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Abstract

Ambient air pollution, particularly fine particulate mass (PM, ) and ozone (0,), is associated with premature human mortality and
other health effects, but monitoring is scarce to non-existent in large parts of Africa. Lower-cost real-time affordable multi-pollutant
(RAMP) monitors and a black carbon (BC) monitor were deployed in Kigali, Rwanda to fill the air quality data gap here. PM,, data were
corrected using data from a coincident, short-term campaign that used standard filter-based gravimetry, while gas data were verified
by collocation with reference carbon monoxide (CO) and O, monitors at the Rwanda Climate Observatory at Mt Mugogo, Rwanda. Over
March 2017-July 2018, the ambient average PM, , in Kigali was 52 ug/m?, significantly higher than World Health Organization (WHO)
Interim Target 1. Study average BC was 4 pg/m?, comparable to mid-sized urban areas in India and China and significantly higher
than BC in cities in developed countries. Spatial variability across various urban background sites in Kigali appears to be limited,
while PM_, at Mt Mugogo is moderately correlated with PM, . in Kigali. A sharp diurnal profile is observed in both PM_, and BC, with
the Absorption Angstrom Exponent (AAE) indicating that the morning peak is associated with rush-hour traffic-related air pollution
(TRAP) while the late evening peak can be attributed to both traffic and domestic biofuel use. PM_, in the dry seasons is about two
times PM_, during the following wet seasons while BC is 40-60% higher. Local sources contribute at least half the ambient PM_, during
wet seasons and one-fourth during dry seasons. Traffic restrictions on some Sundays appear to reduce PM,, and BC by 10-12 ug/m?
and 1 pg/m? respectively, but this needs further investigation. Dry season ozone in Kigali can exceed WHO guidelines. These lower-
cost monitors can play an important role in the continued monitoring essential to track the effectiveness of pollution-control policies
recently implemented in Rwanda.
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Introduction in 2016, ambient air pollution caused about three thousand
Ambient air pollution, especially fine particulate mass (PM, ) deaths in Rwanda (Brauer et al., 2012; WHO, 2018). However,
and ozone (0,), has been associated with premature human such estimates can be uncertain because exposure is inferred
mortality (Dockery et al., 1993; Jerrett et al., 2009; Laden et al., from satellite estimates. There has been no long-term ground-

2006). The World Health Organization (WHO) estimates that based monitoring in major cities like Kigali to validate estimated
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exposures. The situation is similar in many other sub-Saharan
African countries (Kalisa et al., 2019; Petkova et al., 2013). This
lack of monitoring due to resource limitations also hampers
scientific understanding of the sources contributing to air
pollution in these countries, which is essential to formulating
effective environmental management policies.

In Rwanda, biomass use accounts for 85% of energy
consumption, in the form of wood and charcoal (MININFRA,
2018). Wood is used in rural households and charcoal in urban
households. Petroleum in the form of transportation fuel,
liquified petroleum gas (LPG) for household cooking, and
electricity generation accounts for 13% of national energy
consumption (MININFRA, 2018). As of 2018, 77% of on-road
vehicles (excluding motorcycles) were manufactured before
2005 (Duhuze, 2018). As a result, air pollution in Kigali can
be significantly higher at roadside locations than at urban
background locations (Kalisa et al., 2018). Rwandan air quality
is also influenced by regional forest fires and seasonal weather
patterns (DeWitt et al., 2019). Rwanda’s electricity generation
(218 MW) is composed of 45% hydropower, diesel and heavy fuel
oil at 27%, methane (14%), peat (7%), and solar (6%). Diesel is
used to fuel peaking power stations and for backup generation
during power outages, which can be significant contributors to
ambient air pollution (Farquharson et al., 2018; Subramanian et
al., 2018). Some of these sources were identified by Henninger
(2013) using scanning electron microscopy of filter samples.

To more accurately quantify source contributions (a requirement
for effective air quality management), source apportionment is
often conducted with chemical mass balance (CMB) or receptor
modeling (e.g. positive matrix factorization) using organic
molecular markers (Shrivastava et al., 2007; Subramanian et al.,
2007) or aerosol mass spectrometry (AMS) (Zhang et al., 2011).
However, such studies require extensive sample collection
and offline analysis or long-term deployment of expensive
equipment, especially if sources can vary between seasons.
Pikridas et al. (2013) find that an observation-based method
(OBM), which uses the temporal pattern of pollution measured
with even a low-cost PM monitor, closely replicates the regional/
urban divide based on PM, . composition measurements inside
and upwind of Patras, Greece. Diamantopoulou et al. (2016) use
regional air quality modeling to simulate observations and find

the OBM analysis of the pseudo-observations comparable to the
model-computed regional/local divide.

Traffic restrictions such as car-free days, low-emission zones
(LEZ),and “odd/even” policieshave beenusedincitiesworldwide
to reduce air pollution. The evidence that such policies reduce
human exposure is mixed. No effect was observed on air
quality in Mestre-Venice (Masiol et al., 2014). London’s LEZ saw
decreases in nitrogen dioxide (NO,), but no significant changes
in PM, or PM (Mudway et al., 2019). Extensive traffic control
measures in Beijing during the 2008 Olympics reduced median
black carbon (BC) concentrations by as much as 50% (Wang et
al., 2009). The Rwandan government, to promote social welfare,
has recently implemented “car-free” Sundays, wherein major
roads are blocked off and people take part in group exercises on
car-free streets starting at 7 AM and ending either at 10 AM or at
noon. In 2017, the first Sunday of each month was designated
“car-free”, while in 2018 that was expanded to the first and third
Sundays of each month. Additionally, to curb the use of older
imported cars and harmonize duty structures with other East
African countries, in 2017 the Rwandan government increased
duties on cars, with the increase depending on the vehicle age
(RRA, 2017). The vehicle import rate dropped by 20% in the
first half of 2017, likely connected to the higher import duties
(Ngabonziza, 2017). Monitoring is required to quantify the
impact of these policies on air quality in Kigali.

