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ABSTRACT 
Artificial Intelligence (AI) holds the potential to 
revolutionise the construction industry, by enhancing 
productivity and addressing the challenges posed 
by a skills shortage. Historically resistant to tech-
nological innovation, the construction sector 
lags behind other industries that have embraced 
innovative technologies to boost productivity. This 
study investigates AI technologies that can be used 
to improve construction productivity, as well as the 
barriers impeding the widespread adoption of AI 
in the construction sector. The research adheres 
to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis (PRISMA) guidelines. 
A systematic review of scholarly journal articles 
and conference papers sourced from the Scopus 
database was conducted, employing relevant 
screening criteria to select the most pertinent 
sources aligned with the research objectives. 
Although AI applications in building construction 
are still emerging, AI technologies have been 
successfully deployed in various aspects of building 
construction. These include floor slab construction, 
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steelwork, safety and risk management, materials management, and labour handling 
in multi-story buildings. The adoption of AI in the construction sector faces several 
challenges, including technical complexities, managerial and organisational barriers, 
economic justifications, and a shortage of AI-proficient talent. Drawing insights from this 
study, construction stakeholders can make informed decisions regarding AI investments 
and their specific areas of application within building construction.

ABSTRAK
Kunsmatige Intelligensie (KI) het die potensiaal om die konstruksiebedryf te 
revolusioneer deur produktiwiteit te verbeter en die uitdagings aan te spreek wat deur 
’n tekort aan vaardighede ervaar word. Histories het die konstruksiesektor weerstand 
gebied teen tegnologiese innovasie en is agter ander nywerhede wat innoverende 
tegnologieë aangeneem het om produktiwiteit te bevorder. Hierdie studie ondersoek 
kunsmatige intelligensie-tegnologieë wat gebruik kan word om konstruksieproduktiwiteit 
te verbeter. Dit ondersoek ook die struikelblokke wat die wydverspreide aanvaarding 
van KI in die konstruksiesektor belemmer. Die navorsing voldoen aan die 
Voorkeurverslag-items vir sistematiese resensies en meta-analise (PRISMA)-riglyne. 
’n Sistematiese oorsig van vaktydskrifartikels en konferensiereferate afkomstig van 
die Scopus-databasis is uitgevoer, met die gebruik van relevante siftingskriteria om 
die mees pertinente bronne te kies wat in lyn is met die navorsingsdoelwitte. Alhoewel 
KI-toepassings in geboukonstruksie steeds ontwikkel, is KI-tegnologieë suksesvol 
in verskeie aspekte van geboukonstruksie ontplooi. Dit sluit in vloerbladkonstruksie, 
staalwerk, veiligheids- en risikobestuur, materiaalbestuur en arbeidshantering in 
meerverdiepinggeboue. Die aanvaarding van KI in die konstruksiesektor staar verskeie 
uitdagings in die gesig, insluitend tegniese kompleksiteite, bestuurs- en organisatoriese 
hindernisse, ekonomiese regverdigings, en ’n tekort aan KI-vaardige talent. Uit hierdie 
studie kan konstruksiebelanghebbendes ingeligte besluite neem rakende KI-beleggings 
en hul spesifieke toepassingsgebiede binne geboukonstruksie.

1. INTRODUCTION
Due to the growing knowledge of the significant contribution of the con-
struction industry to a thriving economy, productivity growth is becoming 
more important to the industry’s stakeholders and policymakers (Sidorova et 
al., 2021: 95; Fadejeva & Melihovs, 2010: 64). The volume of investigation 
on understanding productivity gives rise to different perspectives, resulting 
in a wide range of propositions. The significance of the construction sector 
to economic performance continues to resonate in construction literature 
(Palikhe, Kim & Kim, 2019: 429; Karimi, Taylor & Goodrum, 2017: 370). 
There is a growing awareness that productivity growth is at the centre 
of improving the sector’s contribution to gross domestic product (GDP), 
which has engendered considerable academic inventions in the form of 
investigations into measures to improve construction productivity (Jalal & 
Shaor, 2019: 389). There are serious concerns regarding the current state of 
construction productivity, especially compared to other economy-dependent 
industries (Sidorova et al., 2021: 93). This triggers a plethora of research in 
developing (Agrawal & Halder, 2020: 569; Hiyassat, Hiyari & Sweis, 2016: 
138) and developed (Karimi et al., 2017: 368; Durdyev & Mbachu, 2011: 
18) countries. Most of the current productivity research investigated critical 
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factors that hinder construction productivity growth. Some researchers 
leveraged the established critical productivity influencing factors to develop 
system dynamics that could engender productivity growth (Jalal & Shaor, 
2019: 385; Palikhe et al., 2019: 427; Nasirzadeh & Nojedehi, 2013: 
903). Some studies argue for the need to use models to predict labour 
productivity, in order to enhance managerial decisions (Tsehayae & Fayek, 
2016: 203; Jang et al., 2011: 92). Mlybari (2020: 207) adopted computing 
techniques to predict construction labour productivity (CLP). Arising from 
these studies and many others are contributions to improve construction 
productivity. However, the global construction industry’s productivity has 
remained unsatisfactory for decades (Thomas & Sudhakumar, 2013: 109). 
A recent study in ten European countries and in the United States reported 
the top-performing industries in terms of total factor productivity growth 
(Sidorova et al., 2021: 95). While telecoms, agriculture, and manufacturing 
record total factor productivity growth, construction has a negative total 
factor productivity growth. 

