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Eswatini, as the rest of southern Africa, is being frequented by drought over the last decade,
and modelling experts are predicting that drought years will become more and severe. The
expected increase in extreme climatic events makes the use of drought indices essential for
drought monitoring and early warning. To enable Eswatini to better prepare, analyse and
respond to drought, this study analysed the use of Normalised Difference Vegetation Index
(NDVI) and Standard Precipitation Index (SPI) for near-real-time drought monitoring through
the development of a model for drought severity. Meteorological stations across all agro-
ecological zones with data for the period 1986-2017 were selected for analysis. The SPI
computation was achieved through DrinC software. Primary NDVI data sources were CHIRPS
gridded rainfall dataset and the MODIS NDVI CMG data. Results of the 3-month SPI indicated
that moderate droughts were experienced in 1990/1991, 2005/2006, 2011 /2012, 2012 /2013 and
2015/2016. The Highveld and Middleveld had the lowest drought occurrence percentage of
3.3%, whereas the likelihood of having a moderate, severe and extreme drought was higher in
the Lowveld. The study determined a positive correlation between the SPI and the NDVI at
3-month time scale, and a value of Y (drought severity) greater than 0.54 indicated a significant
dry spell and could be used as a drought trigger threshold for early warning. The combined
use of NDVI and SPI was deemed capable of providing a near-real-time indicator for drought
conditions allowing planners to provide timely information for drought preparedness,
mitigation and response planning, thereby helping to lower the eventual drought relief costs,
protect food security and reduce the humanitarian impact on the population.

Keywords: drought; Standard Precipitation Index; Normalised Difference Vegetation Index;
drought monitoring; early warning.

Introduction

Eswatini, as the rest of southern Africa, is being frequented by drought over the last decade. This
phenomenon has become more frequent and severe leading to the increased interest by climate
scientists as well national governments and UN agencies as devastating effects of a drought event
on the local economy and life of the people can be severe and needs strategic and emergency
planning and response. Climate scientists and modelling experts have predicted that drought
years will become more and severe in southern Africa (Carty 2017), and this has already been
experienced with the droughts in 2001, 2005, 2007 and 2015 in Eswatini.

The impact of drought in Eswatini can be severe only because almost 70% of the population rely on
rain-fed agriculture (SNVAC 2015) and over 40% of the country fall in the Lowveld agro-ecological
zone which receives an annual average rainfall of below 500 mm. The Eswatini Vulnerability Assessment
reports have indicated that yields, especially in the Lowveld, can be reduced by over 50% during
drought years, thereby affecting the overall country food security situation. This reduction in agriculture
production, especially for the maize (the staple crop), results in the government importing grain and
the UN and non-governmental organisations providing 20% — 30% of the population with food aid.
The extent of the food aid distributed as well as imports needed requires effective and timely planning
by the government and stakeholders, ensuring that the required food is available on time and the
populace does not go hungry. This makes the aspect of drought monitoring and early warning critical.

Accurately and efficiently monitoring drought has been difficult mainly because of the difficulty in
determining its onset, development and end. The expected increase in extreme climatic events,
especially drought, makes the use of drought indices essential for drought monitoring.
Integrating retrospective analysis with real-time monitoring could be extremely beneficial in the
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development of response, mitigation strategies and awareness
plans. Traditionally drought disaster management took a
“crisis management” approach, where focus was on actions
taken immediately before, during and shortly after a disaster
(WMO 2006). Embracing of the Hyogo Framework for Action
2005-2015 (UNISDR 2005) globally has led to a fundamental
change in drought disaster risk management from emergency
response to an inclusive approach including preparedness,
where drought monitoring is important, and preventive
approaches to acknowledge and reduce risk (WMO 2014).

