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Introduction
Nowadays, it is well known that air pollution and its impact 
on human health have become a primary topic in atmosphere 
research. A good number of epidemiological studies have 
demonstrated the strong link between atmospheric pollution 
and daily deaths and hospitalizations of pulmonary and cardiac 
diseases (Sinharay et al., 2017; Bourdrel et al., 2017). Tunisia 
is a beautiful country with diverse, complex geography and is 
located between the Mediterranean coast and the Saharan 
region. This location together with a diversity of air pollution 
sources (e.g. traffic, industrial, dust) leads to exceedances of 
air quality guideline values recommended by the World Health 
Organization (WHO, 2016). Tunisia reports high annual mean 
concentrations of PM2.5 and PM10, which should not exceed 10 
and 20 μg.m-3, respectively (WHO, 2016).  Accelerated growth in 
emission sources of air pollutants in most important Tunisian 
cities like Tunis, Sfax and Gabes (Melki, 2007; Bouchlaghem and 
Nsom, 2012) now cause an urgent need to adopt specific policies 
in managing air pollution. 

Air pollution modeling is an integral part of air pollution 
management and policy (Karaca et al., 2006; Saffarini and Odat, 
2008). Previous air quality studies conducted in Tunisia mainly 

focused on the physical characteristics, correlations between 
pollutants, the sources of PM10 and forecasting air quality (Melki, 
2007; Bouchlaghem et al., 2009; Ayari, Nouira and Trabelsi, 2012; 
Calzolai et al., 2015). A few investigations focusing on the interplay 
between meteorology and air quality has been done in Tunisia. 
The study conducted in Tunis (Melki, 2007) presents the role of 
the temperature inversions, which determine the majority of the 
highest pollution levels in the north of the country. They used 
multiple linear regressions to evaluate the statistic dependence 
between the ozone concentrations and the weather conditions. 
According to Bouchlaghem et al. (2009), some sea breeze events 
are responsible for air quality. Their result shows that under 
these circumstances, the nearby power plant is responsible for 
air quality degradation in the region of Sousse (the East central 
part of Tunisia). Bouchlaghem and Nsom (2012) highlighted 
the influence of the Saharan dust on PM10 concentrations. They 
concluded that PM10 concentrations on days with Saharan dust 
contributions are higher than the average daily value with the 
absence of this phenomenon. In sum, no study has as yet dealt 
with the relationship between particulate matter and ozone 
concentrations and meteorological conditions in Tunisia based 
on the use of a non-linear statistical approach.
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Generalized Additive Model, as an extension of Generalized 
Linear Model, has been employed in few studies for modeling 
pollutant concentrations, especially PM10 (Taheri Shahraiyni 
et al., 2015) and O3 (Ma et al., 2020). As a statistical tool that is 
able to simulate non-linear relationships by smoothing input 
variables (Hastie and Tibshirani, 1990), Generalized Additive 
Models (GAM) have been used in many environmental issues 
and recent studies (Ma et al., 2020; Yang et al., 2020). In the 
last two decades, this statistical approach has been used as a 
standard analytic tool in time-series studies of air pollution and 
human health (He, Mazumdar and Arena, 2005; Dehghan et al., 
2018; Ravindra et al., 2019).

GAM models delivered good performance and can be equivalent 
to those of other methods such as neural networks (Schlink et al., 
2003). Aldrin and Haff (2005) used meteorological predictors in 
order to model PM10, PM2.5 and the difference between PM10 and 
PM2.5 mass concentrations, and their models gave a reasonably 
good fit in terms of the squared correlation coefficient with 
72% and 80% for PM10 and NOX, respectively. Pearce et al. (2011) 
noted the influence of local-scale meteorological conditions on 
air quality in Melbourne (Australia). Munir et al. (2013) offered 
a new GAM to predict daily concentrations of PM10 in Makkah 
using lag PM10 concentrations. This model showed the vital role 
of meteorological variables and traffic related air pollutants 
in describing the variations of the PM10 concentrations. Again 
based on GAM analysis, Belušić, Herceg-Bulić and Bencetić 
Klaić (2015) employed the novel GAM approach to quantify the 
influence of local meteorology on air quality in Zagreb, Croatia. 
This study confirmed the well-known impact of wind direction 
and speed in variations of air pollution.  

The objective of this study is to investigate the magnitude in 
which pollutant concentrations respond to measures of local 
meteorology and temporal variables in Tunis. Statistical models 
were developed for hourly mean PM10 and O3 concentrations for 
three sites of Tunis in order to quantify the impact of meteorology 
on PM10 and O3 levels. The paper is organized as follows: The 
Materials and methods section provides information on our data 
sources and data-handling methodology. Then it presents the 
description of the proposed methods and a brief introduction 
to Generalized Additive Models. The Results and discussion 
section discusses the findings, highlights the most important 
results and details a statistical evaluation of the model. Finally, 
we conclude the work in the Conclusions.

Materials and methods
Site description and sample collection
The study area is located in the metropolis of the Greater Tunis 
region, which consists of four governorates: Tunis, Ariana, 
Manouba and Ben Arous. The area of the Greater Tunis is 300,000 
hectares, with a population of 2.5 million. This city contributes 
30% to the total pollution of the country (INS, 2014) (Fig. 1).Three 
urban and suburban monitoring stations (i.e. Bab Aliwa, Gazela 
and Mannouba) were selected for this study (Fig. 2). These 
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stations are located in three governorates: Tunis, Ariana and 
Mannouba.

