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Background: Much of the Grassland Biome in South Africa is prone to shrub 
encroachment, leading to loss of ecosystem services, habitat heterogeneity and 
species diversity. Burrowing mammals are an important component of grasslands 
as these animals create microhabitats for other taxa, including smaller mammal 
species, birds, reptiles and invertebrates. However, our understanding of how 
shrub encroachment affects burrowing mammals is poor.

Objectives: Here we assessed the relationship between burrow abundance and 
bankrupt bush, Seriphium plumosum, encroachment as well as burrowing mam-
mal diversity in bankrupt bush encroached and non-encroached grasslands.

Method: Shrub density, medium and large mammal burrow abundance and den-
sity were measured in 24 encroached and 24 non-encroached areas randomly 
selected in the Telperion Nature Reserve, Mpumalanga, South Africa. In addition, 
burrowing mammal diversity was assessed using camera traps in a subset of six 
encroached and six non-encroached areas.

Results: Our results show that the abundance and density of medium and large 
burrows were significantly lower in encroached areas than in non-encroached 
areas (p = 0.011 and p < 0.001, respectively). The relationship between burrow 
abundance and bankrupt bush encroachment was negative (rho = -0.456, p = 
0.001). However, burrowing mammal diversity had no significant difference be-
tween encroached and non-encroached areas.

Conclusion: Our data, therefore, suggest that with increasing bankrupt bush en-
croachment and a decreased abundance in burrowing mammal ecosystem ser-
vices, a negative effect will occur on burrowing mammal communities, leading 
to the reduction in species-specific habitat heterogeneity and possibly animal 
biodiversity.  

Keywords: burrowing mammals, burrow density, Seriphium plumosum, shrub 
density, Telperion Nature Reserve, Grassland Biome.

Introduction
The Grassland Biome is the second largest biome in South Africa, encompass-
ing 28% of the land area, and supports a number of ecosystems inhabited by 
diverse vertebrate and invertebrate communities (Mucina & Rutherford 2006; 
Carbutt et al. 2011). For example, the small, medium and large burrowing 
mammals that live in grasslands are ecosystem engineers that play a vital role 
in sustaining the open habitats characterising grassland areas (Davidson et al. 
2012; Jayadevan et al. 2018). Grasslands are of agricultural, ecological and 
conservation management importance; however, due to an increase in CO2, 
inadequate fire regimes and poor management, grasslands are threatened 
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by an increase in shrub or bush encroachment (Ward 
2005; Buitenwerf et al. 2011; Carbutt et al. 2011; So-
to-Shoender et al. 2018; Graham et al. 2020). Shrub or 
bush encroachment is a phenomenon observed through 
an increase in woody biomass and cover, which in turn 
leads to a detriment in herbaceous layers (O’Connor et 
al. 2014). Shrub encroachment can thus lead to changes 
in ecological succession and ultimately influence biodi-
versity (O’Connor et al. 2014). Bankrupt bush, Seriphi-
um plumosum, is a native, encroaching woody plant 
originating from the fynbos region in the Western Cape 
of South Africa and belonging to the Asteraceae fam-
ily (Jordaan 2009; Snyman 2012; Van Zyl & Avenant 
2018; Graham et al. 2020). The ability of S. plumosum, 
to encroach grasslands has interested researchers since 
the 1930s, as it reduces grazing potential of rangelands 
(Roux 1969; Avenant 2015). Nevertheless, little work 
has been done to examine the effect of shrub encroach-
ment generally, or S. plumosum encroachment specifi-
cally, on mammals and mammalian ecosystem engineers 
(Avenant 2015; Rodgers et al. 2017; Jayadevan et al. 
2018). This is despite S. plumosum being regarded as an 
aggressive encroacher of the Grassland Biome of South 
Africa (Mucina & Rutherford 2006). The encroaching 
aetiology of S. plumosum is well documented (Jordaan 
2009; Buitenwerf et al. 2011; Snyman 2012; Van Zyl & 
Avenant 2018), with previous research indicating that 
S. plumosum follows a pioneer plant growth strategy 
by mainly encroaching grasslands after soil disturbance 
through overgrazing and trampling (Roux 1969; Jordaan 
2009; Snyman 2012; Avenant 2015). With a root sys-
tem ensconcing 1 m2 of the soil surrounding the bush, 
and reaching depths of 1.8 m (Jordaan 2009; Snyman 
2012; Van Zyl & Avenant 2018), this shrub allows for 
tight soil binding, which may limit the burrowing ser-
vices of ecosystem engineers in densely encroached ar-
eas (Vahrmeijer 2017; Uys 2018). 