Overview of drought monitoring and early
warning systems

The capacity to monitor and predict the drought attributes
(onset, frequency and severity) is fundamental for spatial-
temporal (drought) analysis. Accurate monitoring of the spatial
and temporal distribution of the onset, extension and severity
of drought is an essential instrument for informed and
calculated decision-making in drought mitigation and
management (Covele & Sannier 2005). Most commonly,
drought indices are used to monitor drought conditions with
many indices in existence and utilised to forecast the possible
development and progression of an existing drought. There are
several indices that measure how much precipitation for a
given period of time has deviated from historically established
norms. Although none of the major indices are inherently
superior to the rest in all circumstances, some indices are better
suited than others for certain uses (NDMC 2014). Drought
indices mostly are functions of precipitation and/or
temperature, river discharge (Zehtabian etal. 2013). Precipitation
is the most commonly used indicator for drought monitoring.

Well-established drought indicators exist that include the Percent
of Normal, Palmer Drought Severity Index (PDSI) (Palmer 1965),
the Standard Precipitation Index (SPI), the Standardised
Precipitation Evaporation Index (SPEI) (McKee, Doesken &
Kleist 1993), Deciles (Gibbs 1967), Crop Moisture Index (CMI)
(Palmer 1968) and Reconnaissance Drought Index (RDI) (Tsakiris
& Vangelis 2005). The SPI is one of the most common indexes
used to monitor drought because it presents a quick measure
with minimal data requirements. A single numeric value is
assigned to precipitation that can be compared across regions
and different climates (Komuscu 1999; MacKee et al. 1993).

Reliance, however, on weather data alone might not be
adequate to monitor drought in all the areas, especially in
southern Africa, where data can be incomplete, unavailable,
untimely and unreliable. It is therefore necessary to
complement weather-based data with satellite imagery to
identify the spatial and temporal dimensions of drought, and
to attain a complete, up-to-date, comprehensive coverage of
drought conditions (Peters et al. 2002). Satellite images can be
utilised for determining the spatial and temporal variability
of drought hazard, and the vulnerability of water resources,
vegetation systems and society to drought is essential for any
early warning and drought monitoring tool. The use of
satellite technology is therefore significant for drought
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information systems for Africa so as to generate seasonal or
monthly drought hazard maps; drought vulnerability maps;
real-time drought monitoring based on indicators and real-
time drought early warning.

Utilisation of different satellite-based drought monitoring
indices such as Normalised Difference Vegetation Index
(NDVI) and its derivatives such as Vegetation Condition
Index (VCI), Standard Vegetation Index (SVI), Vegetation
Productivity Index (VPI) and other indices such as the FAO
Agriculture Stress Index (ASI) are essential for drought
monitoring or the detection of near-real-time onset, evolution,
intensity and duration of drought in Eswatini and southern
Africa. In other countries, the use of remote sensing for
drought monitoring is one of the many examples where
derived satellite data are currently used to derive police and
government planning decisions. The NDVI, the Water Supply
Vegetation Index (WSVI), VCI and SVI have been used for
vegetation monitoring, crop yield assessment and estimation,
early warning systems and drought monitoring (Bhuiyan
2004; Brown et al. 2008; Covele et al. 2005; Jain et al. 2010;
Moulin Bondeau & Delecolle 1998; Sing et al. 2003). The
study focussed on the integration of NDVI and SPI for near-
real-time drought monitoring in Eswatini.

Drought events in Eswatini

Drought is a normal part of southern Africa’s climate, and it
is highly unusual for drought not to occur somewhere in
southern Africa each year (Uganai 1994). During the last
century, southern Africa, and Eswatini in particular, has
been characterised by an increased frequency of droughts
(EM-DAT 2018). Recorded drought years in the southern
African region include that of 1982-1983, 1987-1988, 1991-
1992, 1994-1995, 1997-1998, 2002-2003 (Covele & Sannier
2005), 2005-2006, 2007-2008, 20092010, 2012-2013, 2015-
2016 (EM-DAT 2018). Drought in Eswatini has almost
followed a similar pattern to the whole of southern Africa.
According to drought disaster declarations made by the
government, and extreme drought events recorded for 1900-
2016 in EM-DAT, the drought years were experienced in
Eswatini in the years 1981, 1984, 1990, 2001, 2007 and 2016.
Droughts have impacted the country differently in space
and time (SNVAC 2004, 2006, 2007, 2008, 2016). The drought
in 1983 had the largest human loss of 500 people, whereas
the 2005/2006 drought affected 410 000 people. With a
population estimated at 1 403 362, it indicates 13% of the
population being affected, which is significant considering
that Eswatini is affected by many other hazards, most
significantly HIV /AIDS (CIA 2018).