Here, we show how low-cost sensors can improve scientific
understanding of air quality in resource-challenged countries.
The high time resolution of the RAMPs and BC monitor enables
an examination of diurnal patterns in each season, which is not
possible with integrated daily filter samples. We apply OBM to
the RAMP and BC datasets to get a preliminary estimate of the
regional and local contribution to Kigali air pollution in each
season. Measurements at multiple “urban background” sites
within Kigali allow us to examine intra-urban variability in air
pollution at non-roadside locations across Kigali, unlike the
urban background/roadside comparison by Kalisa et al. (2018).
Long-term monitoring with RAMP monitors allows examination
of the seasonal variability in ambient air pollution across
multiple dry and wet seasons. Furthermore, we evaluate the
impactofthe “car-free Sunday” policy on air pollution. The multi-
wavelength aerosol light absorption from the BC monitor helps

Table 1: Site descriptions and deployment periods for the measurements reported in this study.

Gacuriro Belle Vue RCO
Urban Urban Rural
-1.9219 -1.92563 -1.58625

30.09389 30.0924 29.56568

Instrument and deployment period

Site UR-CST CMU-Africa
Type Urban Urban
Latitude -1.96279 -1.94455
Longitude 30.06473 30.08961
RAMP #140
RAMP #145 March-June 2017
RAMP #152 July 17-July 18

BC-1054 July 17-April 18

March-June 2017 July-Dec 2017

July-Dec 2017
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us qualitatively identify contributions from biomass burning
and fossil fuel combustion. Comparison of urban and rural air
pollution provides insight into the impact of urbanization on air
quality. We end with recommendations on ways to implement
and improve such studies in Rwanda and other countries in the
Global South.
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Figure 1: Measurement sites in Rwanda (a) and specifically in Kigali (b)
where RAMPs were deployed for varying periods over 2017-2018. Maps
generated using Google Earth Pro.

Methodology

Sampling locations

Starting in March 2017, RAMP monitors were deployed in Kigali
at multiple locations (Figure 1) as summarized in Table 1. Kigali
terrain is composed of hills and valleys; the RAMPs in this study
were alllocated at hilltop sites. The Gacuriro and Belle Vue Estate
locations are both residential neighborhoods about 0.5 km
apart. The Carnegie Mellon University (CMU-Africa) site is about
2.5 km from Gacuriro, located in a commercial building complex
near a major road and six stories above ground (this was the
campus till late 2019). RAMP #152 and a Met-One 10-wavelength
BC monitor (BC-1054) were deployed in July 2017 on the roof
of the University of Rwanda’s five-story College of Science &
Technology building (UR-CST), where Kalisa et al. (2018) had
collected filter-based samples for their urban background
location over April-June 2017. This manuscript focuses on RAMP
data collected at UR-CST between July 2017-July 2018. The BC
data endsin April 2018 as the pump malfunctioned, which made

the instrument inoperable. The Gacuriro and Belle Vue sites are
about 5 km from the UR-CST site.

The RAMPs and gas sensor calibration

The RAMPs (Figure S1) were manufactured by Sensevere (now
owned by Sensit Technologies, Valparaiso, IN, USA) and cost
about US$ 3,000 each at the time of purchase (base unit without
an external PM sensor). The RAMP monitors and calibration
methodologies are described in previous work (Malings et al.,
2019, 2020; Subramanian et al., 2018; Zimmerman et al., 2018).
Briefly, the RAMP uses passive Alphasense (UK) electrochemical
sensors to measure CO, nitrogen dioxide (NO,), O,, and other
gases. The raw signals of the RAMP electrochemical gas sensors
(collected at 4 times per minute) are processed and averaged to
provide hourly ambient concentrations using generalized RAMP
(gRAMP) calibration models (Malings et al., 2019) developed in
Pittsburgh, Pennsylvania, USA. The gRAMP calibration models
are based on data from several RAMP monitors collocated
with reference gas monitors at the CMU campus in Pittsburgh
in 2017 and were shown to transfer better to other locations
in Pittsburgh than calibration models developed for individual
RAMPs. For CO, a quadratic regression (QR) gRAMP model is used
and for O,, a hybrid random forest/linear regression (“hybrid-
RF”) gRAMP model is used.

For local verification of CO and O,, RAMP #140 was collocated
with reference monitors for CO and CO, (Picarro G2401) and O,
(Teledyne T400) at the Rwanda Climate Observatory (RCO) on
the summit of Mt Mugogo (about 70 km from Kigali and 2590 m
above sea level, DeWitt et al. (2019)) over July-December 2017.
Due to instrument malfunctions, collocated measurements are
available for only 60 days of this six-month period. “Mugogo”
linear regression, QR, and hybrid-RF models are developed
using a subset (four weeks) of the collocation data; as shown
in Zimmerman et al. (2018), a four week period is sufficient to
develop calibration models for these electrochemical sensors.
The remaining collocation data (32 days) are set aside to
provide an independent or unseen data set for testing model
performance, a practice previously established by our group
in Zimmerman et al. (2018) and Malings et al. (2019). The
performance of the Mugogo and the Pittsburgh gRAMP models
is shown in Table 2. For CO, the gRAMP models showed slightly
worse correlation (Pearson r) and normalized mean absolute
error (CvMAE) than the Mugogo-based calibration models. For
0,, the gRAMP model is comparable to the better-performing
Mugogo QR and hybrid-RF models for r and CvMAE. RAMP-
specific Mugogo models show lower bias than the gRAMP
models. During the dry season, most of the data from the gRAMP
ozone model are within £30% of the reference monitor data at
RCO (Figure S2).