Tunis City (capital of Tunisia) is located in the North part 
of Tunisia (36°49’ N, 10°11’ E). The urban area (1 056 247 
inhabitants) is about 346 km2 surface. The sampling site “Bab 
Aliwa” is classified as urban, is located in the vicinity of one of 
Tunis’s major traffic avenues and is near to central bus station 
and the largest cemetery in the country.

Ariana is also located in the North part of Tunisia (36° 51' N 10° 
11' E). Its urban area accounts about 576 088 inhabitants. The 
measurement station sample “Gazela” is classified as urban 
and is mainly influenced by residential, traffic, and commercial 
activities.

Mannouba is located in the center of the northern governorates 
(36° 48' N 10° 5' E). The urban area (379 518 inhabitants) is about 
1 137 km² surface. The sampling site “Mannouba” is suburban 
and it is known for its typically agricultural and industrial 
character.

The data set used consists of pollution data for the period from 
01/01/2008 to 31/12/2009, with corresponding measurements 
of meteorological conditions provided by "Agence Nationale 
de Protection de l'Environnement" (ANPE). This period was 
chosen because it is the only one with few missing values (< 
7%). At each site, air pollution is measured with standards 
methods used in Tunisia. PM10 and O3 instruments are designed 
by Teledyne Advanced Pollution Instrumentation Company 
(http://www.teledyneapi.com). Levels of PM10 were calculated 
by means of automatic beta radiation attenuation monitors. 
For O3, the Teledyne model used is 400A. Data processing 
techniques and standard methods are described in the analyser 
instruction manuals. Additionally, all stations were equipped 
with automatic weather monitoring. All data series were 
collected hourly. Due to measurement errors, a few negative 
pollutant concentration values occasionally appeared in the 
raw data. These values cause problems because pollution data 
are modelled at log-scale (Aldrin and Haff, 2005) and have been 
replaced by the minimum observation in the data (1 ppb for 
NOX and O3 and 1 μg.m–3 for PM10). The limited sensitivity of the 
measurement instruments caused many observed zero values 
(about 0.05% on average), which were considered as erroneous 
data.

Table 1 presents a basic statistical overview of air pollution 
and meteorological variable values after the application of the 
data quality control process. Fig. 3 shows the average seasonal 
evolution of PM10 (from January 2008 to December 2009) in 
the studied regions. We note different behavior at the various 
sites with very high levels compared to the PM10 annual limit 
of the 2008 EU Air Quality Directive (40 μg.m–3). The right-hand 
plot indicates that average seasonal evolution of O3 is around 
the O3 maximum daily 8-hour mean limit (60 ppb) of the 2008 
EU Air Quality Directive (Directive, 2008), except for Gazela 
site, an overshoot was observed. So, pollution levels can be 
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Figure 1: North African map displaying Tunisia and Tunis City

Figure 2: Map of study area showing the location of monitoring stations

Table 1: Summary statistics of data used for model development, showing the mean, median, standard deviation, minimal and maximal values of the 
data collected over the 3 studied stations (01/01/2008 to 31/12/2009).

Variable Units Mean Median Min Max SD

O3 (O3) ppb 54.25 60 1 257 23.38

PM10 (PM10) μg.m–3 68.26 52 1 801 59.92

NOX (NOX) ppb 25.96 15 1 395 28.15

Temperature (TT) °C 18 18 3 43 6.99

Wind speed (WS) m.s–1 1.70 1 0 8 1.19

Wind direction (WD) deg 201.8 249 0 360 115.50

Solar radiation (SR) W.m–2 177.8 44 0 927 235.51

Relative humidity (RH) % 61.83 63 11 100 16.83

Day of the week (DW) Days - - 1 7 -

Hour of the day (HD) Hours - - 1 24 -

Month (Month) - - - 1 12 -
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differentiated by geographical area. In Algeria, the north African 
country like Tunisia, the modeling results of Belhout et al. (2018) 
show that the Algerian annual average limit for PM10 (80 μg.m–3) 
has been exceeded in some Algiers areas; by consequence, air 
quality guidelines fixed by the WHO (20 μg.m–3), (WHO, 2006) 
and the European Union (EU) (40 μg.m–3) for PM10 are also 
exceeded. Rahal et al. (2014) found that significant pollutant 
releases in the study area are located at hyper-centre and at 
centre of the Wilaya of Algiers. Many sites in Greater Agadir Area, 
Morocco, have high levels of ozone and other pollutants that 
meet national air quality standards. The annual average of PM10 
is largely below the limit value on Agadir city (Chirmata, Leghrib 

and Ichou, 2017) . All countries of the North Africa sub-region do 
not have specific legislation on air quality.

Generalized additive models 
Generalized Additive Models (Hastie and Tibshirani, 1990) are 
used to assess the relationship between air pollution 
concentrations and different factors. GAMs are regression 
models in which linear predictor  is replaced by a sum of 
smooth functions of covariates . Additive models are 
considered as a semi-parametric extension of the generalized 
linear model (GLM) which automatically estimate the optimal 
degree of non-linearity of the model. The additive model in 
general form can be written as: 
            

 (1)

where g is a link function that links the expected value to the 
predictor variables, µi is the expectation of the response 
variable yi, s0 is the overall means of the response, sk(xki) is the 
smooth function of ith value of covariate k, p is the total number 
of covariates, and εi is the ith residual which is assumed to be 
normally distributed: εi~N(0,σ2). The smooth function was used 
to minimize the penalized residual sum of squares (shown in 
equation 2):

 (2)

The term  evaluates the closeness to the data and 
 penalizes curvature in the function. λ is a fixed 

smoothing parameter. The increase of the value of λ provides 
a smoother function. The choice of this parameter becomes 