Standard Precipitation Index

McKee developed the SPI during the early 1990 (McKee et al.
1993). The WMO in 2009 recommended SPI as the main
meteorological drought index that countries should use to
monitor and follow drought conditions (Hayes et al. 2011). The
index is recommended because it allows the comparison
between different climates and locations. It can be used to
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analyse drought or anomalously wet periods at a particular
timescale for any location in the world with daily precipitation
records (McKee, Doesken & Kleist 1995; Moreira et al. 2008).
These timescales, days, weeks, months and years reflect the
impact of drought on the availability of the different water
resources. The index can identify various drought types:
hydrological, agricultural or environmental. Using the SPI as
indicator for drought monitoring, early warning drought
disaster declaration will limit the arbitrary decision-making of
politicians with scientifically based criteria.

The Normalised Difference Vegetation Index

Normalised Difference Vegetation Index is a remote sensing-
based index that measures vegetation conditions (Rouse et al.
1974). It uses the advanced very high-resolution radiometer
(AVHRR) reflected red and near-infrared channels to
calculate if the vegetation is healthy, or unhealthy and sparse
(e.g. suffering from drought or insect infestation) (Zargar et
al. 2011). The NDVI is generally recognised as a good
indicator of terrestrial vegetation productivity and, for a long
time, has been used for estimation of net primary production,
crop growth conditions, land cover, crop yield estimation,
rainfall and drought monitoring and early warning systems
(Singh et al. 2003). It is also effective in monitoring climate
variability, land use and vegetation type (Covele & Sannier
2005). The identification of areas with vegetation more
sensitive to drought can be applicable in drought risk
management (Alamdarloo Manesh & Khosravi 2018), and be
used to map areas that are affected by drought.

Research methods and design
Study area

The country is classified into four agro-ecological zones (AEZ)
- Highveld, Middleveld, Lowveld and Lubombo Range —based on
elevation, landforms, geology, soils, climate and vegetation.
The rainy season is from mid-October to mid-April, with
mean annual rainfall ranging from 700 mm to 1500 mm in
Highveld to 200 mm in the southern Lowveld (Table 1). These
large ranges indicate the fluctuating nature of Eswatini’s
climate and make the country very vulnerable to
meteorological hazards such as drought and floods (Figure 1).

Applied methodology
Computation of Standard Precipitation Index

The SPI was used for drought monitoring for the time series
from the period 1986 to 2017. Representative meteorological
stations of the Eswatini Meteorological Service were selected,
with good data. The stations covered all agro-ecological
zones and administrative regions in Eswatini. Only stations
with full data were considered for analysis. There was
therefore no data filling or corrective homogeneity enforced.
The SPI computation was achieved through the use of DrinC
software, and drought classification (Table 2) was based on
the SPI classification (McKee et al. 1993) where a drought
event occurs any time. The SPI is continuously negative and
reaches an intensity of -1.0 or less (McKee et al. 1993, 1995).
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TABLE 1: Rainfall in ecological zones of Eswatini.

Agro-ecological zone Average rainfall

Highveld 700-1550
Middleveld 550-850
Lowveld 200-550
Lubombo Plateau 550-850

Source: FAO AQUASTAT Survey, 2005, Irrigation in Africa in figures, viewed 04 March 2017,
from http://www.fao.org/ag/aquastat.