RAMP-specific models trained on one RAMP may not transfer as
well to other RAMPs as the gRAMP models (Malings et al., 2019).
As most of the Kigali O, data is from RAMPs not collocated at
Mugogo, the results presented here for ambient CO and O, are
based on the gRAMP models. As we do not have local verification
for NO, NO,, or SO,, these data are not presented here.
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Table 2: Summary statistics showing the performance of Pittsburgh-based gRAMP and RAMP-specific Mugogo calibration models, both tested on 32 days
of collocation at the Mugogo site. (These testing data were not used to build the Mugogo calibration models.)

co
Model .
Pearson r CvMAE Bias (ppb)
Pittsburgh gRAMP  0.82 0.19 15.7
Mugogo linear 0.87 0.16 -4.22
Mugogo QR 0.92 0.13 -1.83
Mugogo hybrid-RF = 0.90 0.16 -6.28

PM, . measurements

PM,, is measured using a Met-One neighborhood PM monitor
(NPM) paired with each RAMP. The NPM is a nephelometer with
a PM, , cyclone, an inlet heater to reduce humidity effects, and
a pump (flow rate 2 lpm). The PM,, data are processed using
methods developed based on collocations of over two dozen
NPMs with US Environmental Protection Agency (EPA) federal
equivalent method (FEM) beta attenuation monitors (BAM) at
an urban background location and a source-impacted location
in Pittsburgh (Malings et al., 2020). Either a physical (assumed
composition and hygroscopic growth with scaling to BAM
values) or an empirical approach (a quadratic regression with
raw data, temperature, and RH as the variables) is used to
convert as-reported NPM readings to “BAM-equivalent” PM,
mass concentration (reported at 35% RH and 22 °C); both
methods performed similarly in Pittsburgh. For Rwanda, we use
the Pittsburgh-based physical approach, then apply a further
localized correction to account for differences in aerosol size
distribution and composition between Kigali and Pittsburgh.
This localized correction of the “BAM-equivalent” PM,, data
is based on a comparison of the Gacuriro RAMP with 24-hour
integrated filter-based measurements in April 2017 collected
by Kalisa et al. (2018) at UR-CST about 5 km away (described
in the SI). Briefly, the “BAM-equivalent” PM,, data (corrected
for hygroscopic growth but not for aerosol differences between
Kigali and Pittsburgh) are strongly correlated (correlation
coefficient, r* = 0.77) with the filter-based PM, , for non-working
days (weekends, holidays, and car-free Sundays). However,
the comparison is more scattered for working days (weekdays
that are not holidays), which might indicate some intraurban
variability related to local activities such as traffic and industrial
emissions that may be more prominent on working days.
Overall, the working day “BAM-equivalent” RAMP PM,  values
are scaled up by 1.69 and the non-workday “BAM-equivalent”
RAMP PM, , data are scaled up by 1.39 (Figure S3).

BC mass and AAE measurements

The BC-1054 monitor (Met One Instruments, Inc.) deployed at
the UR-CST site measures light attenuation by a filter sample
at ten wavelengths between 370-950 nm. The as-reported BC
mass concentrations from this monitor were processed using
manufacturer-provided software (BC Load Correction 1.3.1),
which corrects for known filter-loading artifacts (Kirchstetter
and Novakov, 2007) using the algorithm developed by Virkkula
et al. (2007). However, no correction is made for potential light

Ozone

Pearson r CvMAE Bias (ppb)
0.57 0.24 6.02

0.16 0.24 1.10

0.63 0.20 0.30

0.56 0.22 0.32

absorption enhancement due to BC mixing state (Bond et al.,
2006), which means the BC mass concentrations reported here
may be overestimates. The Absorption Angstrom Exponent (AAE)
was calculated based on all ten wavelengths as the negative
slope of the relationship between the wavelength-dependent
attenuation and the wavelength in a log-log space (Moosmiiller
et al., 2011). For fresh combustion aerosol mainly composed of
black carbon and for particles small relative to the wavelength,
AAE is expected to be near unity. A compilation of studies
(Lack and Langridge, 2013) on fossil fuel emissions and urban
pollution with BC as the dominant absorber yielded an average
AAE of 1.1+0.3 (+ one standard deviation). The AAE for light-
absorbing organic compounds (brown carbon or BrC) associated
with biomass burning or humic-like substances is higher, with
estimates ranging from 2 to 6 (Kirchstetter et al., 2004; Sun et al.,
2007). Hence, higher values of AAE can be used to qualitatively
identify periods when non-BC aerosol components such as
light-absorbing dust or biomass burning containing BrC are
significant contributors to aerosol light absorption. We do not
attempt to quantify the contributions of fossil fuel and biomass
burning emissions here as there can be significant uncertainty
associated with such methods, as described in DeWitt et al.
(2019) and references therein.

Results and discussion

Intra-urban variability across Kigali

The UR-CST and Belle Vue Estate sites are about 5 km apart and
havethe largest paired data set across both dry (July-September)
and wet (October-November) seasons. An orthogonal distance
regression (ODR) fit of the paired hourly average PM,,
concentrations yields a slope 0.996+0.012 and effectively zero-
intercept. An ordinary least-squares fit (not forced through zero)
has a correlation (r?) of 0.61. The UR-CST and Belle Vue Estate
sites in Kigali are typical of urban background hilltop locations
(Figure 1), unlike the urban background/roadside comparison
where Kalisa et al. (2018) found significant differences. The
much smaller dataset of 337 paired hourly average PM,,
measurements at the Gacuriro and CMU-Africa sites yields a
slope of 0.967+0.03 (and an effectively zero intercept) with the
ODR fit. For the sake of simplicity (as the succeeding analysis
focuses on longer-term comparisons), the measurements at all
four sites are averaged into a single time series providing hourly
average PM_ , values from March 2017 to July 2018.
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A comparison of the O, measured at the matched residential and
university locations (Gacuriro and CMU-Africa; Belle Vue Estate
and UR-CST) shows that most paired values are in reasonable
agreement around the 1:1 line (Figure S4). An ODR fit of the
1-hour O, values measured at Gacuriro and CMU-Africa yields a
slope of 0.97+0.01 with negligible intercept. A comparison of the
UR-CST and Belle Vue estate O, measurements is complicated by
the significantly higher O, apparently measured at the UR-CST
site during the mid-July to mid-September period. The reason
for these differences is unclear, as temperature and relative
humidity (two variables likely to affect sensor performance)
measured at the two urban background locations are identical.
This issue of potentially high O, at UR-CST needs to be
investigated further; here, we take a conservative approach
and present the data set as a unified O, time-series (as we do
for PM,,), except the UR-CST measurements are excluded from
the current analysis. This restricts our analysis to the March-
November 2017 period (as there is only a week of data for
December 2017 from the Belle Vue estate site), which are the
two 2017 wet seasons (March-April-May or MAM and ON) and the
long dry season (June-July-August-September, JJAS).