Ecosystem services provided directly or indirectly by eco-
system engineers include soil development, increased 
soil fertility, reduction in soil erosion, an increase in nu-
trient cycling and even food provision (Laundré & Reyn-
olds 1993; Gabet et al. 2003; James & Eldridge 2007; 
Martin 2017; Rodgers et al. 2017). Landscape develop-
ment by bioturbation (the movement or reworking of soil 
by burrowing organisms) creates and transforms habitats 
by physically altering the species and community spe-
cific distribution of resources within ecosystems (Gabet 
et al. 2003; Martin 2017). However, soil characteristics 
and the availability of suitable food sources influence 
the abundance, ecology and behaviour of ecosystem 
engineers such as semi-fossorial mammals. Medium 
(15–30 cm) and large (34–100 cm) sized burrows creat-
ed by, for example, yellow mongoose, Cynictis penicil-
lata, suricates, Suricata suricatta, aardvark, Orycteropus 
afer, and Cape porcupine, Hystrix africaeaustralis, create 
microhabitats within their burrows (Ewacha et al. 2016; 
Rodgers et al. 2017) providing refuge to many different 
species such as invertebrates, rodents, birds and reptiles 

(Davidson et al. 2012; Rodgers et al. 2017). However, it 
is speculated that the abundance of burrows and associ-
ated microhabitats decrease as shrub growth intensifies 
and soils become less productive in open grassland hab-
itats (James & Eldridge 2007; Rodgers et al. 2017). With 
a decrease in burrow abundance, it is expected that 
burrowing mammal diversity would decrease as shrub 
encroachment leads to a reduction in available resourc-
es such as productive soils and food sources (Iribarren 
& Kotler 2012; Kgosikoma et al. 2012; Jayadevan et al. 
2018).

The thickening of S. plumosum in grassland habitat and 
its relationship with elusive burrowing mammals are 
of interest to us. Here we investigate if there is a cor-
relation between burrow abundance and S. plumosum 
density and if there is a difference between burrowing 
mammal diversity in encroached and non-encroached 
areas. We predict that a negative correlation will exist 
between burrow abundance and S. plumosum density 
and that encroached areas will have lower burrowing 
mammal diversity than non-encroached areas.

Study area
The Telperion Nature Reserve (25˚38'S, 29˚01'E), mea-
suring some 7 350 ha, is located northeast of the town 
Bronkhorstspruit on the border of the Gauteng and 
Mpumalanga provinces of South Africa (Figure 1). The 
vegetation on the Telperion Nature Reserve is described 
as Mesic Highveld Grassland, comprising grass plains, 
wooded areas and vegetated mountainous or rocky ar-
eas (Figure 1; Mucina & Rutherford 2006). The area 
is characterised by having a mean annual precipitation 
of 726 mm and a mean annual temperature of 14.7°C 
(Mucina & Rutherford 2006). Telperion Nature Reserve 
contains a variety of large mammal species, including 
giraffe, Giraffa camelopardalis, eland, Tragelaphus oryx, 
plains zebra, Equus quagga, waterbuck, Kobus ellip-
siprymnus and blue wildebeest, Connochaetes taurinus, 
and carnivores such as leopard, Panthera pardus, and 
brown hyaena, Parahyaena brunnea. Smaller mammal 
species on the reserve include Cape porcupine, yellow 
mongoose, South African springhare, Pedetes capensis, 
and black-backed jackal, Canis mesomelas (Fagir et al. 
2015). 