Legend
& Rainfalls stations

[ Highveld
Middleveld
|:’ Lowveld
?‘ — Kilometres - Lubombo plateau
+ 0 17000 34000 51000 68000

FIGURE 1: Map of Eswatini with agro-ecological zonation and the rainfall stations.

TABLE 2: Drought classification based on Standard Precipitation Index.

SPI values Class

>2 Extremely wet
1.5-1.99 Very wet
1.0-1.49 Moderately wet
-0.99 to 0.99 Near normal
-1to0-1.49 Moderately dry
-1.5t0-1.99 Very dry

<2 Extremely dry

Source: McKee, T.B., Doesken, N.J. & Kleist, J., 1993, ‘The relationship of drought frequency
and duration to time scales’, in Proceedings of the 8th Conference on Applied Climatology,
American Meteorological Society, Boston, MA, January, Vol. 17, No. 22, pp. 179-183.

SPI, Standard Precipitation Index.

The selection of software was based on its simplicity, such
that it can be easily adopted for the use in Eswatini. DrinC is
a user-friendly tool software package which was developed
for providing a simple, though adaptable, interface for the
calculation of several drought indices (Tigkas, Vangelis &
Tsakiris 2015). The software operates on Windows platform
and is programmed in Visual Basic. A series of data, at least
for a period of 30 years, was used to determine the 3-month
(October, November, March) SPI values.

Normalised Difference Vegetation Index application and
mapping methodology

The primary data sources were CHIRPS gridded rainfall
dataset produced by the Climate Hazards Group at the



http://www.jamba.org.za
http://www.fao.org/ag/aquastat

University of California, Santa Barbara, and the MODIS
NDVI CMG data made available by NOAA-NASA and
the NDVI based on Global Agricultural Monitoring
(GLAM). The NDVI data in use are from the MODIS
platforms Terra and Aqua, which provide global coverage
since 2000 (Terra) and mid-2002 (Aqua) at about 5-km
resolution with a temporal frequency of overlapping 16-
day periods. Normalised Difference Vegetation Index is
based on GLAM, a collaboration between the United
States Department of Agriculture (USDA) and the
National Aeronautics and Space Administration (NASA),
University of Maryland, Department of Geography,
Goddard Space Flight Centre (GSFC) and the USDA
Foreign Agricultural Service (FAS), that used satellite
data and data products to monitor agriculture worldwide
and to locate and keep track of natural hazards such as
short- and long-term droughts, floods and persistent
snow cover which impair agricultural productivity. For
effective analysis and presentation, monitoring was done
on a dekadal basis, with three dekads of January during

the drought years.
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Ethical considerations

This article followed all ethical standards for research without
direct contact with human or animal subjects.

Results and discussion

Drought severity spatio-temporal dynamics
based on Standard Precipitation Index

The 3-month SPI results indicate that moderate droughts
were experienced in 1990/1991, 2005/2006, 2011/2012,
2012/2013 and 2015/2016 rainfall seasons. Comparing the
3-month SPI across AEZs, most drought events were
experienced in the Middleveld and Lowveld zones.
Moderate droughts were experienced in 1990/1991,
2005/2006, 2011/2012, 2012/2013 and 2015/2016 rainfall
seasons. Eswatini suffered a severe drought in the 2015
and 2016 season, which was consistent with declaration of
drought emergencies in the southern African region,
largely because of the El Nifio, one of the strongest on
record (WFP 2016). When the 3-month SPI was calculated
for the different AEZs, there were parallels with the

2.10 A \

1.10 A

0.10

SPI

-0.90 A

1904 !

- --~ Lubombo plateau ——— Middleveld Highveld Lowveld

— — Moderate drought — — Severe drought — — Extreme drought

SPI, Standard Precipitation Index.

FIGURE 2: Three-month Standard Precipitation Index values for the Highveld, Middleveld, Lowveld and Plateau agro-ecological zone.
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drought periods that were declared and documented
in the EM-DAT database. The spatial and temporal
differences for moderate drought typify most of the
droughts that were declared and experienced in the
country (Figure 2).