Unlike O, and PM_,, differences in CO concentrations were
sometimes observed at the residential locations and the campus
sites in Kigali (Figure S5 of the SI). The highest concentrations
were observed usually at the campus sites, which might reflect
the greater traffic seen by these sites compared to residential
neighborhoods. However, the Gacuriro neighborhood did
experience two hours when CO exceeded 3 ppm. Overall, the
studyaverage CO concentrationsweresimilarat UR-CSTand Belle
Vue Estate at 0.446+0.322 ppm and 0.447+0.283 ppm (average
and standard deviation) respectively. CO was 0.504+0.499 ppm
at CMU-Africa and 0.404+0.320 ppm at Gacuriro. Concentrations
at rural Mugogo were even lower, at 0.225+0.097 ppm. However,
the measured CO concentrations at all locations were low and
far below US EPA standards (35 ppm for 1 hour). The WHO has
not set guideline values for CO. The higher standard deviations
at the urban sites compared to the rural site suggests that the
urban areas are more likely to see large spikes of CO.

Average monthly patterns of PM_, and
changes from 2017 to 2018

The unified Kigali time series for ambient PM_ , is summarized
as monthly average PM,, values, covering the period between
March2017 and July 2018 (Figure 2). The least data were collected
in June-July 2018 (100 and 64 hours) due to maintenance
issues. For all other months, between 298-744 hours of data are
available, averaging 634 hourly values per month (88% of a 30-
day period). The monthly average PM_, values range from 25 ug/
m? in May 2018 to 102 pg/m? in July 2017, all higher than the
WHO annual guideline of 10 pg/m3 most months also exceed
the WHO'’s first interim target (WHO IT 1) of 35 pug/m?. The study
average hourly PM, in Kigali is 52.4433.7 pg/m? the large
standard deviation suggests significant temporal variability that
will be explored further in later sections.

A comparison of the overlapping months shows a reduction of
almost 40% from 2017 to 2018 for March, April, and May, and
51% for July, while the June monthly average is practically
unchanged. However, June and July 2018 had the least data
coverage (as noted in the preceding paragraph), and fewer than
300 hours of data are available for June 2017. The March-May
comparisons are more robust with 1,683 and 1,942 hours of data
available in 2017 and 2018 respectively. April 2017 had a larger
fraction of non-working day data (43%) compared to the other
five months (30-34%), but similar reductions are seen when
the comparison is restricted to working days. An examination
of spatially-resolved reanalysis data (Siebert et al., 2019) for
rainfall (Rwanda Meteorology Agency, 2019) in Kigali (Figure S6)
shows that the UR-CST site during MAM 2018 experienced 38
rainy days (=5 mm/day), compared to 16 such rainy days in MAM
2017 at Gacuriro. Total rainfall was also substantially higher in
2018; 612 mm at UR-CST in MAM 2018 compared to just 180 mm
at Gacuriro in MAM 2017. The more frequent and heavier rainfall
in MAM 2018 could at least partly explain the significantly lower
PM, , in MAM 2018 compared to MAM 2017.

800
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Figure 2: Monthly average PM, , measured in Kigali over the course of this
study. Red bars indicate 2017 and blue bars indicate 2018 data. Error bars
are one standard deviation of the hourly measurements in that month.
Solid round markers show the number of hourly data points collected in
that month. Horizontal dashed lines indicate WHO annual guideline and
the WHO's first interim target (IT 1).

Working day/non-Working day and

seasonal differences in PM_

Figure 3 shows the distribution of hourly PM, , values measured
in Kigali across each of the four seasons: long wet season (MAM
2017 and MAM 2018), long dry season (JJAS 2017, henceforth
JJAS), short wet season (ON 2017, henceforth ON), and short dry
season (December 2017 and January-February 2018, henceforth
DJF.) Note that August and September are both considered “dry”
here. As Figure 2 showed, the monthly average PM,  value for
September is closer to that of August and June, and noticeably
higher than the average PM,, for October and November.
Additionally, September 2017 saw just 17 mm of rainfall,
compared to 104 mm of rainfall in October-November 2017
(Figure S6). This suggests that our classification is appropriate
for2017.

Figure 3 shows that ambient PM,, levels are higher in the dry
seasons than in the wet seasons. The hourly data collected with
the RAMPs on non-working days (nWD) in MAM 2018 and ON

CLEAN AIR JOURNAL
Volume 30, No 2, 2020

© 2020. The Author(s). Published under a
Creative Commons Attribution Licence.



Research article: Air pollution in Kigali, Rwanda

Page 6 of 15

shows a pear-shaped pattern, in contrast to the hourglass shape
of MAM 2017 nWD data; this is also seen in the working day (WD)
data. This suggests that there are fewer high-concentration
periods in the later wet season months. WD PM_, values are
higher than the nWD concentrations for all seasons by 19-
27%. However, as discussed earlier, WD PM, , values are scaled
upwards by 1.69 based on a comparison with the Kalisa et al.
(2018) wet season filter measurements while nWD PM,, values
are similarly upscaled by 1.39 - a difference of 22%. Thus, this
weekday-weekend effect could reflect Kalisa et al’s results for
April 2017 and needs to be investigated further for other months
of the year.