Figure 3: PM10 and O3 monthly averaged concentration recorded at all monitoring sites from January 2008 to December 2009.The horizontal red line 
indicates PM10 and O3 annual limit of the 2008 EU Air Quality Directive

Figure 4: Pearson correlations matrix of all variables. The strikethrough 
coefficients were insignificant at the 0.05 significance level. 
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critical given the flexibility of the GAM model and the risk of 
over-fitting. Generalized Cross Validation (GCV) is the most used 
method to fix the smoothing parameter λ. In this paper, the main 
purpose is to find the combination of explanatory variables 
which can describe a high degree of the pollutant concentration 
variability (R²) in Tunis. In order to analyze the seasonality of 
O3 and PM10 concentrations that exist in this data, we started 
by fitting a preliminary base model with time variables only 
(equation 3): 

(Model with time variables only)
 (3)

The variable day of the week (DW) was used to account for 
weekly variations. Also, the predictor hour of the day (HD) 
was employed with values ranging from 1 to 24.  This variable 
is meant to take care of diurnal variation that is not explained 
by the other variables. Additionally, since air pollution data 
are known to be seasonal, k which is the maximum number of 
knots for each smoother. The smoothing spline for HD had 24 
knots and was employed to account for processes on time scales 
larger than one hour. The variable DW had 7 knots one for each 
day. Finally, the variable Month was employed with k = 6. Both 
residuals histograms and scatter plots confirmed the adequacy 
of this choice of k values (see the section “Assessment of the 
model performance”). 

Tropospheric ozone O3 and particulate matter PM10 
concentrations were modeled separately using the model given 
by (equation 4), with five meteorological variables, temperature 
(TT°), Relative Humidity (RH %), Solar Radiation (SR W.m–2), Wind 
Speed (WS m.s–1),Wind Direction (WD degree from the north) 
applied via the GAM modeling function in the R environment 
for statistical computing inside the “mgcv” package (Wood, 
2006). Traffic data and precipitation data were not available 
in the study areas. Therefore, three temporal variables and 
some traffic related air pollutant data were included to roughly 
account for traffic density and industrial emissions. Nitrogen 
oxides (NOX μg.m–3) was used as explanatory variables instead 
traffic flow data (Pont and Fontan, 2000) and to represent a 
source for secondary particle matter. The predictor variables are 
slightly correlated (Fig. 4). For example, the correlation between 
the wind speed and the solar radiation is 0.26, between the 
temperature and hour of the day, it is 0.2. A strong negative 
linear relationship was detected between relative humidity and 
temperature (-0.66) and between relative humidity and solar 
radiation (-0.6). Most other correlation coefficients are 0.50 or 
less in absolute values. Based on these moderate correlations, 
we do not expect any serious problems with confounding 
effects between predictor variables. In this study, the Variance 
Inflation Factor (VIF definition in Appendix A) was used to detect 
the multicollinearity of variables (Belušić, Herceg-Bulić and 
Bencetić Klaić, 2015) and the multicollinearity is considered 
very important when VIF values are higher than 10 (Graham, 
2003). For all variables, VIF values were lower and ranged from 
1.001 for the day of the week (DW) to 2.934 for the temperature. 
Thus, we assumed that all variables are not collinear, and a 

regression method could be applied. In order to select the final 
model, meteorological variables were added to the base model 
(equation 3) upon which Akaike's Information Criteria (AIC) 
was calculated. A variable remained in the final model if the fit 
yielded a lower AIC. Finally, the model for each pollutant can be 
written as:

(Model with all variables)

 (4)

The maximum number of knots for each smoother k must be 
chosen before the smoothing function is estimated. It controlled 
the smoothness of each function sk(xki) in the final model. This 
particular parameter should be large enough so that the main 
process which governs concentrations values are included in 
the model. Many studies were employed forward validation 
which is a special form of cross-validation and is considered as 
the easiest method to choose optimal knots (Aldrin and Haff, 
2005; Belušić, Herceg-Bulić and Bencetić Klaić, 2015). So, in this 
work, forward validation for each pollutant was based on hourly 
predictions of concentrations for Tunis, one day in advance. For 
each day and for the maximum number of knots, the model 
was re-estimated using the data up to the day before. Then, 
the hourly log PM10 and log O3 concentrations for the next day 
are predicted. The prediction is compared to the logarithm of 
the observed value and the hourly prediction errors calculated. 
For each day and for each of the two pollutants, this procedure 
was repeated. The root mean square (RMSE) of the prediction 
was finally calculated (RMSE definition in Appendix A). The 
minimum RMSE for each pollutant corresponded to k = 15 for 
(Temperature (TT°), nitrogen oxides (NOX μg.m–3)) and k = 10 for 
(relative humidity (RH %), solar radiation (SR W.m–2)). The value 
of k = 8 was large enough only for wind variables.

Results and discussion
Based on the data described in Section “Site description and 
sample collection”, the additive model with all variables was 
estimated for the two pollution variables PM10 and O3 recorded 
at three different stations in Tunis. 