Drought severity temporal and spatial
dynamics based on Normalised
Difference Vegetation Index

The MODIS NDVI average values for Eswatini indicate that
for the months of January-May the NDVI values are high,
indicating the growing season. The peak vegetative period
is from February to April (GOS 2016), where the NDVI
values fall between 0.65 and 0.75 (Figure 3), which
correspond to dense vegetation. Analysing the month under
study, January, it is observed that low-NDVI values
correspond to the drought years (Figure 4) that have been
indicated for Eswatini.

The 2015-2016 season experienced low rainfall which is
reflected by the year 2016 having the lowest NDVI. This
is further corroborated by the declaration of a
drought as national emergency in 2016 by the Eswatini
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Relationship between Normalised Difference
Vegetation Index and Standard Precipitation
Index

The Pearson product-moment correlation coefficient (or Pearson
correlation coefficient) was used to analyse the relationship
between NDVI and SPI to see if the indices can be used in a
model to determine drought severity. Using the formula below
for calculating the correlation coefficient, the r value was
calculated for the months of December for SPI values and NDVI
for January for the selected drought years (Table 3; Figure 5).
The scatter points are close to the line, indicating that the two
variables have a positive correlation, which indicates only a
moderate to positive linear relationship between the variables.

Oy = zzn:l(Xz_X)(Y,—Y)
R SRR

Result details and calculation X values:
X Values

> =1146

X =0.674
> (X, -X)’ =SS, =0.018

government.
—@— Mean (2000-2018) —@— 1999-0 2000-1 —@— 2001-2 —@— 2002-3
—@— 2003-4 —@— 2004-5 —@— 2005-6 —@— 2006-7 —@— 2007-8
—@— 2008-9 —@— 2009-10 —@— 2010-11 —@— 2011-12 2014-15
—@— 2012-13 —@— 2013-14 —@— 2016-17 —@— 2017-18 —@— 2015-16
0.75 -

0.70

0.65

0.60

0.55

NDVI

0.50

0.45

0.40 F¥

0.30
Sep  Oct Nov  Dec Jan Feb
Region: Africa, South 1
Date range: 2017-Mar-06 to Mar-21
Shape: Swaziland
Detail point: -25.72619 30.79505
Crop mask: Standard (MOD12)
Water mask: Standard (MOD12)

Apr May Jun Jul Aug Sep

Acquisition date

Source: USDA/NASA/UMD GLAM project.
NDVI, Normalised Difference Vegetation Index.

FIGURE 3: MODIS NDVI (Terra) (MOD44 16 days) graph for 2000-2018.
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Y Values
> =-0.41
Y =-0.024

X (Y, -Y) =SS =16.938

X and Y Combined
N=17
(X, - X)(Y,-Y)=0303

R Calculation

X K- 0(-T)
e [ss.ss,

= 0.303 =0.5544

((0.018)(16.938))

o

The value of R was 0.5544 which showed also a positive
correlation, which meant that high X variable scores go with
high Y variable scores (and vice versa). The value of R?, the
coefficient of determination, was 0.52 (Table 4). By calculating
the correlation between SPIand NDVI, it can be clearly noticed
that they show a positive correlation at 3-month time scale.
The results are consistent with results reported by Ji and Peters
(2003), Dutta, Kundu and Patel (2013), Tamassoki et al. (2014),
Dodamani, Anoop and Mahajan (2015), Yang et al. (2015) and
Khosravi et al. (2017), who all confirmed that highly significant

0.75

0.70 A

0.65 -

0.60 -

0.600

0.55

NDVI values

050 T T T T T 7T
SIS
LS
S S

FIGURE 4: Lowest MODIS NDVI (Terra) (MOD44 16 days) for the month of
January for 2000-2018.

TABLE 3: Normalised Difference Vegetation Index and Standard Precipitation
Index for selected drought years.