Table 3 summarizes the seasonal averages for working days.
The dry season average PM, . concentrations are about two
times the following wet season average; to be exact, JJAS/ON is
1.89 (95% confidence intervals 1.82-1.97) and DJF/MAM 2018 is
2.11 (95% Cl 2.03-2.19). This was also observed for non-working
days. Higher pollution in the dry season was also observed by
Kalisa et al. (2018) for PM, , in Kigali (though in campaigns of 2-4
weeks in each season) and by DeWitt et al. (2019) for BC at Mt
Mugogo, who attribute the higher dry season concentrations to
regional biomass burning. Kalisa et al. measured a median daily
PM,, of 126 ug/m?® (IQR 113-141 ug/m?) over June 15-30, 2017.
The median for our JJAS hourly measurements (which does
not include data for the June 15-28 period) was 66.2 ug/m? (IQR
45.4-95.4 ug/m?3). It seems that the June 15-28 period saw higher
pollution based on Kalisa et al.’s results, but other parts of the
same dry season were relatively cleaner based on our results,
showing the importance of long-term monitoring.

BC and AAE in Kigali

A total of 6,850 hours of BC data were collected at UR-CST
between July 6, 2017-April 24, 2018. The equivalent BC mass
concentration (as measured at 880 nm) hourly averages ranged
from 0.14 pg/mdto 49.6 pg/m?, with a study average of 4.04+2.86
pg/md. This value is significantly higher than the values
observed in urban areas of developed countries; e.g. in the early
2000s, urban ambient BC was 2 and 1 ug/m? respectively in the
states of New Jersey and California in the USA after decades of
reductions (Kirchstetter et al., 2017). The Kigali BC values are
comparable to mid-sized urban areas in China and India. In Hefei
(central China), annual average BC in 2012-2013 was 3.5 pg/m?
(zhangetal.,2015). In Pune (western India), the average BC over
2015-2016 was 3.9 pg/m? (Kolhe et al., 2018).

Table 3: Seasonal PM, , and BC statistics for this study in Kigali, Rwanda

WD PM_, average Average diurnal

Season +5D (ug/m’) (A) :;;jfj;;g;nﬁ;’(m
MAM 2017 49.9+31.7 21.3
JJAS 81.2+42.3 57.3
ON 42.9+21.0 22.8
DJF 66.0+31.6 50.7
MAM 2018 31.3+17.7 22.8
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Figure 3: Distribution of 1-hour average PM,  in each of the seasons over
the course of this study, grouped into (A) working day and (B) non-working
day measurements. March-May (MAM) and October-November (ON) are
the wet seasons; June-September (JJAS) and December-February (DJF)
are the dry seasons. The boxes show the interquartile range (IQR), i.e. the
25th and 75th percentiles of data; the notch in each box shows the median
value; and the whiskers mark the 2nd and 98th percentile of all data. The
violin plot shows the relative distribution of all data. Y-axis truncated at
200 pg/m? for visual clarity.

BC working day seasonal averages are summarized in Table 3.
Non-working day seasonal averages were 0.2-0.9 pg/m? lower.
The difference between the wet and dry seasons (dry season
BC 40-60% higher) in Kigali is lower than the factor-of-four
difference observed in similarly-tropical Pune (Kolhe et al,,
2018) or even at the rural Mt Mugogo site in Rwanda, where
DeWitt et al. (2019) found dry and wet season BC different by
almost a factor-of-three.

The study average AAE was 1.53, with most values between 0.9-
2.1 (Figure S7). As shown in Table 3, AAE was slightly lower in

Regional WD WD BC average

PM. , (%) C = B/A +SD (ug/m?) AAE
42.7 N/A N/A
70.6 5.20+3.56 1.47+0.15
53.2 3.20+2.24 1.57+0.16
76.8 4524296 1.520.16
73.0 3.30+2.40 1.59+0.19
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the dry seasons than in the wet seasons. Monthly average AAE
values ranged from 1.39-1.59, lower than the 1.5-1.9 range seen
at rural Mt Mugogo (DeWitt et al., 2019); this could indicate a
greater contribution from vehicular sources to ambient BC in
urban Kigali. Higher AAE (>1.8) values were almost always only
seen at BC concentrations below 5 pg/m? (Figure S7), while
higher BC concentrations showed AAE values around 1.4 or
less, which suggests that fossil fuel combustion is associated
with higher BC levels, but the background BC is dominated by
biomass burning.

Diurnal profiles of PM, . and BC

Figure 4 shows the average diurnal pattern of PM,, and BC for
the five seasons (four for BC) during the study period for which
we have a large number of measurements. Only working day
data are shown for visual clarity; a similar pattern is observed
for the non-working day measurements. As noted earlier, PM,
concentrations are substantially higher in the dry seasons than
in the wet seasons. A morning peak (likely related to traffic) is
observed between 8 AM-10 AM local time for all seasons except
MAM 2017. Concentrations then fall during the day (as the
boundary layer height increases) before rising back up in the
evening, likely a combination of evening emissions and lower
boundary layer heights. The MAM 2017 night-time highs (and
to some extent the JJAS night-time highs) remain at that level
until the morning traffic peak. For the other three seasons, the
morning traffic peak is higher than the night-time high values.
While the BC concentrations follow a similar diurnal profile, in
all seasons the maxima occur during the morning rush hours,
with concentrations lowest in the afternoon. In further contrast
to the PM, . dry/wet seasonal differences, the wet and dry
season BC concentrations are much closer to each other, though
dry season BC is still higher.