The first two columns of Table 2 show the explained variation 
(squared correlation coefficients R²) for the entire model 
(equation 4). The second part of the table presents the 
explained variation for meteorological variables only (R²m.v) 
which measured the aggregate impacts of local meteorology on 
each pollutant. R²m.v corresponds to the explained variation 
of a new model given by the difference of the models with only 
time variables and with all variables. The highest values of R² 
were obtained for O3 at Bab Aliwa station. We found that the 
explained variance for the entire model is between 0.56 and 
0.85, indicating that the models explain most of the variation in 
pollutant concentrations, but a considerable amount of variation 
is still unexplained. The aggregate impact of meteorological 
variables was measured between 0.21 and 0.42.
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Ozone
Tropospheric ozone is considered a secondary pollutant which 
is formed by photochemical reactions involving the oxides 
of nitrogen NO and NO2 (summed as NOX), hydrocarbons and 
sunlight, particularly ultraviolet light. In urban areas, high ozone 
levels are observed during warm summer months when the 
temperature is high and the wind velocity is low. In Tunis, we 
found that the final model explained 85% (site of Bab Aliwa) of 
the variance of log-transformed O3 concentrations (Table 2). The 
aggregate impact of meteorological variables explained 41% of 
the variance in O3 for the same site (Bab Aliwa). The estimated 
effects of meteorological and temporal variables on O3 are 

shown in Fig. 5 (a), (b) and (c) for three stations in Tunis. Most 
meteorological, traffic and temporal factors were statistically 
significant in a highly non-linear way.

The influence of local meteorology on O3

Temperature effect
For all three measurement stations, temperature (TT) was 
an important meteorological variable for O3. The effect of 
temperature on O3 is similar at Gazela and Bab Aliwa sites. 
A positive effect is seen for temperatures ranging between 
5°C-20°C across only these two sites. A negative effect is noted 

Table 2: The second and third columns present the squared correlation coefficient (R²) for each pollutant concentration modelled on log-scale with all 
variables (the final model). The fourth and fifth columns (R²m.v) show the squared correlation coefficient for only meteorological variables for each model 
on log-scale

R² R² m.v

Measurement site PM10 O3 PM10 O3

Gazela 0.58 0.72 0.40 0.42

Mannouba 0.56 0.73 0.21 0.36

Bab Aliwa 0.59 0.85 0.29 0.41

Figure 5a: GAM estimated relationships for temporal, meteorological and traffic variables on O3 concentration for Gazela. The x-axis represents increasing 
variations. The y-axis indicates the contribution of the smoother to the fitted values. The region between the dashed lines represents the 95% confidence 
interval.
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CLEAN AIR JOURNAL 
Volume 31, No 2, 2021

© 2021. The Author(s). Published under a 
Creative Commons Attribution Licence. 7

for temperatures ranging between 20°C and 40°C for all three 
sites. So, if temperature increases, ozone concentrations are 
seen to decrease. This disagrees with common understanding of 
this relationship (Cheng et al., 2007; Polinsky and Shavell, 2010; 
Pearce et al., 2011; Ma et al., 2020), but can due to correlations 
of temperature with other variables like wind direction. The 
formation and concentration of ground level O3 depends on 
the concentrations of NOX and VOCs, and the ratio of NOX and 
VOCs. Ozone levels do not always increase with increases in 
temperature, such as when the ratio of VOCs to NOX is low. As 
study area was surrounded by reliefs, the speeds of surface 
winds are low. It may be more thermal breezes than synoptic-
scale winds (Melki, 2007). The high frequency of thermal breezes 
and calm periods may indicate stable atmospheric conditions 
and thus O3 concentrations are higher during such episodes. 

Wind effect
The curves in the center of Fig. 5 (a), (b) and (c) show the results 
obtained regarding the impact of wind direction. The estimated 
response for the wind direction is different for the various 
locations. This is as normal, since the effect of wind direction 
is strongly correlated on the emission locations. A non-linear 
relationship is observed for all stations: edf=6.51, edf=6.22 and 
edf=6.15 at Gazela, Mannouba and Bab Aliwa, respectively (Table 

3). At the first site, O3 exhibits maximum concentration for E-NE 
wind (70°-100°) and minimum concentration at around 200°. 
However, by examining the wind speed-direction frequencies 
graph of this site (Fig. 6), there is a very remarkable effect of 
this variable on ozone concentration. A possible explanation is 
the location of this measuring site which is subject to northern 
European pollution (i.e. O3 is transported from Italy to Tunis). 
While crossing the city towards Mannouba site, the effect of 
wind decreases. In this station, O3 shows secondary maxima for 
S-W wind (250°). The wind direction at the Bab Aliwa site seems 
to have a different effect on O3 concentration. Wind direction 
has a positive effect on O3 concentration for directions between 
100° and 250°. This is probably associated with the cemetery 
effect which promotes ozone's transport. A light minimum is 
then observed at 270°. The effect of road traffic can explain this. 
In this study, increasing wind speed was found to correspond 
to increasing O3 concentrations. This tendency is particularly 
marked for the Bab Aliwa station (Figure 5c). This agrees with 
previous findings of Melki, (2007). At the Gazela site, the effect 
of this variable is very local, so, difficult to explain. It may be 
possible to understand this effect on a scale larger than a city.

Solar radiation and relative humidity effects
Solar radiation had a non-linear association: edf=6.47, edf=2.75 

Figure 5b: GAM estimated relationships for temporal, meteorological and traffic variables on O3 concentration for Mannouba. The x-axis represents 
increasing variations. The y-axis indicates the contribution of the smoother to the fitted values. The region between the dashed lines represents the 95% 
confidence interval.
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Figure 5c: GAM estimated relationships for temporal, meteorological and traffic variables on O3 concentration for Bab Aliwa. The x-axis represents 
increasing variations. The y-axis indicates the contribution of the smoother to the fitted values. The region between the dashed lines represents the 95% 
confidence interval.