Year NDVI (January) SPI-3 (December)
2017 0.67 -1.54
2016 0.61 -1.90
2015 0.69 0.16
2013 0.67 0.27
2011 0.72 1.35
2008 0.69 0.45
2007 0.71 -0.44
2006 0.65 -0.48
2005 0.70 -0.28

NDVI, Normalised Difference Vegetation Index; SPI, Standard Precipitation Index.
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correlations were obtained between current NDVI and SPI of
various time lags at the significant level of 95%.

Near-real-time drought monitoring

The analysis of remote sensing-based drought indices and
SPI can provide a far-reaching understanding of the spatio-
temporal dynamics of large-scale drought patterns.
Because of the strong positive correlation between NDVI
and SPI, the two indices can be used to monitor and detect
drought, thereby providing early warning information to
stakeholders. To quantify the strength and duration of
droughts that could have a significant impact on the
population and the economy, the study derived statistical
threshold based on parameters from NDVI, time series of
SPI-3. Normalised Difference Vegetation Index and
3-month (October-December) SPI, and precipitation data
from 2001 and 2017 were used to develop the statistical
threshold to classify drought periods. Normalised
Difference Vegetation Index for all the drought periods, for
the month of January, averaged 0.66. The 3-month SPI
values for the month of December ranged from 1.76
to -1.90.

Y values

X values

FIGURE 5: Relationship between Normalised Difference Vegetation Index and
Standard Precipitation Index

TABLE 4a: Summary of outputs.

Regression Statistics Value
Multiple R 0.52
R square 0.28
Adjusted R Square 0.12
Standard error 0.47
Observations 18

TABLE 4b: Summary of outputs — ANOVA.

Model df SS Ms F Significance F
Regression 3 1.18 0.39 1.78 0.20
Residual 14 3.10 0.22

Total 17 4.28 -
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TABLE 4c: Summary of outputs.
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Variables Coefficients Standard error t stat )4 Lower 95% Upper 95%
Intercept 5.28 8.24 0.64 0.53 -12.39 22.96
NDVI 9.63 4.23 2.28 0.04 0.56 18.71
Temperature -0.48 0.38 -1.25 0.23 -1.30 0.34
SPI-3 -0.17 0.12 -1.47 0.16 -0.42 0.08

NDVI, Normalised Difference Vegetation Index.

TABLE 5: Drought trigger threshold determination.

Year Drought severity (¥) Drought declaration Recognised droughts
statust based on yield and
vulnerability
2016-2017 0.356157 - -
2016-2017 0.06165 - -
2015-2016 0.538125 Official declaration v
2014-2015 0.635436 - v
2013-2014 0.239596 = =
2012-2013 0.34424 - -
2011-2012 0.599801 = Y
2010-2011 0.22795 - -
2009-2010 0.546404 - -
2008-2009 0.651257 - v
2007-2008 0.690508 Official declaration v
2006-2007 0.295794 - -
2005-2006 0.673756 Official declaration v
2004-2005 0.027779 - -
2003-2004 0.272383 - -
2002-2003 0.365377 - -
2001-2002 0.385711 - -

Source: Adapted from EM-DAT, 2018, The OFDA/CRED International Disaster Database,
viewed 04 March 2018, from www.em-dat.net; Swaziland National Vulnerability Assessment
Committee (SNVAC), 2004, Swaziland national vulnerability assessment, Mbabane;
Swaziland National Vulnerability Assessment Committee (SNVAC), 2007, Swaziland national
vulnerability assessment, Mbabane; Swaziland National Vulnerability Assessment Committee
(SNVAC), 2016, Swaziland national vulnerability assessment, Mbabane.

T, Data obtained from table reference sources.