The highest PM, . concentrations are observed at night-time
during MAM 2017 and JJAS, with average PM_, around 80 ug/
m? between 8 PM-12 AM in the wet season (MAM 2017) and
around 100 ug/m?between 7 PM-11 PM in the dry season (JJAS).
In contrast, the highest average PM,  levels in other seasons
were observed during the morning rush hour - around 60 pg/m?
between 7 AM-10 AM in ON, around 90 pg/m? between 8 AM-10
AM in DJF, and around 45 pg/m? between 8 AM-10 AM in MAM
2018. The BC maxima all occur during the morning rush hour
between 7 AM-8 AM except for DJF, when levels are marginally
higher between 8 AM-9 AM than during the preceding hour.

The morning and evening peaks at similar times for PM, , and
BC indicate that these PM peaks are related to combustion
emissions. Figure 5 shows the diurnal variation in AAE during
the dry and wet seasons. In both cases, AAE is lower between 6
AM to 9 AM, when BC mass concentrations are higher; the lowest
median AAE is 1.4 between 7 AM-8 AM during the dry season.
However, the night-time peaks in PM,, and BC are associated
with higher AAE values, when hourly medians approach 1.6-
1.7. These differences suggest that while the morning BC and
PM, peaks are mostly associated with fossil-fuel vehicular
emissions, the night-time BC and PM,, peaks are additionally

influenced by domestic biofuel use. However, compared to
previous studies showing AAE values of ~1.1+0.3 for fossil fuel
BC-dominated pollution, the AAE values observed in Kigali are
often higher, suggesting that there is always some biomass
burning influence (associated with BrC).

Local and regional contributions to PM_ ,
and BC in Kigali

We use OBM (Diamantopoulou et al.,2016; Pikridas etal.,2013) to
estimate the regional and local contributions to ambient PM, ,in
Kigali. During the dry season, a higher regional background
is likely, as transported pollution may not be rained out. The
background can include regional biomass burning, dust, and
other upwind emissions as well as secondary PM_ .. The OBM
assumes that the minimum value of a seasonal diurnal profile
based on hourly measurements is the seasonal average regional
contribution. Then, the seasonal average local contribution is
the difference between the seasonal average ambient PM,, and
the seasonal average regional contribution. These estimates of
regional contribution assume the ambient concentrations at the
minima are entirely regional, but there may be local vehicular
and domestic biofuel emissions all day. Thus, the results are the
upper bound of the regional contribution and the lower bound
for the local contribution.
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Figure 4: Average diurnal patterns of (A) PM, . and (B) BC for each season
over the course of this study. Data restricted to working days, with similar
patterns observed for non-working days.
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Angstrom Absorption Exponent
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Figure 5: Diurnal variations in Angstrom Absorption Exponent (AAE) during
the dry and wet seasons suggest vehicular emissions and domestic biofuel
use contribute to ambient air pollution at different times of the day. The
boxes show the IQR (25th and 75th percentiles of data); the notch shows the
median; whiskers indicate the 9th and 91st percentiles. The corresponding
hourly boxes for the two types of seasons are offset for visual clarity.

Table 3 summarizes the seasonal statistics required to calculate
the average regional contribution to Kigali ambient PM_, for
each season. The minimum average PM, , values were observed
between 3-4 PM local time in all seasons. About half the ambient
PM,, in Kigali appears to be from regional sources in the wet
season, and the regional share rises to over 70% in the dry
seasons. Put another way, local sources contribute at least half
the observed PM,  during the 2017 wet seasons, and one-fourth
of ambient PM_, during the two dry seasons. The MAM 2018 wet
season appears to be an anomaly compared to the two other
wet seasons, but in terms of absolute PM, , concentrations, the
regional component is about the same in MAM 2018 as during
the 2017 wet seasons.

Following a similar procedure for BC, the regional contribution
on working days is 54-55% in the JJAS and DJF dry seasons, but
only 33% and 40% in the wet MAM 2018 and ON seasons. The
regional contribution to Kigali BC on non-working days is 7-8%
higher during JJAS, ON, and MAM 2018, which likely reflects
lower local emissions (including car-free Sundays). Overall, local
sources are larger contributors to ambient BC than to PM_ in
Kigali, ranging from about half in the dry season to two-thirds in
the wet seasons.

The impact of Sunday car-free hours on

urban background air pollution

An estimate of the impact of traffic-related air pollution (TRAP)
at non-roadside, urban background locations can be obtained
by comparing the RAMP and BC measurements on “car-free”
Sundays with the measurements on all other Sundays. In this
study period, PM,, (BC) measurements were made on 16 (11)
“car-free” Sundays that can be compared to data from 42 (30)
regular Sundays. However, in Rwanda, the car-free policy is
only in effect on Sunday mornings. The time-resolved data from
the RAMPs and BC monitor allows investigation of the benefits
of this policy for the specific periods when such policies are in
effect.
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Figure 6: Impact of limiting vehicular traffic on Sunday mornings in Kigali,
Rwanda. Panel (A) shows the average hourly PM, measured over 16 car-
free Sundays and 42 regular Sundays between April 2017-May 2018. Panel
(B) shows the same PM, , data as a scatter plot. Panel (C) shows a scatter
plot of the corresponding BC concentrations. Error bars are the standard
error.
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Figure 6 shows a comparison of the hourly average PM,,
between regular Sundays and car-free Sundays. The average
hourly PM, , concentration is lower in the morning period by an
average of 7 pg/md. In the afternoon and evening periods, the
diurnal patterns converge, indicating no significant difference in
pollution. The reduction in ambient PM, , is highest between 7
AM-9 AM, when PM, , on regular Sundays is highest; during these
hours the average PM, , is reduced by 10-12 ug/m? on car-free
Sundays or 20% of PM_, at the same time on regular Sundays.
BC concentrations are lower by about 1 ug/m? between 7 AM-10
AM on car-free Sundays, which is 18%-28% of the corresponding
concentrations on regular Sundays. However, there are also
similar differences for pre-7 AM “business-as-usual” times on
these Sundays, and so the observed reductions during the
morning car-free periods may not be directly attributable to the
car-free policy.

