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Research article 
Exploring PM2.5 variations from calibrated low-cost 
sensor network in Greater Kampala, during COVID-19 
imposed lockdown restrictions: Lessons for Policy

Introduction
Air pollution is now considered one of the major public health 
risk factors for global morbidity and mortality, primarily 
associated with increased risk of respiratory illnesses, heart 
diseases, and there are growing links to mental health and 
cognitive impairment (Seaton et al. 1995; Brunekreef and 
Holgate 2002; Cohen et al. 2017; Pope III and Dockery 2006; Chen 
and Schwartz 2009; Xue et al. 2019). According to the World 
Health Organisation (WHO), more than 90% of the population in 
monitored urban centres worldwide are exposed to air pollution 
above WHO Air Quality Guideline (AQG) levels (World Health 
Organisation 2018; 2021). Populations in low- and middle-
income countries such as those in sub-Saharan Africa with 
some of the highest urban population growth rates are among 
the most at risk of pollution exposure (United Nations 2018). In 
Africa, the socio-economic costs of air pollution are estimated 
to be much higher than malnutrition and unsafe sanitation (Roy 

2016). Sub-Saharan Africa is home to over 475 million people 
(Lall, Henderson, and Vernon 2017), and the urban-settings face 
unique air quality challenges including; diffuse and clustered 
sources from increasing combustion emissions, increased 
informal settlements, lack of streamlined and efficient public 
transport systems, limited environmental regulations and urban 
planning deficiencies; in part arising from rapid urbanisation. 
(Petkova et al. 2013; Liousse et al. 2014). In the contemporary 
policy environment, diffuse pollution sources that often result 
into localised and clustered impacts present complexities for 
mitigation as the resulting pollution is from a conflation of 
activities within an air-shed as opposed to major point source 
situations. Ultimately, management of diffuse pollution cannot 
neatly fit within the conventional regulatory framework that 
allows for source-monitoring and permitting, and so spatio-
temporal insights on pollution sources are essential to inform 
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mitigation actions. This is the case for most of today’s urban 
centres especially sub-Saharan Africa where diffuse activities 
continue to dominate the pollution profile (Liousse et al. 2014; 
Karagulian et al. 2015), but continuous monitoring datasets 
exploring different contexts remain extremely inadequate.

In this paper, we explore the impact of major disruptions to the 
scale of COVID-19 lockdown restrictions on ambient air quality 
for diverse physical environments within the same analytical 
unit/airshed considered. We hypothesize that the diversity and 
variations in the pollution profile in Greater Kampala, a typical 
sub-Saharan African context can provide unique insights not 
usually experienced in other geographic contexts during a 
major disruption, thus having important policy implications. 
The wide measure of variations in the restrictions adopted and 
implemented by different countries would equally be instructive 
in presenting each geographic context as a potential case study.

COVID-19 lockdown and air quality
There is growing body of literature on the relationship between 
air pollution and the COVID-19 pandemic. Evidence from recent 
preliminary studies suggests that exposure to high levels of 
particulate matter and fossil-related air pollution increases the 
risk of contracting COVID-19 and eventually mortality. Firstly, 
by raising the susceptibility of individuals by weakening lung 
function and secondly by particles providing a transmission 
mechanism for the spread of the coronavirus (Wu et al. 2020; 
Setti, Passarini, De Gennaro, Baribieri, et al. 2020; Setti, 
Passarini, De Gennaro, Barbieri, et al. 2020; Luigi Sanita di Toppi, 
Lorenzo Sanita di Toppi, and Bellini 2020; Travaglio et al. 2020), 
etc. Although still emerging, these linkages re-emphasise air 
pollution as an important public health risk. Since the WHO 
declared the pandemic on 12 March 2020, many countries 
introduced restrictions on mobility, social interactions and 
economic activities to contain the spread of the coronavirus 
and reduce the burden on health systems. The containment 
measures will undoubtedly have significant immediate and 
long-term impacts on the national and global economy, some of 
which are already being felt (Kabir et al. 2020; Nicola et al. 2020; 
Atkeson 2020; Baldwin and Tomiura 2020).