The available data were used to develop as a drought trigger
threshold for early warning. The method of analysis was the
least squares (LS), which is simply a minimisation of the sum
of the squares of the deviations of the observed response
from the fitted response (Naoum & Tsanis 2003). This
involved the initial assumption that a certain type of
relationship, linear in unknown parameters, holds. With
drought severity (Y) being the dependent (response) variable,
the model function is of a specified form that involves both
the predictor variables (NDVI and SPI) and the parameters.
Interaction effects between the variables can also be
considered. The unknown parameters or thresholds were
estimated with assumptions with the help of available data
so that a fitted equation was obtained. In the model, drought
determination was based on three main parameters, SPI,
NDVI and rainfall.

The general form of the final model was
Y=, +p, X, + B, X, + B, X,

where Y is drought severity, X, is NDVI, X, is SPI and X, is
temperature (°C).

Based on the model, the study determined that the value of
Y (drought severity) that is greater than 0.54 indicates a
significant dry spell, meaning the value will be recommended

http://www.jamba.org.za . Open Access

to be used as a drought trigger threshold for early warning.
High Y values for the years 2007 and 2016 coincide with the
two strongest El Nifio events and one remarkable La Nifia
episode in 2010 and 2011 rainfall season. Similarly, the
retrospective analysis of agriculturally relevant droughts
over Africa shows that major drought events, which are
mentioned in the literature or registered in the EM-DAT
disaster database of 2018, are largely mirrored in the data in
Table 5 which indicate the Y values for all the years under
study.

Conclusion

Eswatini is being frequented by drought over the last decade.
Accurate monitoring of the spatial and temporal distribution
of the onset, extension and severity of drought is an essential
instrument for informed and calculated decision-making.
This study analysed the use of NDVI and SPI for near-real-
time drought monitoring in Eswatini. Similar research by
Hayes etal. (1999) found out that because of the SPI versatility,
it can be calculated on any timescale, thereby giving it the
ability to monitor drought conditions. Jain et al. (2010) also
demonstrated that remote sensing can be used to relate
drought conditions when correlated with precipitation-based
drought indices. The capacity to monitor and predict the
drought attributes (onset, frequency and severity) is
fundamental for spatial-temporal (drought) monitoring.
According to the results of this research, the combined use of
NDVI and SPI was deemed capable of providing a near-real-
time indicator for drought conditions within varying agro-
ecological zones and time periods. Results of the 3-month SPI
indicated that the Highveld and Middleveld had the lowest
drought severity percentage and the likelihood of having a
moderate, severe and extreme drought was higher in the
Lowveld. The results are compatible with findings by Jain
et al. (2010), who determined that drought affects nearly all
climatic zones with semi-arid regions being especially
susceptible to drought because of their low annual
precipitation and sensitivity to climate variability. The
frequency, severity and temporal of the drought events across
the different agro-ecological zones make the aspect of
drought monitoring and early warning critical for drought
mitigation and management.

The positive correlation between the SPI and the NDVI
enabled the use and optimisation of precipitation and remote
sensing vegetation indices for analysing the spatial and
temporal variability of drought and finding the positive and
linear relationship between SPI and NDVI Ji and Peters
(2003), Dutta et al. (2013) and Khosravi et al. (2017) in their
research also confirmed the positive relationship between the
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NDVI and SPI for drought monitoring; the more rainfall, the
better quality of vegetation cover. The study developed
trigger threshold, value of Y = 0.54 for drought severity (dry
spell) obtained from the relationship between SPI for
December and NDVI for January. Values of Y greater than
0.54 should therefore trigger drought disaster management
stakeholders to initiate extensive drought mitigation
planning including crop and vulnerability assessments to
confirm if there is a drought occurring then what will be the
likely impacts, before the negative impacts start to be felt by
the population. The study lucidly shows that the use of SPI
and NDVI, incorporated with the use of drought early
warning trigger threshold, has a great potential in drought
monitoring through early warning. This moves away from a
crisis management to a proactive disaster risk reduction
approach, allowing planners to provide very useful and
timely information for drought preparedness, mitigation and
response planning. Drought preparedness and risk mitigation
will help lower the eventual drought relief costs, protect food
security and reduce the humanitarian impact on the
population.
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