Table 3: Model estimates of the effects of predictors on O3 (all sites). edf =effective degrees of freedom of the smooth function terms (edf>1 indicate non-
linear relationships); F value is an approximate F-test, SE=asymptotic standard error. *** Significant at the 0.000 level

Gazela Site Mannouba Site Bab Aliwa Site

Smooth terms edf F edf F edf F

s(Hour of the Day) 11.5 30.00*** 9.43 4.93*** 10.91 14.20***

s(Day of the Week) 5.27 3.81** 2.97 3.27*** 5.68 4.80**

s(Temperature) 10.75 66.02*** 13.74 16.27*** 7.01 9.51***

s(Wind Speed) 4.42 59.11*** 2.66 6.23 4.45 77.38***

s(Wind Direction) 6.51 118.14*** 6.22 9.07*** 6.15 35.89***

s(Relative Humidity) 8.72 106.6*** 8.00 33.34*** 8.02 63.76***

s(Month) 4.87 436.78*** 3.98 442.03*** 4.70 535.48***

s(NOX) 7.40 588.97*** 13.63 72.83*** 8.94 476.36***

s(Solar Radiation) 6.47 33.25*** 2.75 3.94 6.25 8.42***

Linear terms Estimate SE Estimate SE Estimate SE

Intercept 4.2 0.001 3.94 0.004 2.95 0.004

Explained Deviance 73% - 61.5% - 85.6% -

GCV score 0.01 - 0.12 - 0.08 -

Research article: Modeling tropospheric ozone and particulate matter in Tunis, Tunisia using generalized additive model Page 8 of 16
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contribute to the VOC degradation and the ozone production. 
Unlike other sites, Gazela is considered a residential site which 
is characterized by the domination of NOX emissions (at this 
site, VOCs are only due to traffic, and not as much emitted 
as by factories like the other sites). In fact, a minimum of O3 
concentration is observed at around 8:00 and a maximum at 
around 19:00 when traffic is an important source of emissions 
and the vertical mixing is reduced. Influenced by transport of 
O3 from other regions and local NOX concentrations at night, the 
increase of the surface O3 concentration during the night time 
was larger than that during the daytime (Lei and Wang, 2014). 
Day of the week at Gazela and Mannouba (Table 3) was found to 
have little influence on ozone, (F=3.81, F=3.27. respectively). For 
Monday to Wednesday the ozone concentrations remain more 
or less unchanged (Figure 5). The rise in ozone concentrations 
is observed on Thursday and Friday but is followed by a drop 
as of Saturday. This continues on Sunday when the levels of 
ozone then join those on Monday. This result was also found by 
Pont and Fontan (2000) for five large French cities: This study 
does not show any significant variation in ozone concentrations 
between weekend and week except for the strongest values 
where a 40% reduction in precursors would lead to a 20% 
increase in ozone. The weekend effect would be reversed. 
Due to constant of road traffic during all the days of the week 
in Bab Aliwa, no effect of the variable DW was observed. NOX 
also has a non-linear association with O3 concentration, with 
edf=7.40 and edf=8.94 at Gazela and Bab Aliwa, respectively 
(Table 3). Increased NOX for these two sites was found to have 
a negative effect on O3. This finding is in agreement with other 
work since the chemical coupling of O3 and NOX make levels 
of O3 inextricably linked: Ozone production is dependent on 
the state of NOX, as NO2 and NO increase the production and 
dissociation of O3, respectively. Consequently, an increased 
NO/NO2 ratio reduces the ozone concentration (Melkonyan and 
Kuttler, 2012). Analysis the results of Mannouba station reveals 
a different NOX effect, when the NOX concentrations is over 200 
ppb, an increase of NOX concentrations leads to a lower decrease 
of O3 concentrations than at the other stations. An increase in 
O3 concentrations is seen above 280 ppb of NOX concentrations. 
This is presumably due to the location of this station, which 
includes small forests in the west and chemical plants in the 
south which promote VOCs emissions, then the increase of both 
O3 and NOX concentrations. A positive effect is detected for the 

and edf= 6.25 at Gazela, Mannouba and Bab Aliwa, respectively, 
(Table 3) with O3 concentrations. These results are very clear, 
higher solar radiation corresponds to higher concentrations 
of O3. This positive effect was found to be strongest after 
values surpassed 400 W.m–2 (Gazela and Bab Aliwa station). 
This relationship is consistent with the literature (Pearce et al., 
2011) as radiation plays a significant role in photochemistry 
of ozone production (Dawson, Adams and Pandis, 2007). The 
nature of response of O3 to the RH showed a 10% under low 
RH, and then exhibited a modest negative relationship where 
high levels resulted in a regional decrease of up to 10% for 
Gazela and Mannouba, and 5% for Bab Aliwa. So, the curves 
go downward for increasing humidity. Generally, the results 
obtained in this analysis of meteorological parameters were 
expected, i.e. that higher ozone concentrations were associated 
with high temperature, low relative humidity and prolonged 
sunshine (Lacour et al., 2006). In this coastal region of the 
northern Mediterranean, at night the relative humidity of the 
air is important (96% on average), combined with a decline in 
temperature (18°C on average). This conjunction will reduce O3 
concentrations.