In almost equal measure, the restrictive measures have also had 
unintended consequences on the atmospheric environment 
including ambient air quality. Several specific case studies 
utilising data from satellite observations and ground station 
monitors have already been presented (Dantas et al. 2020; 
Mahato, Pal, and Ghosh 2020; Tobías et al. 2020). These studies 
indicate distinctive variations but largely significant reductions 
in air pollution in a range of environments. Susanta et al. (2020) 
conducted an analysis on the impact of air pollution during 
the lockdown period for New Delhi, India. The study shows 
an improvement in air quality by about 50% Nitrogen dioxide 
(NO2), 30% Carbon monoxide (CO), and 50% particulate matter 
(PM2.5 and PM10) compared to the days immediately before 
(Mahato, Pal, and Ghosh 2020). A study in Barcelona, Spain 
showed a reduction of 45-51% for NO2 and Black Carbon, 28-
31% for PM10, and an increase of 33-57% for Ozone (O3) during 
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the lockdown period (Tobías et al. 2020). Venter et al. (2020) 
found reduction of 60% and 31% for NO2 and PM2.5 respectively 
for population weighted concentrations with a 95% Confidence 
Interval. There are also several other studies that explored 
changes in air pollution for different locations worldwide (He, 
Pan, and Tanaka 2020; Venter et al. 2020; Ju, Oh, and Choi 
2021; Mostafa, Gamal, and Wafiq 2021). However, to the best 
of our knowledge, a few studies (McFarlane et al. 2021) have 
published research investigating the impact of the COVID-19 
lockdown on air pollution in urban sub-Saharan Africa while 
exploring the implications for air pollution mitigation. This is 
partly because ground monitoring remains extremely limited 
in Africa (Petkova et al. 2013; Liousse et al. 2014; World Health 
Organisation 2016) due to the prohibitive costs of establishing 
and maintaining traditional air monitoring networks that lead to 
sparse distribution of monitoring networks in resource-strained 
environments. 

Improvements in low-cost air quality sensing technologies 
provide opportunities to characterise and measure air quality at 
micro-level and at a higher resolution, difficult to achieve with 
expensive grade reference monitors alone (Castell et al. 2017; 
Morawska et al. 2018; EPA 2020b; EPA 2020a). This approach is 
particularly important for low- and middle-income countries 
where the cost of monitoring remains a major inhibitor for air 
quality control and management programs. This paper leverages 
advances in low-cost measurement technologies to explore and 
quantify the variations in particulate matter (PM2.5), a common 
measure of ambient air quality (Pope III and Dockery 2006; R. 
T. Burnett et al. 2014; World Health Organisation 2016), for 
selected diverse urban locations in Greater Kampala, Uganda, 
with regard to the lockdown restrictions, while discussing 
implications for air quality management.

Materials and methods 

COVID-19 lockdown timelines in Uganda
The first case of COVID-19 in Uganda was recorded on March 22 
2020, by May 15, Uganda had registered 203 cases. On March 
18, the President announced the first measures to curb the 
spread of COVID-19. This began with the closure of schools and 
universities and suspension of public gatherings.

On March 21, borders were closed and all incoming and outgoing 
passenger aircraft and vehicles were prohibited. This was 
followed by suspension of all forms of public transport on March 
25. On March 30 movement for all public and private vehicles 
with exception of cargo delivery and authorised essential 
activities was prohibited. Businesses were closed and outdoor 
movement was restricted to 06:30 to 19:001. For the purposes 
of this paper, we define the period beginning March 31 2020 
through to the end of the second extension on May 5 2020 as the 
‘lockdown period’.

1 https://www.yowerikmuseveni.com/speeches
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Measurement of air quality
PM2.5 measurements were obtained from a network of low-cost 
sensors deployed across Greater Kampala (Figure 1), operated 
and managed by AirQo (www.airqo.africa) (AirQo 2020; Coker 
et al. 2021). Each AirQo device uses twin Plantower (PMS 5003) 
light scattering sensors and transmit averaged measurements 
every 90 seconds (for static installations) via local Global System 
for Mobile Communications (GSM) network to a cloud-based 
platform. The devices have a measurement range of 0-500µg/m3 
for both PM2.5 and PM10 and are optimised to run on solar energy 
or mains to cater for limited power availability, typical of urban 
settings in Sub-Saharan Africa.