Methods
Shrub density and burrow 
abundance measurements

Sampling took place from April 2018 to July 2018. We 
measured S. plumosum abundance in the northern and 
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southern grasslands of the Telperion Nature Reserve. 
Here we classified the two grassland areas into two 
categories based on the estimated cover of S. plumo-
sum. In doing so, we used an adapted Domin-Krajina 
(DK) cover abundance scale to select ground cover 
classes of the area occupied by S. plumosum in each 
area (Mueller-Dombois & Ellenberg 1974; Herrick et 
al. 2005). We demarcated 24 sampling plots, 12 en-
croached and 12 non-encroached plots, respectively, 
each measuring 25 × 25 m (625 m2). All S. plumosum 
individuals in the plot were visualised into the centre 
of the plot and compared to the cover class (DK Class) 
(Figure 2). If the ground cover of S. plumosum was 10% 
or less, the area had little to no encroachment. The 
area was classified as densely encroached when the 
ground cover was estimated to exceed 10% (Westfall & 
Panagos 1984; Herrick 2005). We randomly allocated 
the centre position of each sampling plot within the 
encroached and non-encroached areas. All sampling 

plots were placed at least 50 m from the nearest road. 
To estimate the abundance of S. plumosum, we divid-
ed each quadrat into 25 blocks, 5 × 5 m in size, and 
counted the total number of adult shrubs in each sam-
ple plot. These data were expressed as the S. plumo-
sum density (shrubs/m2) per sampling plot. We did not 
count any of the shrubs with less than 50% of their 
base within the quadrat (Elzinga et al. 1998; Van Zyl & 
Avenant 2018). Following the work by Avenant (2015), 
we considered adult shrubs to have a stem height taller 
than 45 cm.

We counted the medium (15–30 cm) and large (34–
100 cm) mammalian burrows in each sampling plot and 
calculated burrow abundance and density. We mea-
sured the width and length of each burrow entrance 
with a tape measure (model number 30-657, Stanley 
Black and Decker, USA) to identify medium and large 
mammalian burrows (Rodgers et al. 2017).

Figure 1. The Telperion Nature Re-
serve is situated on the border of 
the Gauteng and Mpumalanga 
provinces of South Africa. The 
enlarged area depicts the extent 
of the Telperion Nature Reserve, 
including the distribution of the 
vegetation types defined by Mu-
cina and Rutherford (2006).

Figure 2. Adapted Domin-Krajina 
cover class (DK class) method 
indicating the major cover per-
centage for a 25 × 25 m plot. 
No encroachment is indicated by 
less than 10% cover (cover class 
of 1 to 3). Class 1 indicates a 0% 
cover; Class 2 indicates a cover of 
more than 0% but less than 10%; 
Class 3 indicates a cover of 10%. 
Encroached plots are represented 
by classes 4 to 9, respectively, ac-
cording to the percentage cover 
in the 25 × 25 m plot (Muel-
ler-Dombois & Ellenberg 1974; 
Herrick et al. 2005).
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Mammalian diversity

We placed one camera trap (Browning Strike Force HD 
PRO, model BTC – 5HDP, Browning trail cameras, Al-
abama, USA) at the edge of each of the six plots in the 
encroached and non-encroached areas. Cameras were 
deployed from April 2018 to July 2018. Each camera 
trap was fixed onto a metal fence pole 50 cm above 
the surface of the ground and left to capture animal 
activity within the selected plot. Cameras were set to 
burst mode, with three pictures taken over 10 seconds 
when triggered. Pictures within 30 minutes of the same 
animals captured were not used in data analyses. The 
locations of all camera traps were recorded with a 
handheld GPS (Garmin eTrex® 10, Garmin Consumer 
Electronics, USA). We classified burrowing mammals 
into two categories based on their length and mass. 
We considered mammals with a reported total length 
≤ 90 cm and mass ≤ 14 kg as medium sized, while 
those with a total length ≥ 100 cm and mass ≥ 15 kg 
were considered large burrowing mammals. We used 
Skinner and Chimimba (2005) as our reference work 
on burrowing mammal size.