The impact of time and traffic variables on O3

The upper left panel of Fig. 5 (a), (b) and (c) show how the 
concentrations of O3 varies as the hour of the day (HD) changes. 
Each curve corresponds to one of the measurements stations. 
Since this variable describes the diurnal variation of O3 in three 
locations, different curves are observed. The diurnal variation 
for Mannouba and Bab Aliwa sites shows a similar pattern 
with O3 concentrations reaching the peak at around 9:00 at the 
Mannouba site and at around 14:00 at the Bab Aliwa site. The 
increase in O3 concentrations during day time is due to the 
increase in solar radiation, which powers the photochemical 
reactions and consequently O3 concentration (Khoder, 2009).
The hour's period of negative effect is presumably due to high 
emissions of NOX caused by the intensity of traffic. Monks et al. 
(2015) highlighted the non-linearity of the O3–VOC–NOX system. 
VOC-limited refers to the fact that the production of O3 is limited 
by the input of VOC. Indeed, high NOX lead to lower O3 because 
O3 directly react with NO. The local production of ozone is less 
reduced because the NOX react with hydroxyl radical species 
formed in the atmosphere. When these hydroxyl radicals 
do not react with NOX (example: low emission of NOX), they 

Figure 6: Wind speed-direction frequencies for three Meteorological Stations (from left to the right) Gazela, Mannouba and Bab Aliwa. Each cell gives the 
total number of hours the wind was from that wind speed/direction (period of 2008-2009). The number of hours is coded as a color scale shown to the right. 
The dashed circular grey lines show the wind speed scale.
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variable Month on O3 concentration in warm months (spring and 
summer). In this period, there is an increase in temperatures 
and in the intensity of solar radiation. These meteorological 
conditions promote the mixing process of pollutants and O3 
formation. The ozone evolution is controlled not only by the 
influence of climate but also by the movement of pollutants. In 
fact, the same result was found in two regions: Spain and Italy 
which belong to the Mediterranean climate (Domínguez-López 
et al., 2014; Myriokefalitakis et al., 2016).

PM10
 
The impact of traffic and site location on PM10

Atmospheric PM10 are multicomponent aerosols. They originate 
from a variety of mobile, stationary and other natural sources, 
and are also formed in the atmosphere through chemical and 
physical processes. SO2 (mainly issued from industrial sector) 
and NOX (mainly issued from transport sector) are two precursors 
of secondary particulate matter (Harrison, Jones and Lawrence, 
2004). Their chemical and physical compositions vary widely. 
Many studies showed that the PM10 yearly, daily and hourly 
average concentration exceeds the Tunisian and the European 
standard limits at all the sampling stations (Bouchlaghem et 
al., 2009). A significant proportion of PM10 in Tunis has many 
sources like sea salt, mineral dust (Calzolai et al., 2015). In the 

Mediterranean Tunisian regions, the average seasonal evolution 
of PM10 is characterized by a winter maximum (November and 
December) (Bouchlaghem and Nsom, 2012). On the other 
hand, ozone concentration reaches its maximum values during 
summer period under the great photochemical activity and the 
effect of land-sea breeze. This difference has been highlighted in 
many studies and has been explained by the formation of PM10 as 
a complex mixture of many chemical species. Indeed, both the 
proximity to traffic sources and the different types of air mass 
scenarios make PM10 formation rather complex and associated 
with geographic, temporal and meteorological conditions. In 
Tunis, we found that the final model explained between 56% 
and 59% of the variance of log-transformed PM10. The highest 
value of R² was found at Bab Aliwa station and the aggregate 
impact of meteorological variables accounting for 29%. The 
estimated effects of independent variables of the model are 
shown in Fig. 7 (a), (b) and (c) for three stations in Tunis. The 
model shows how the association of PM10 concentrations varies 
with the levels of other variables. The association between NOX 
concentrations and PM10 concentrations was non-linear with 
edf=8.41,edf=8.48 and edf=8.12 at Gazela, Mannouba and Bab 
Aliwa respectively (Table 4) and is characterized by a general 
positive effect. It is reasonable and also found in Munir et al. 
(2013). Actually both NOX and PM10 are largely issued from road 
traffic. The curve for Bab Aliwa is the one going farthest to the 

Figure 7a: GAM estimated relationships for temporal, meteorological and traffic variables on PM10 concentration for Gazela. The x-axis represents 
increasing variations. The y-axis indicates the contribution of the smoother to the fitted values. The region between the dashed lines represents the 95% 
confidence interval.
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were observed for different sites. In the first station, Gazela, 
(center of Fig. 7 (a)), PM10 exhibit a first maximum concentration 
for wind direction around 170°. This can be explained by 
localized effect of the road. The secondary maximum is observed 
around 320°, clearly reflecting the effect the small factory 
situated north of the study area. As Bab Aliwa is based next to 
taxi and bus stations, this particular measuring site is subject 
to PM10 transport by southeast winds. For relative humidity, 
the results are very clear especially for Gazela and Mannouba 
sites, which find that high humidity was associated to low PM10 
concentration. So, the curves go downward for humidity better 
than 80%.This agrees with previous findings of Aldrin and Haff 
(2005) and Belušić, Herceg-Bulić and Bencetić Klaić (2015). 
Particles are then removed from contaminated surface air by 
wet deposition in precipitation added to dry deposition (Giri, 
Murthy and Adhikary, 2008). The estimate curves of temperature 
have the same slope for the various locations. Temperature was 
named as the most significant meteorological variable for Bab 
Aliwa (F=179.51, p-value <0.001) and Gazela (F=175.75, p-value 
<0.001) sites. Interpretation of the curves (lower left of Fig. 7 (a), 
(b) and (c)) can be expressed as follows: increasing temperature 
corresponds with increasing PM10 with a notable positive 
effect for temperature above 20°C. It's important to note that 
this finding agrees the result from PM10 studies (Bouchlaghem 

right meaning that it is the location where the highest number of 
vehicles was observed. This might be logically explained by the 
fact that in this location, we found the biggest bus station and 
the most popular cemetery in the country. SO2 and NOX are the 
two sources of secondary particulate matter and have mostly a 
positive effect on PM10 (Harrison, Jones and Lawrence, 2004). 
NOX concentration in Gazela station may be affected by Tunis 
airport located in the South east of the station. 