As part of data quality assurance, AirQo devices are collocated 
with a Met One Beta Attenuation Monitor (BAM 1022) Federal 
Reference Monitor approved to international standards and 
generally correlate well against the BAM with correlation 
coefficient (R) of more than 0.9. The collocation data is used to 
develop a calibration model that translates PM concentrations 
from AirQo devices to BAM equivalent. In this paper, we 
applied random model trained with data from an AirQo to BAM 
collocation site at Makerere University (coordinates: 0.333534, 
32.568644) from 15th July 2020 to 23rd March 2021. Employing 

Figure 1: Monitoring network in Uganda as at 01:04 EAT; 06-Oct-2021

Figure 2: PM2.5 comparisons for AirQo device AQ88 vs BAM collocated at 
Makerere University

Figure 3: A scatter plot showing the relationship between BAM and AirQo 
unit PM2.5 before and after calibration.

Figure 4: : Comparison between hourly PM2.5 values between AirQo devices 
collocated at Makerere University
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the calibration model increased BAM to low-cost correlation (R) 
and (R2) values from 0.9 to 0.95 and 0.49 to 0.9 respectively; and 
decreased RMSE and MAE from 19.11µg/m3 to 8.2 µg/m3 and 
14.99 µg/m3 to 5.1 µg/m3 respectively.

Figure 2 and 3 illustrate the comparison between calibrated PM2.5 
values from AirQo devices collocated with the BAM at Makerere 
University between July and December 2020. It can be seen that 
calibrated output from the low-cost sensors follow a similar 
trend with the BAM with slight upward and downward shifts, 
with R = 0.97 for AQ882.  AQ88. This is relatively comparable to 
other Plantower sensor evaluation studies (Kelly et al. 2017; 
Levy Zamora et al. 2018; Mukherjee et al. 2019; Liu et al. 2020) 
and gives a degree of confidence in the ability of the low-cost 
network to provide reliable insights on the spatio-temporal 
variations within a given study area.

We emphasise that data from AirQo to AirQo correlate strongly 
with both mean correlation coefficient of R2 = 0.98 for four AirQo 
units collocated at Makerere university tween 15th July 2020 to 
23rd March 2021 (see Figure 4).

Implicitly, we consider calibration model trained using field 
collocation datasets from one AirQo monitor to be largely 
applicable other AirQo monitors deployed within similar 
physical environmental setting and context. We therefore 
use the calibration model developed from collocation with 
the reference monitor at Makerere University to correct PM2.5 
concentrations from all devises used in this study. This data 
correction approach is not unique to this study and has 
previously been adapted for low-cost datasets from different 
settings e.g. Barkjohn et al. (2021), and McFarlane et al. ( 2021).

Study location (context)
The study area includes four sites, within the Greater Kampala 
Metropolitan Area (GKMA), Uganda (Figures 5 and 6), furthest 
point about 45 km apart.

Kampala City is the economic capital and administrative centre 
of Uganda with a resident population of over 1.5 million and 
an additional daytime transient population of over 2.5 million 
(Uganda Bureau of Statistics 2016; World Bank 2018).

GKMA has the highest population density in the country and 
hosts over 32% of manufacturing businesses, contributes 
more than one-third of the annual GDP, and ultimately hosts 
the greatest concentration of pollution generating activities 
in Uganda (Uganda Bureau of Statistics (UBOS) 2011; Uganda 
Bureau of Statistics 2016; World Bank 2018). Like many sub-
Saharan African cities, Kampala is urbanising fast with one of 
the highest urban population growth rates in the world at about 
5.6% (United Nations 2018; Vermeiren et al. 2012), leading 
to increased demand for resources and social services, and 
subsequently increased alterations of the natural environment.