Ozone in Kigali and Mugogo

Only 942 hours of RAMP data are available from rural Mt Mugogo
for JJAS (dry season) and 881 hours for ON (wet season),
compared to the 2,400 and 1,464 hours of O, measurements in
Kigali for the same seasons. The maximum 8-hour average O,
value at rural Mugogo as measured by the RAMP using the gRAMP
calibration models were 34.4 ppb in dry JJAS and 33.0 ppb in
wet ON - similar, unlike the significantly higher O, observed in
urban Kigali during the dry season (JJAS) compared to the wet
season (MAM and ON). However, as discussed previously, the
gRAMP model (hybrid-RF) is positively biased at Mt Mugogo
during ON. The RCO reference monitor at this site shows a
seasonal difference, with maximum 8-hour O, concentrations of
40.6 ppb in JJAS and 30.6 ppb in ON (restricting the comparison
to common periods with the RAMP data.) This is consistent with
previous findings at this site (DeWitt et al., 2019). The RAMP-
specific Mugogo QR model, which is not seasonally biased,
shows maximum 8-hour O, concentrations of 33.9 ppb in JJAS
and 26.5 ppb in ON - below the reference values but capturing
the seasonality. A closer examination of the data (for common
periods) indicates that both the reference monitor and the
gRAMP model show the maximum 8-hour O, on the same day
of the dry season - September 2, 2017. The RAMP O, maximum
(34.4 ppb) occurs between 8 AM-4 PM, during which time the
reference monitor average was 40.3 ppb.

The average 1-hour O, concentrations in Kigali during March-
November 2017 were 16 ppb in the wet season (MAM 2017 and
ON) compared to 22 ppb in the dry season (JJAS). The maximum
0, values, 66 ppb (1-hour average) and 57 ppb (8-hour average),
were observed in the dry season. Previous measurements
over Kigali during aircraft takeoff and landings in the MOZAIC
campaign (Sauvage et al., 2005) over 1997-2003 also showed
significantly higher O, concentrations in the dry season in the
lower troposphere.

The current US EPA standard for 8-hour average O, is 65 ppb
and the WHO guideline value for 8-hour average O, is 50 ppb. O,
in Kigali is higher than the WHO guideline on 10 days over our
sampling period, of which six are in July. However, the highest

8-hour average occurs on August 30, 2017 between 10 AM-6 PM.
All 8-hour averages over 50 ppb occur during the daytime, for
8-hour periods beginning usually at 10 AM or 11 AM.

Conclusions and recommendations
for future work

We have presented the results of a long-term ground-based
monitoring campaign, the first of its kind in Kigali, Rwanda.
Lower-cost and relatively low maintenance RAMP monitors
were used for this study, with local verification and correction
of sensor calibrations by collocation with reference monitoring
during an overlapping campaign and at RCO.

0O, pollution in Kigali was usually below WHO guidelines, but the
50-ppb threshold could be exceeded in the dry season. Periods
of high ozone can be identified using low-cost sensors and a
general calibration, though local calibrations improve sensor
performance. The RAMP PM,, (before filter-based correction)
correlates strongly with filter-based PM,, on non-working days
when TRAP and other working-day contributions are lower, but
the RAMP PM,, values were still a significant underestimate.
These differences suggest that the size distribution of PM_ in
Kigali is quite different from that in Pittsburgh, with substantial
contributions from sub-300 nm particles (where low-cost optical
sensors are less sensitive). Future studies with lower-cost
monitors should include collocated filter-based measurements
or short-term intensive studies with aerosol sizing instruments
(e.g. a scanning mobility particle sizer, SMPS) to account for
such differences.

The Health Effects Institute (2019) (HEI) using data from
the Global Burden of Disease Study 2017 estimates that the
population-weighted annual average PM, in Rwanda was 43
pg/m?in 2017 (and the same for 2015-2016). Our study found
that the study average PM,  in Kigaliis 52+34 ug/m? at residential
or university locations, which can be considered as “urban
background” sites. Kalisa et al. (2018) show that pollution levels
can be significantly higher at the roadside in Kigali than at the
urban background locations where our measurements were
made. Air pollution in the low-lying valleys of Kigali can also
be higher (Henninger, 2013). RAMP measurements at Musanze
in late 2017 showed PM, , concentrations at this rural site were
moderately correlated (r* = 0.54) with Kigali PM,, and about
20% lower (not shown). These results suggest that the HEI
population-weighted average for Rwanda and other similar
satellite-based estimates could be underestimates that need to
be updated with ground-based monitoring, like the campaign
presented here.

Three recent studies - this paper, DeWitt et al. (2019), and Kalisa
etal. (2018) - have found that air pollution is significant in urban
and rural Rwanda, with considerable spatial variability due to
local conditions and sources. Hence, future studies with low-
cost monitors should include a variety of locations, such as
low-lying areas and roadside locations. Our results should be
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considered a lower estimate of the PM,, pollution that Kigali
residents are exposed to - which is concerning since the average
monthly concentrations in our 16+ month study were above the
WHO annual guideline and often over WHO’s first interim target.

Long-term monitoring over five seasons shows that differences
in PM,, between working days and non-working days are
smaller than the differences between the dry and wet seasons.
The average dry season PM,, levels are about two times the
succeeding wet season PM,, while the comparable seasonal
differences in BC are about 40-60%, indicating that transported
non-BC (e.g. dust) or low-BC (e.g. forest fires) pollution is
important in the dry season. Particulate pollution in Kigali has
a distinct diurnal profile, as the morning rush-hour usually
results in the maximum BC and PM, due to traffic pollution,
and minima occur in the afternoons. The higher AAE values
associated with the overnight BC and PM, , peaks suggest that
domestic biofuel use could also be a significant contributor to
overnight air pollution.