The influence of local meteorology on PM10

A non-linear association was observed between PM10 and wind 
speed. This variable has a positive effect on PM10 concentration 
from 4 m.s–1 to 8 m.s–1 at Gazela site. The curves for Mannouba 
and Bab Aliwa (Fig. 7 (b) and Fig. 7 (c)) reached the peak at 5 
m.s–1 then decrease. The same wind behavior was observed 
in three sites and was found in Belušić, Herceg-Bulić and 
Bencetić Klaić (2015): For large wind speeds, PM10 concentration 
decrease. This result was as expected as low wind and stable 
atmospheric conditions support higher concentrations of PM10. 
We note however that the decrease in PM10 levels at higher winds 
observed in the present study is in contrast to the result found in 
Makkah by Munir et al., (2013) and in Maribor by Lešnik, Mongus 
and Jesenko (2019). Wind direction had variable association 
with PM10: edf=6.88 at Bab Aliwa site (Table 4). Several curves 

Figure 7b: GAM estimated relationships for temporal, meteorological and traffic variables on PM10 concentration for Mannouba. The x-axis represents 
increasing variations. The y-axis indicates the contribution of the smoother to the fitted values. The region between the dashed lines represents the 95% 
confidence interval.
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Figure 7c: GAM estimated relationships for temporal, meteorological and traffic variables on PM10 concentration for Bab Aliwa. The x-axis represents 
increasing variations. The y-axis indicates the contribution of the smoother to the fitted values. The region between the dashed lines represents the 95% 
confidence interval.

Table 4: Model estimates of the effects of predictors on PM10 (all sites). edf =effective degrees of freedom of the smooth function terms (edf>1 indicate 
non-linear relationships); F value is an approximate F-test, SE=asymptotic standard error. *** Significant at the 0.000 level

Gazela Site Mannouba Site Bab Aliwa Site

Smooth terms edf F edf F edf F

s(Hour of the Day) 10.29 18.56*** 12.75 11.91*** 13.10 25.12***

s(Day of the Week) 4.68 2.44* 2.03 2.31 2.53 14.90***

s(Temperature) 9.64 175.75*** 10.98 31.93*** 4.09 179.51***

s(Wind Speed) 4.93 54.24*** 6.78 9.86*** 5.66 44.19***

s(Wind Direction) 6.93 77.03*** 6.56 22.76*** 6.88 20.84***

s(Relative Humidity) 6.44 31.08*** 3.84 40.03*** 7.66 7.21***

s(Month) 4.95 333.96*** 3.89 353.675*** 4.70 326.94***

s(NOX) 8.41 137.12*** 8.48 120.59*** 8.12 51.35***

s(Solar Radiation) 5.00 4.76*** 7.64 9.27*** 1.31 6.54**

Linear terms Estimate SE Estimate SE Estimate SE

Intercept 3.72 0.005 3.9 0.007 4.26 0.006

Explained Deviance 58.5% - 54.5% - 60.1% -

GCV score 0.27 - 0.36 - 0.18 -
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and both RMSE and Modified RMSE are less than measurement 
standard deviation. In addition, the index of agreement is 0.91 
and 0.77 for O3 and PM10, respectively, which corresponds to a 
good compromise between modeled and measured values. Fig. 
8 shows the relationship between the response and fitted values 
of O3 concentration at Gazela site. PM10 and other measuring site 
data are not shown as they are similar to those presented in this 
figure. This figure shows a positive linear relationship with a good 
deal of scattering. Residual plots are also used to characterize 
model efficacy. Fig. 9 clearly shows that the majority of residuals 
group around zero, as expected. The right-hand scatter plot 
which describes the relationship between residuals and fitted 
values suggest that variance is approximately constant as the 
mean increases. The left-hand plot, the residual histogram, 
exhibits a normal distribution for O3 at Gazela.

Conclusions
The objective of this work was to estimate the relationship 
between each of two pollution variables, namely concentrations 
of PM10 and tropospheric ozone O3 and NOX concentrations 
(taking as a proxy of traffic) as well as a set of meteorological 
variables for the urban area of Tunis. To achieve this objective, 

and Nsom, 2012). However, the positive relationship between 
temperature and PM10 is probably explained by the dust layer 
created over three sites especially during peak hours. 

The impact of time variables on PM10

The time variable hour of the day (HD) has a non-linear 
association with PM10 concentration. It was mainly used 
to account the effect of traffic. At the study stations, PM10 
concentration fall to a minimum between 7:00-8:00 and increase 
until 10:00, this corresponds to the morning peak traffic flow. 
In Bab Aliwa site, an evening peak traffic flow was noted at 
around 21:00. This second peak is probably due to people’s 
daily commuting between the capital and the suburbs. Curves 
of partial effect of the variable Month pointed out that in all 
measuring sites, PM10 is characterized by a winter maximum 
(December-January-February). This result is consistent with the 
data of Bouchlaghem and Nsom (2012), who found a winter PM10 
peak in five different stations (traffic, industrial and residential) 
in Tunisia. This is presumably due to the influence of low mixing 
in the atmosphere and the advection of Saharan plumes. We note 
the absence of the second peak observed during the summer 
in the previous works (Bouchlaghem and Nsom, 2012). The 
slight effect of Saharan dust can be explained by the temporal 
difference between the South and the North of Tunisia and the 
geographical locations of the monitoring stations far from the 
southwest origin of the Saharan event. Since the Mannouba 
station is placed close to agriculture fields, plowing during the 
autumn season (September-October) promotes increasing PM10 
concentrations.

