006 0.673756 Official declaration √
2004–2005 0.027779 - -
2003–2004 0.272383 - -
2002–2003 0.365377 - -
2001–2002 0.385711 - -

Source: Adapted from EM-DAT, 2018, The OFDA/CRED International Disaster Database, 
viewed 04 March 2018, from www.em-dat.net; Swaziland National Vulnerability Assessment 
Committee (SNVAC), 2004, Swaziland national vulnerability assessment, Mbabane; 
Swaziland National Vulnerability Assessment Committee (SNVAC), 2007, Swaziland national 
vulnerability assessment, Mbabane; Swaziland National Vulnerability Assessment Committee 
(SNVAC), 2016, Swaziland national vulnerability assessment, Mbabane.
†, Data obtained from table reference sources.

TABLE 4c: Summary of outputs.
Variables Coefficients Standard error t stat p Lower 95% Upper 95%
Intercept 5.28 8.24 0.64 0.53 -12.39 22.96
NDVI 9.63 4.23 2.28 0.04 0.56 18.71
Temperature -0.48 0.38 -1.25 0.23 -1.30 0.34
SPI-3 -0.17 0.12 -1.47 0.16 -0.42 0.08

NDVI, Normalised Difference Vegetation Index.
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NDVI and SPI for drought monitoring; the more rainfall, the 
better quality of vegetation cover. The study developed 
trigger threshold, value of Y = 0.54 for drought severity (dry 
spell) obtained from the relationship between SPI for 
December and NDVI for January. Values of Y greater than 
0.54 should therefore trigger drought disaster management 
stakeholders to initiate extensive drought mitigation 
planning including crop and vulnerability assessments to 
confirm if there is a drought occurring then what will be the 
likely impacts, before the negative impacts start to be felt by 
the population. The study lucidly shows that the use of SPI 
and NDVI, incorporated with the use of drought early 
warning trigger threshold, has a great potential in drought 
monitoring through early warning. This moves away from a 
crisis management to a proactive disaster risk reduction 
approach, allowing planners to provide very useful and 
timely information for drought preparedness, mitigation and 
response planning. Drought preparedness and risk mitigation 
will help lower the eventual drought relief costs, protect food 
security and reduce the humanitarian impact on the 
population.
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