2 The data gaps in figure 2 between September & October and November 
& December is due to prolonged outage of the sensors

(a) Bugolobi area

(b) Bweyogerere area

(c) Civic Center area

(d) Entebbe Kiwafu area

Figure 5: Study locations in and around Kampala used to describe the 
variations of ambient air quality before and during the lockdown period.
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Consequently, a large proportion of the population within GKMA 
live and work near pollution sources. The prevailing urban 
planning shortfalls have precipitated the growth of saturated 
informal settlement clusters (Richmond, Myers, and Namuli 
2018) often intertwined with formal settlements and local 
pollution generating activities. In essence, local pollution levels 
tend to be largely influenced by the usually diverse and diffuse 
surrounding pollution generating activities coupled with the 
nature of settlements resulting into largely localised impacts 
(Okure et al. 2022). However, the unique variations in the air 
pollution profile is typical for many fast-growing urban areas in 
sub-Saharan Africa where pollution is dominated by multiple 
diffused sources (Marais and Wiedinmyer 2016; Pfotenhauer et 
al. 2019).

Table 1 shows the Greater Kampala pollution variations 
(clustered airsheds) using the sensor correlation matrix for 13 
monitoring locations over a 6-month period, with an average 
correlation of 0.581, a function of the distance between the 
sensors and actual pollution levels in the monitoring locations/
intensity of immediate local sources. This socio-economic 
context suggests that the consequences of the disrupted socio-
economic interactions with the ambient environment due to 
the lockdown restrictions will be more significant in this region, 
also consistent with novel findings on pollution progression and 
urbanisation (Mage et al. 1996). While in-depth investigation of 
the sensor variations highlighted in Table 1 is beyond the scope 
of this paper, we find that it reinforces the need for exploring air 
quality dynamics in a metropolitan city. Air quality insights from 

Table 1: Sensor correlation (R) matrix for the low-cost AirQo network in Greater Kampala

Monitoring sites Nak II Kas. Nan. E Lub. Nan. 
W Luk. Bug. Kya. Seg. Kiw. Kwt. CvC. Mak.

Nakaseero II (Nak. II) 1.00 0.822 0.682 0.548 0.260 0.824 0.852 0.630 0.660 0.597 0.656 0.838 0.772

Kasanga (Kas.) 0.822 1.00 0.617 0.523 0.119 0.855 0.918 0.639 0.609 0.651 0.729 0.779 0.744

Nansana east (Nan. E) 0.682 0.617 1.000 0.472 0.407 0.725 0.684 0.579 0.541 0.499 0.501 0.709 0.707

Lubaga (Lub.) 0.548 0.523 0.472 1.000 0.257 0.521 0.509 0.432 0.494 0.462 0.488 0.549 0.492

Nansana west (Nan. W) 0.260 0.119 0.407 0.257 1.000 0.266 0.192 0.233 0.275 0.088 0.042 0.337 0.408

Lukuli (Luk.) 0.824 0.855 0.725 0.521 0.266 1.00 0.891 0.658 0.626 0.633 0.640 0.842 0.896

Bugolobi (Bug.) 0.852 0.918 0.684 0.509 0.192 0.891 1.00 0.673 0.623 0.631 0.696 0.857 0.796

Kyaliwajjala (Kya.) 0.630 0.639 0.579 0.432 0.233 0.658 0.673 1.00 0.496 0.469 0.531 0.625 0.616

Seguku (Seg.) 0.660 0.609 0.541 0.494 0.275 0.626 0.623 0.496 1.00 0.549 0.522 0.643 0.587

Kiwafu (Kiw.) 0.597 0.651 0.499 0.462 0.088 0.633 0.631 0.469 0.549 1.000 0.548 0.568 0.535

Kiwatule (Kwt.) 0.656 0.729 0.501 0.488 0.042 0.640 0.696 0.531 0.522 0.548 1.00 0.614 0.539

Civic Centre (CvC.) 0.838 0.779 0.709 0.549 0.337 0.842 0.857 0.625 0.643 0.568 0.614 1.000 0.817

Makindye (Mak.) 0.772 0.744 0.707 0.492 0.408 0.896 0.796 0.616 0.587 0.535 0.539 0.817 1.00

Figure 6: Furthest distance between the monitoring locations



6CLEAN AIR JOURNAL 
Volume 32, No 1, 2022

© 2022. The Author(s). Published under a 
Creative Commons Attribution Licence. 