Assessment of the model 
performance
Table 5: Statistical evaluation of the model for all pollutants at Gazela 
site for the entire study period

O3 (ppb) PM10 (μg.m–3)

IOA 0.91 0.77

RMSE 6.46 38.21

Modified RMSE 6.46 38.21

Measurement standard deviation 12.11 51.81

Model standard deviation 10.21 34.82

Measurement mean 67.89 56.50

Model mean 67.89 56.50

Various metrics (RMSE, modified RMSE, measurement standard 
deviation, model standard deviation and IOA (see Appendix A)) 
were used to assess the model performance. This statistical 
evaluation of the model on the original scale is presented in 

Table 5 is for all variables at Gazela site; other pollutants and 
measuring site data are not shown here as the results are similar 
to these. The first criterion for model evaluation was checked 

Figure 8: Plot of response against fitted values O3 concentrations at 
Gazela shows a positive linear relationship with a good deal of scatter

Figure 9: Residual plots for O3 (ppb) at Gazela for the period 2008–2009. 
Left: histogram of residuals, exhibiting a normal distribution Right; the 
relationship between residuals and fitted values. The majority of residuals 
group around zero, as expected. The x-axis range on the left-hand plot and 
the y-axis range on the right-hand plot are the same.
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006-9327-3
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case study', Atmospheric Environment, vol. 41, pp. 1494-1511.
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Yunesian, M. (2018) 'The relation between air pollution and 
respiratory deaths in Tehran, Iran- using generalized additive 
models', BMC Pulmonary Medicine, vol. 18, no. 1, p. 49. https://
doi.org/10.1186/s12890-018-0613-9

Directive, E. (2008) Directive 2008/50/EC of the European 
Parliament and of the Council, [Online], Available:   http://www.
era-comm.eu/Cooperation_national_judges_environmental_
law/module_4/02.pdf.

Domínguez-López, D., Adame, J.A., Hernández-Ceballos, M.A., 
Vaca, F., De la Morena, B.A. and Bolívar, J.P. (2014) 'Spatial and 
temporal variation of surface ozone, NO and NO2 at urban, 
suburban, rural and industrial sites in the southwest of the 

a statistical methodology is used based on the Generalized 
Additive Model (GAM). We have shown that the GAM can model 
the non-linear effect of the covariates. The model is additive 
on the log scale and the estimates were made on hourly data 
collected during two years at three different locations in Tunis. 
The model provides a reasonably good fit in terms of the 
explained variance. For all stations, O3 was easier to model (i.e. 
with more explanatory power and higher values of R²). The most 
significant important variables for O3 are NOX, wind direction 
and relative humidity. The impact of temperature and NOX is 
the strongest for PM10, followed by relative humidity and wind 
variables. The time variables (hour of the day, day of the week 
and month) appear to have a particular impact on air quality. 
In this study, the variable Month plays a significant role in the 
characterization of the study area as a function of time. In fact, 
we note the seasonal behavior of O3 and PM10 pollutants, with 
the highest concentrations in summer and winter, respectively.
These results allow a first and fast analysis of the air pollution 
due to O3 and PM10 in 3 locations in Tunis. It emphasizes the 
critical role of the local conditions on the air pollution, and 
especially the emissions and the weather as two main drivers 
of urban air pollution. Our findings suggest focusing on model 
improvement as future work. The addition of precipitation 
and traffic density (number of vehicles) variables could help to 
improve the model assessment. So, it is necessary to take into 
account all the sources of emissions exhaustively. In summary, 
the use of GAM in combination with partial residual plots offered 
an effective way to outline the relationships between temporal, 
meteorological and traffic variables and air pollution. Although 
our study did not detail chemical and physical aspects of air 
pollution, the results produced were reasonable and comparable 
to other studies. Furthermore, the results may be considered as 
relevant because research work on air pollution is insufficient in 
Tunisia. To this end, after quantifying the influence of all used 
variables, we plan to use GAM and GAMM (Hastie and Tibshirani, 
1990; Wood, 2006) models to forecast pollutant concentrations.
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Appendix A
edf: The effective degrees of freedom (edf) estimated from 
generalized additive models were used as a proxy for the degree 
of non-linearity in stressor-response relationships. An edf of 1 is 
equivalent to a linear relationship, an edf > 1 and ≤ 2 is a weakly 
non-linear relationship, and an edf > 2 indicates a highly non-
linear relationship.

GCV: generalized cross validation score can be taken as an 
estimate of the mean square prediction error based on a leave-
one-out cross validation estimation process. We estimate the 
model for all observations except i, then note the squared 

residual predicting observation i from the model. Then we do 
this for all observations. GCV criteria is numerically stable and 
efficient, but its computation become extensive especially when 
several smoothing parameters have to be estimated.

F-statistic: An F statistic is a value you get when you run an 
ANOVA test or a regression analysis to find out if the means 
between two populations are significantly different. In 
regression case, the F value is the result of a test where the null 
hypothesis is that all of the regression coefficients are equal to 
zero. In other words, the model has no predictive capability. 
Basically, the f-test compares your model with zero predictor 
variables (the intercept only model), and decides whether your 
added coefficients improved the model. 

Asymptotic Standard Error: Asymptotic standard error is 
an approximation to the standard error, based upon some 
mathematical simplification. In regression analysis, the term 
"standard error" refers either to the square root of the reduced 
chi-squared statistic, or the standard error for a particular 
regression coefficient (as used in, say, confidence intervals).

VIF: Variance Inflation Factor detects multicollinearity in 
regression analysis. For an independent variable Xi, it can be 
calculated by the formula below using R-squared values:

IOA: Index of Agreement is a standardized measure of the degree 
of model prediction error which varies between 0 and 1. IOA=1 
represents full agreement and IOA=0 indicates no agreement at 
all.

 
RMSE: The Root Mean Square Error is used to measure the 
difference between values predicted and values observed.
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