Statistical analyses

Data were statistically analysed in R (version 3.4.0) and 
RStudio (version 1.0.143, RStudio: Integrated develop-
ment environment for R, Boston, USA). We used paired 
t-tests to determine if the mean shrub density and bur-
row abundance differed between the encroached and 
non-encroached areas. We used Spearman’s rank cor-
relation to investigate the relationship between burrow 
abundance and S. plumosum encroachment, and the 
Shannon Wiener Index (H where H=∑[(pi)×ln(pi)]) 
using the VEGAN package (version 2.4-3, RStudio (ver-
sion 1.0.143) (Oksanen et al. 2013) to assess species di-
versity in the two areas. We also conducted an Analysis 
of Similarity (ANOSIM) (Jaccard) of the two areas using 

the VEGAN package (version 2.4-3, RStudio (version 
1.0.143) (Oksanen et al. 2013). 

Results
Shrub and burrow density

In the encroached and non-encroached areas, the 
S. plumosum shrub density ranged from 0.16 to 1.74 
shrubs/m2 and 0–0.04 shrubs/m2, respectively (Figure 3). 
The recorded densities are equivalent to up to 17 400 
S. plumosum shrubs in the encroached areas, while 
the non-encroached areas had up to 400 S. plumosum 
shrubs. The mean shrub density in the encroached ar-
eas (0.5 ± 0.4 shrubs/m2) was significantly higher than 
in the non-encroached areas (0.004 ± 0.01 shrubs/m2; 
t = 6.59, p < 0.001).

We found three burrows (two medium and one large-
sized) spread across two (8.3%) of the 24 encroached 
sampling sites. We found 57 burrows distributed across 
15 (62.5%) of the non-encroached sampling areas. Of 
these, 22 burrows were medium-sized and 35 were 
large-sized. Overall, the mean burrow density in the 
encroached areas (0.0002 ± 0.0007/m2) was signifi-
cantly lower than in the non-encroached areas (0.004 
± 0.005/m2; t = -3.48, p = 0.002).

The mean abundance of medium sized burrows was 
significantly lower in the encroached areas (0.083 ± 
0.408 per 625 m2) than in non-encroached areas (0.92 
± 2.02 per 625 m2; t = -2.03, p = 0.05). Similarly, 
the mean abundance of large burrows was lower in the 
encroached (0.041 ± 0.204 per 625 m2) than in the 
non-encroached areas (1.46 ± 1.95 per 625 m2; t = 
-3.47, p = 0.002). There was a significant moderate 
negative correlation between total burrow abundance 
and shrub density (Figure 4) (Spearman rank correlation 
test: rho = -0.456, p = 0.001).

Diversity of burrowing mammals

The total number of camera trap days equalled 64 in 
the encroached and 72 in the non-encroached areas. 
We obtained images of burrowing mammals from sev-
en of 12 camera traps, i.e., from three of six camer-
as deployed in the encroached areas and from four of 
six cameras deployed in the non-encroached areas. 
The camera traps captured seven burrowing species, 
including three species of medium sized burrowing 
mammal and four species of large burrowing mammals 
(Table 1). The common warthog, Phacochoerus afri-
canus, was the most sighted and the only burrowing 
species recorded in both the encroached and non-en-
croached areas. Burrowing mammal species richness 
was even for both areas, as four species were captured 

Figure 3. The observed S. plumosum density (shrub/m2) recorded 
in the encroached and non-encroached areas of the Telperion 
Nature Reserve.
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in non-encroached areas and four in encroached areas. 
The mean Shannon Wiener diversity index (H) for en-
croached and non-encroached areas was 0.45 ± 0.3 
and 0.12 ± 0.22, respectively. Our ANOSIM indicated 
that the diversity of burrowing mammals had no signif-
icant difference (R = -0.231, p = 0.933) between the 
encroached and the non-encroached areas.