Overall, local sources could contribute half the PM,, and two-
thirds of the BC in the wet seasons in Kigali, which means
that local pollution control policies can significantly improve
Kigali’s air quality. In MAM 2018, heavier local rainfall may have
helped reduce ambient PM_, levels, though the January-July
2018 average PM, was 43.7 pg/m?, still above the WHO?’s first
interim target for annual average PM, .. New pollution control
policies are being implemented in Rwanda, including doubling
the number of car-free Sundays and increased duties on older
imported used cars. Continued monitoring is essential to
evaluate the impact of these policies.

Air pollution in Kigali is also influenced by substantial regional
contributions especially in the dry season; for example, the dry
season daily minimum PM_, was over 50 ug/m?, or over 70%
of average PM, .. About half the BC during the dry season also
appears to be regional, which suggests a significant biomass
burning influence in the regional/background contribution in
line with DeWitt etal. (2019). Hence, controls on regional biomass
burning are essential to reducing PM, , concentrations in Kigali.
Studies with more advanced instrumentation (such as an AMS)
would help better quantify the time-resolved contribution of
different local and regional sources to air pollution in Rwanda,
which in turn would help identify additional air quality
interventions.

This study was carried out in collaboration with the University
of Rwanda and RCO (co-authors on this paper) and with the
support of local residents who hosted the RAMPs. Towards the
end of this study, the Rwanda Environmental Management
Authority (REMA) acquired a reference monitoring station as
well as eight RAMPs to establish their own air quality monitoring
network. Low-cost monitors can significantly reduce the costs
of air quality monitoring for developing countries, but local
support and buy-in are keys to success.
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Appendix

Further investigation of the performance
of Pittsburgh gRAMP calibration models
and comparison with local “Mugogo”

models

We further explore the performance of the Pittsburgh hybrid
RF gRAMP model by comparing it with the Mugogo QR model,
which had the best overall performance for O, among the
Mugogo models. Figure S2 shows scatter plots of the RAMP-
reported concentrations (as 8-hour running averages) for the
two calibration approaches against the reference monitor,
separated into the dry (June-July-August-September, JJAS) and
wet (October-November, ON) seasons. However, the gRAMP
model is positively biased in ON, with most of the data above
the 1:1 line and clustered around the +30% line. In other words,
the gRAMP model overpredicts O, during the wet season. The
Mugogo model (panels B and D) performs better (expected since
it was trained on just under half of the underlying 15-minute
dataset), yielding O, concentrations clustered around the 1:1
line.
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RAMP PM, , data compared to filter-based

24-hour “reference” concentrations

For local calibration verification, we compare data from RAMP
#140 (deployed in Gacuriro) with the filter-based 24-hour PM_,
concentrations reported by Kalisa et al. (2018) for the UR-CST
site (about 5 km from Gacuriro) in April 2017 (wet season). Kalisa
et al. (2018) reported that in Kigali, workday PM,, was almost
50% higher than non-workday PM, . The RAMP and filter-based
PM, , are strongly correlated (Figure S3) on eight out of ten non-
workdays, with a correlation coefficient (r?) of 0.77 and a slope
of 1.39+0.06 (forced through the origin). On April 2 (Sunday),
there was construction activity on the CST site close to the filter
sampler, which could explain high PM levels that would not be
seen in Gacuriro. It is not clear what was different about April
15 (Saturday), when the filter-based PM,, was comparable to
or higher than the highest workday PM levels. In this paper, all
weekend RAMP PM,  values are scaled upwards by 1.39. The

SENSE\FEP\E
T sSeNad
e

comparison of working day data between filter-based PM,,
and the RAMP PM, is worse (r* of 0.08); this could reflect local
variations on specific days as the sites are 5 km apart. We use
the slope (1.69+0.18) of a fit forced through zero to scale up all
weekday RAMP PM,_ , data. Due to RAMP malfunctions, no RAMP
data were collected for the dry season days (June 15-29) when
Kalisa and co-workers collected filter-based measurements, so
the wet season scaling factors are used for all RAMP data.

Reference

Kalisa, E., Nagato, E.G., Bizuru, E., Lee, K.C., Tang, N., Pointing,
S.B., Hayakawa, K., Archer, S.D.J., Lacap-Bugler, D.C., 2018.
Characterization and Risk Assessment of Atmospheric PM,, and
PM , Particulate-Bound PAHs and NPAHs in Rwanda, Central-
East Africa. Environ. Sci. Technol. 52, 12179-12187. https://doi.
org/10.1021/acs.est.8b03219

Figure S1: The RAMPs and the external Met-One NPMs in the lab (left) and a unit deployed in Kigali, Rwanda (right).
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Figure S2: Comparison of RAMP calibration models for ozone with reference monitor data at the Mt Mugogo Climate Observatory. The “Pittsburgh gRAMP”
model (A,C) is developed on collocations in Pittsburgh, PA, USA. The “Mugogo QR” model (B,D) is based on a collocation with the reference monitor at
Mugogo; the data shown here includes both training (28 days) and testing (32 days) data. JJAS (A,B) is the dry season and ON (C,D) is the wet season.
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Figure $3: Developing scaling factors for optical RAMP PM, ., measurements
by comparison with filter-based 24-hour PM, . measurements (reported by
Kalisa et al. 2018). Solid blue circles indicate workdays. Solid red circles
show eight non-workdays that are used to develop the non-workday
scaling factor, which excludes two non-workdays that experienced
significantly higher filter-based PM, , than even workdays (shown by the
open circles.) The filter measurements were conducted at the University of
Rwanda campus, while these RAMP measurements were conducted about
5 km away in the Gacuriro neighborhood.
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Figure S4: Ozone measurements in Kigali over the course of this study. (Left) Scatter plot shows most of the paired measurements across the city agree with
each other. (Right) However, there are periods when the UR-CST O, is much higher than at Belle Vue estate.
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Figure S6: Spatially-resolved rainfall data using the ENACTS-Rwanda
methodology, from the Rwanda Meteorological Agency. MAM 2018 saw
significantly more rainfall and more rainy days than other periods.
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