Research article: Exploring PM2.5 variations from calibrated low-cost sensor network in Greater Kampala during COVID-19 Page 6 of 14

Table 2: Profiles of the study locations (Uganda Bureau of Statistics 2016)

Area km2 Population Popn Density Households per km2 Firewood/ Charcoal cooking 
households per km2

Domestic waste burning 
households per km2

Bugolobi 3.88 5023 1,295 327 103 23

Bweyogerere 11.27 58,679 5,207 1,363 1,153 575

Civic Centre ~1 375 375 130 24 1

Kiwafu Ward 5.30 22,243 4,194 1,081 238 242

Figure 7: Daily mean PM2.5 concentrations, by location March 31 2019 - May 5 2020
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Greater Kampala during such an unprecedented circumstance 
would provide a rare opportunity for exploring mitigation policy 
insights for a sub-Saharan African setting.

In order to capture a cross section of the GKMA urban 
environment, we used parish level population distribution, 
observed satellite imagery from Google earth, knowledge of 
local context and availability of data for the 211 period of interest 
to identify four monitoring locations based on land use clusters 
i.e., residential/urban background and urban/traffic typically 
characteristic of land uses within the greater Kampala. This is 
also informed by the known pollution dynamics for various land 
uses (Harrison and Deacon 1998; Spangl et al. 2007; Alsahli and 
Al-Harbi 2018).

Inherently, diverse pollution profile would make it difficult to 
identify homogeneous land use clusters, which in theory, could 
introduce an analytical uncertainty. However, we attempted 
to obtain a fair spatial representation of the idealised location 
clustering which should provide spatially representative 
reference insights for the respective land uses taking into 
consideration that particulate matter is not always entirely 
constrained to immediate local sources like gaseous pollutants 
e.g. NO2, and CO (Khuzestani et al. 2017), this does not present 
any significant limitations.

The locations represent a balance between densely and less 
populated areas with a wide measure of variations in pollution 
levels. The respective physical and demographic profiles for 
attributes with direct impact on local air pollution are presented 
in Table 2.

Results and discussion
Daily PM2.5 levels
Figure 7 shows that for all locations there is substantial variation 
in daily mean PM2.5 across the year. The blue section of the chart 
captures the lockdown period which records some of the lowest 
readings of the year for all locations. The cycles observed above 
vary in line with seasons with the two wet seasons (March-May/
September-November) experiencing the lowest PM2.5 levels. 
This corresponds to the influence of precipitation and unstable 
weather conditions on particulate suppression and decay (Chow 
et al. 1999; Yan et al. 2016).

Overall, Bweyogerere area which has greater population 
density, proximity to industries, with a major road network, 
and multiple diffuse sources, observes typically higher PM2.5. 
Unsurprisingly, Kiwafu Ward in the smaller town of Entebbe 
with no major through-roads, less households using charcoal/
firewood coupled with limited industrial and commercial 
activities experiences much lower levels. This suggests that 
both location-specific and meteorological factors impact on 
observed air quality during lockdown, with meteorological 
being more generalised (Cole and Neumayer 2004). 
 
To establish the extent to which improvements in air quality 
coincide with lockdown measures, levels during lockdown are 
compared with wet season means for 2019, and the mean for the 
lockdown equivalent period in the previous year.

The results are as shown in Figure 8 with the bars representing 
the estimated differences in PM2.5 between the two periods. 
Bweyogerere shows the greatest observed reduction in PM2.5 
at approximately 25µg/m3 or 50% lower than seasonal and 

Figure 8: Mean reduction PM2.5 values for lockdown compared to typical wet season 2019 and equivalent lockdown period prior year
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the previous year means. Other locations saw reductions of 
around 9-15µg/m3. This is an indication that meteorology 
is not sufficient to explain the lower PM2.5 levels during the 
lockdown period, but at the same time highlights the clustered 
nature of the pollution reduction. Modelling the meteorological 
impact on daily levels could provide precise estimates on the 
meteorological influence.