Discussion
Burrow and shrub relationship

Although absent in some of our sample plots, we found 
a mean S. plumosum density ranging from 40 plants 
per hectare in the non-encroached areas to 5 000 

plants per hectare in the encroached areas. Our results 
on S. plumosum density align with those of Graham 
et al. (2020), who reported densities of up to 9 500 
S. plumosum individuals per hectare on the Telperion 
Nature Reserve. Both medium and large mammalian 
burrows occurred at lower densities in the encroached 
than non-encroached areas, and we found a negative 
relationship between burrow abundance and shrub 
density. Despite our limited sampling across the Telpe-
rion Nature Reserve, these results support our first pre-
diction. Moreover, our results correspond with earlier 
studies that reported a higher prevalence of medium 
and large sized burrows in open pastures and grasslands 
compared to woody, bushy areas (Butynski & Mattingly 
1979; Melton & Daniels 1986; Augustine et al. 1995; 
Whittington-Jones 2006; Whittington-Jones et al. 2011; 
Rodgers et al. 2017). Many burrowing mammals prefer 
open grasslands to burrow in rather than dense shrub-
lands, presumably because open grasslands increase 
predator detection and tend to have higher food and 
spatial availability (Melton & Daniels 1986; Davidson 
et al. 2012; Jayadevan et al. 2018).

Our camera trapping results revealed no significant 
similarity in burrowing mammal diversity between the 
encroached and non-encroached areas. Therefore, we 
cannot accept our second prediction that an increase 
in S. plumosum density would result in decreased bur-
rowing mammal diversity. Nevertheless, Rodgers et al. 
(2017) recently reported higher burrowing mammal di-
versity on a non-encroached Namibian game reserve 
compared to an encroached livestock farm. While shrub 
and bush encroachment does not necessarily lead to 
the loss of habitat heterogeneity, and the encroachment 
effects are likely species, scale and environment specif-
ic (Eldridge & Soliveres 2014), some burrowing species 
have been affected negatively by bush encroachment. 
For example, shrub thickening in semi-arid parts of 

Figure 4. The negative relationship between burrow abundance 
(number of burrows per 625 m2 sampling plot; grey dots) and 
S. plumosum density (shrubs/m2) depicted for all sampling 
plots in both encroached and non-encroached areas in the 
Telperion Nature Reserve.

Table 1. Burrowing species captured on the camera traps, reflecting where these species were sighted, the number of sightings for each 
species, the relative survey effort, and the time of the burrowing animal’s activity

Species per sample area Size* Number of sightings Relative survey effort Time of activity

Encroached areas 64 days

Orycteropus afer (aardvark) Large 2 Night

Proteles cristata (aardwolf) Large 1 Night

Mellivora capensis (honey badger) Large 1 Night

Phacochoerus africanus (warthog) Large 29 Day/Night

Non-encroached areas 72 days 

Hystrix africaeaustralis (Cape porcupine) Medium 5 Night

Suricata suricatta (meerkat) Medium 10 Day

Cynictis penicillata (yellow mongoose) Medium 4 Day

Phacochoerus africanus (warthog) Large 37 Day/Night

*Based on Skinner and Chimimba (2005)
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North America has contributed to population declines 
in prairie dogs Cynomys spp. (Weltzin et al. 1997); 
shrub thickening in semi-arid regions of Australia has 
had similar effects on burrowing bettongs, Bettongia le-
sueur (Noble et al. 2007). In our study, predators and 
burrowing mammals were only captured together on 
one camera in the non-encroached area. In the en-
croached areas, no camera trap yielded a picture of a 
predator and a burrowing mammal in the same plot. 
Even though we did not calculate for predators in the 
vicinity of the burrowing mammal diversity, it was not-
ed that black-backed jackals were sighted more in the 
non-encroached areas than in the encroached areas. 
Predators play an important role in the distribution of 
prey species such as ecosystem engineers, and we must 
investigate how predators can influence the distribution 
of ecosystem engineers in the Telperion Nature Reserve 
(Melton & Daniels 1986; Davidson et al. 2012; Jaya-
devan et al. 2018).