To further explore the extent of the impact of lockdown 
restrictions on the different physical environments, we used a 
working assumption that the impact of socio-economic factors 
i.e. population density, household energy use, will remain 

relatively constant during the lockdown period and possibly 
increase as people spend more time, cook and eat more at 
home than would normally be the case. We utilised data from 
the most recent census (Uganda Bureau of Statistics 2016) to 
obtain context for each of the land use areas. Bweyogerere, 
the most densely populated and probably the largest domestic 
emitter again experienced the greatest reduction in PM2.5. Other 
parishes, from the densely populated Kiwafu Ward to the largely 
resident free Civic Centre experience comparable reductions. 
These insights provide little indication to suggest that the 
probable changes have led to a decrease in PM2.5 that outweighs 
any benefits from other lockdown measures.

Localised influence of traffic activity 
Because of the prohibitive logistical implications of conducting 
traffic counts; we employed Google Maps Traffic App that 
utilises smartphone data with activated location features, and 
recorded in motion to capture proxy data. ’Typical’ traffic data 
was captured for day of the week between 6 am and 10 pm 
(the times available from Google Maps) for each location prior 
to lockdown. Hourly data from coloured pixels was collected 
throughout the lockdown period. Figure 9 demonstrates an 
example of the difference in activity after curfew, before and 
during lockdown. Figure 10 shows the level of traffic activity for 
each location at lock down levels compared to typical. Kiwafu 
Ward shows the greatest reduction in traffic activity with levels 
below 20% (about 80% reduction) of typical.

Access to the international airport and recreation are the main 
reasons for visiting the town and these options were no longer 
possible. Other locations show much higher activity, in the 
range of 20 to 40% of normal in the first two weeks of lockdown 
but rising to between 40 and 60% of normal in the second two 
weeks with Civic Centre as the most active.

Figure 9: Sample traffic activity images from Monday 8pm typical pre-
lockdown and during lockdown

Figure 10: Daily traffic activity during lockdown as a percentage of maximum typical levels
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Figure 11: Diurnal variations for lockdown period 2019 and 2020

These locations, while varying in population density, remain on 
or close to major commercial through-routes across the city and 
so see higher sustained traffic volumes.

While Bugolobi has low population density and is beside 
wetland, it lies downwind from an informal settlement, an 
industrial area and a congested road which may explain higher 
activity rates.

Explanations for the increase over time may include; businesses 
adapting to the changing environment by investing in permissible 
transport such as motorcycles, home delivery services or 
increased mobility for essential workers and emergencies. This 
upward trend is not observed in daily PM2.5 changes which are 
influenced more by daily weather variations. In summary, while 
the season of the year explains some of the improvement in daily 

air quality during the lockdown period, influence of lockdown 
restrictions appear to have been very significant. More detailed 
modelling of weather and pollution transport be required to 
identify the relationship between these features more precisely, 
while considering other emission parameters such as NO2 (Mage 
et al. 1996; Watson and Chow 2002).

Diurnal variation
In Figure 11 we explore the difference between diurnal PM2.5 levels 
during the lockdown period and the equivalent period in 2019. 
We observe that all locations carry the characteristic sinusoidal 
profile. A characteristic feature for pollution dispersion is the 
Boundary Layer Effect (BLE) (Ding et al. 2005) which creates the 
U-shape curve observed during daylight hours. As the sun rises 
around 7am, the ground warms due to radiation. This warms 
the air which rises lifting particulate matter with it creating 
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Figure 12: Normalised PM2.5 variation for the period March 31-May 5, 2019 to 2020

Figure 13: Diurnal variation in traffic activity within 2.2km X 2.2km bounding box of the monitoring device for the pre-and during lockdown period

turbulent ambient conditions. Pollution is now dispersed over a 
much greater vertical height and exposure levels reduce, being 
at their lowest mid-afternoon. During the evening conditions, 
cooler air is compressed into a smaller vertical space leading to 
higher concentrations during the night. These diurnal patterns 
are not unique to this study and have been replicated in other 
geographic settings (Chow et al. 1999; DeGaetano and Doherty 
2004; Chen, Tang, and Zhao 2015), with levels dependent on 
location-specific activity patterns.

During the 2020 lockdown, mean PM2.5 levels are consistently 
below the 2019 equivalent period. The morning and evening 
peaks are levelled out by reduced activity. We can see that while 
pre-lockdown levels (averagely) are always at or above new 
WHO daily AQG levels of 15µg/m3 (World Health Organisation 
2021), lockdown levels only exceed the threshold if only peak 
times are considered.

Investigating the difference further, Figure 12 shows the variation 
in mean hourly PM25 values during the lockdown period 
compared with the normalised values for the equivalent dates 

in 2019. All locations show a variation of greater than or equal 
to one standard deviation below equivalent period in the prior 
year. Similarly, all locations show a modest peak around 7 pm 
when levels are closest to prior year mean. Greater reductions 
are seen after 7 pm and continuing through until 3-5 am. This 
is in line with a substantial decrease in activity during the hours 
of curfew (7 pm-6:30 am). There is also variation between Civic 
Centre and Bugolobi, and Bweyogerere and Kiwafu with the 
latter pair seeing much greater reductions during the day and 
especially during night time. This difference can be explained 
by reduction in evening activity to be explored below, but also 
reinforced by the BLE which usually traps evening particulate 
matter close to the ground level, where it remains, reducing 
only slowly throughout the night. This is especially harmful for 
those living in open homes and in cities such as Kampala where 
polluting activity continues into the night.

As mentioned above we are assuming that cooking and 
waste burning activities remain the same or increase during 
the lockdown. Air quality improved at every stage of the day 
during lockdown and follows a similar pattern for all locations 
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especially in the evening after curfew. It appears changes in 
domestic emissions are not a significant factor in explaining 
these observed patterns.

On traffic activity, the contrast between the typical and lockdown 
periods in figure 13 is striking. Typical levels show traffic activity 
at well above 80 percent of full activity at all times between 6 
am and 10 pm. Under lockdown however there is very clear 
evidence that the curfew is being observed for all locations. All 
locations only begin to increase activity from 7 am. Civic Centre 
and Bugolobi locations continue to increase before falling 
steadily until 7 pm and then dropping sharply. For Bweyogerere 
and Kiwafu however, traffic activity drops away sharply at 10 
am, remaining low through the day, before rising to a second 
peak at 6 pm and dropping away more sharply than others 
before curfew. This pattern of lower activity in Bweyogerere and 
Kiwafu is consistent with the lower PM2.5 levels seen in Figure 12.

One possible explanation for why Kiwafu and Bweyogerere 
experience a greater drop after curfew is that being densely 
populated, lower income residential areas close to major roads 
they experience high levels of night-time combustion activities, 
typically charcoal and waste. Under lockdown scenario, traffic is 
reduced, but also polluting activities moves away from the main 
roads (and away from our sensors) possibly into homes. In the 
more affluent Bugolobi and the non-residential Civic Centre, 
only the traffic reduction which is already typically lighter in the 
evening is seen and limited outdoor combustion and reliance on 
street food much lower.

In summary, diurnal variation is largely explained by 
meteorological factors. Adjusting for this we observe that 
reduced traffic activity during the day leads to general 
reduction of 1 standard deviation across all regions, the greatest 
improvement comes at night for locations on major roads close 
to dense residential areas with heavy traffic and where outdoor 
combustion and street cooking is known to be prevalent. These 
findings indicate that policy initiatives that regulate transport 
activities would lead to immediate improvement on ambient air 
quality.

Conclusion and policy recommendations
This study explored the impact of COVID-19 lockdown 
restrictions on diverse air quality profiles for four distinctive 
locations in the Greater Kampala region of Uganda. We identify 
a reduction in PM2.5 of between 17 and 50% compared with 
the same period in 2019 with the greatest increase coming in 
densely populated areas close to major roads. Investigation into 
diurnal variation reveals a broadly consistent improvement for 
all locations at all times. The greatest reductions occurred after 
the 7pm curfew and again, mostly in densely populated areas 
close to major roads. Implicitly, blanket policy interventions 
that target peak pollution periods could be proportionately 
adopted across the study area. Assuming that domestic fuel 
use is unlikely to have decreased, we identify traffic density, 
and street cooking and outdoor combustion as likely sources 

of the reduction. Policy initiatives in the transport sector such 
as vehicle emissions controls, traffic management, mass transit 
systems and pedestrianisation, in addition to regulation of 
outdoor open burning should be adopted to reduce the impact 
on air quality. Similarly, exploring the prospects of community 
driven initiatives could be essential to tackling diffuse and 
clustered pollution sources.
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