On the Telperion Nature Reserve, where S. plumosum is 
spread across an estimated 30% of the reserve (Brown, 
unpublished data), it was interesting to note that the 
less common burrowing species, such as aardvark and 
aardwolf (Table 1), which prefer feeding in open areas 
with termite mounds (Melton & Daniels 1986; Williams 
& Richardson 1997; Whittington-Jones 2006; Stuart 
2015; Rodgers et al. 2017), were only recorded in our 
encroached sampling areas during the current study. 
Although we have not consistently quantified termite 
mound availability as part of this study, termite mounds 
were prevalent in the encroached areas that we sam-
pled as part of this study. The presence of aardvark and 
aardwolf in only the encroached areas may, therefore, 
be an artefact of our sample site selection. Moreover, 
the extent to which the S. plumosum encroachment, 
which has not been quantified across the Telperion Na-
ture Reserve, has affected these less-common species is 
not well-understood at present. However, elsewhere in 
South Africa, simulations have predicted likely negative 
effects of continued encroachment on local mammal 
diversity and abundance (Soto-Shoender et al. 2018). 
These predicted effects are in line with earlier work 
reporting that shrub thickening negatively influenced 
the abundance of medium sized burrowing carnivores 
(Blaum et al. 2007). It is not inconceivable, therefore, 
that increasing shrub cover and a decreased abun-
dance in burrowing mammal populations could lead 
to a decrease in the ecosystem services that burrowing 
mammals provide (Carbutt et al. 2011; Davidson et al. 
2012).

These services include changes in soil structure and nu-
trients through the creation of burrow mounds, burrow 
networks, and the presence of latrine sites close to bur-
row entrances (Melton & Daniels 1986; Davidson et al. 
2012; Martin 2017; Rodgers et al. 2017), which could 
allow for improved water infiltration, seed germination, 

increased nutrients and landscape heterogeneity to oc-
cur (James 2009; Whittington-Jones et al. 2011; David-
son et al. 2012; Haussmann 2017; Louw et al. 2017). 
Burrowing mammals are vital in creating microhabitats 
(Blanco-Perez et al. in prep.) and thermal refuges for a 
range of other vertebrates (Weyer et al. 2020). There-
fore, the disappearance of keystone species, including 
the burrowing ecosystem engineers, may result in the 
structural change of grassland habitats and can lead 
to cascading effects on burrowing mammal ecosystem 
services, other taxa and possibly biodiversity (Davidson 
& Lightfoot 2008; Martinez-Estevez et al. 2013; Meys-
man et al. 2006). In grassland areas it may, therefore, 
be beneficial to monitor burrowing mammal density 
and burrow occupancy to highlight potential changes in 
the ecosystem services provided. Furthermore, this will 
help elucidate how grassland structural changes occur 
and may facilitate the development of new manage-
ment approaches to reduce the risk of grassland habitat 
change (Davidson & Lightfoot 2008; Martinez-Estevez 
et al. 2013; Meysman et al. 2006). Furthermore, quan-
tifying the encroachment of S. plumosum, as well as the 
effects thereof on the burrowing mammal community, 
is therefore essential in the effective management of S. 
plumosum in the Telperion Nature Reserve.

A limiting factor of our study is that we did not con-
sider burrowing networks, which may have resulted in 
us overestimating the number of burrows. Neverthe-
less, we have shown that S. plumosum encroachment, 
if not controlled in grassland areas, can likely lead to 
a loss in ecosystem services associated with burrowing 
mammals, and reduce the state of the landscape in en-
croached areas. However, further investigation regard-
ing burrowing mammal populations, occupancy and 
behaviour on the Telperion Nature Reserve must be 
done to determine the influence of woody encroach-
ment on ecosystem engineers. 
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