Traditional construction methods no longer deliver competitive results, 
necessitating the need for advanced technological tools to meet the 
sector’s productivity demands (Yang et al., 2019: 8). The construction 
sector is one of the least digitised industries, and there is an age-long 
culture of resistance to change (Young, Panthi & Noor, 2021: 306; Chen, 
Ho & Su, 2020: 115; Oleinik et al., 2019: 4). It is against this background 
that the European Union (EU) proposes a gradual transition of the industry 
from traditional to digital construction, by combining Building Information 
Modeling (BIM) with other digital technologies (Locatelli et al., 2021: 18; 
Delgado et al., 2019: 9). Insufficient digital expertise and low technology 
acceptance have been partly associated with the industry’s resistance 
to change (Mostafa & Hegazy, 2021: 12; Wei, Zhang & Li, 2019: 7; Yan 
et al., 2019: 4; Yu et al., 2019: 7; Nikas, Poulymenakou & Kriaris, 2007: 
634). Due to the benefits technology offers, the construction sector has 
recently begun to adopt innovative practices such as BIM and artificial 
intelligence (AI) to address its long-standing productivity issue. AI has the 
potential to improve construction operations (Abioye et al., 2021: 12; Chien 
et al., 2020: 2731). It has been used in other industries to address various 
challenges to support decision-making for real-world problems (Rao et al., 
2022: 283). For example, in the manufacturing industry, the advent of the 
fourth industrial revolution (Industry 4.0) is geared toward automation, data-
driven technologies, and the application of advanced AI techniques. This 
has resulted in significant process improvements, cost efficiencies, reduced 
production times, and improved safety, and contributes to the sustained 
improvement in the performance of organisations. This suggests the need 
for the construction sector to consolidate its effort to promote innovations 
such as AI in the delivery of construction projects.
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Different scholars have offered several construction productivity 
improvement interventions, including the development of qualitative 
and qualitative models (Tsehayae & Fayek, 2016: 203; Jang et al., 
2011: 92); systems dynamic (Palikhe et al., 2019: 427); causal layered 
analysis (Adebowale & Agumba, 2023b: 1-24), as well as BIM and other 
smart technologies (Abioye et al., 2021: 1; Chien et al., 2020: 2730). 
Considerable improvement has been recorded in the field of construction 
productivity, due to recommendations arising from these studies. Although 
AI is being increasingly applied in prefabricated construction (Chang 
& Zhao, 2020: 7706; Wang & Lian, 2020: 1-4; Smirnova, 2018: 1991); 
safety and risk management (Locatelli et al., 2021: 1-33; Liu & Tian, 2019: 
764-771; Lee & Yi, 2017: 1-15; Zou, Kiviniemi & Jones, 2017: 66-76), as 
well as project monitoring (Chen et al., 2020: 1-9; Wang & Cheng, 2020: 
162), limited studies investigate AI technologies in building construction. 
Such studies could create awareness with respect to productivity-
dependent AI technologies, which has theoretical implications for further 
investigation. Awareness of productivity-dependent AI technologies in 
building construction could foster synergy between academics and industry 
practitioners in terms of taking the research outcome to the next level 
that can facilitate implementation. While the existing studies have made 
significant contributions to the field of AI in construction, AI for improving 
productivity in the building sector is still evasive. The objectives of this study 
are twofold. First, to investigate AI technologies that can be leveraged to 
improve productivity in building construction and, secondly, to identify 
major challenges currently hindering the adoption of AI technologies in the 
construction sector. These objectives are achieved through a systematic 
literature review that presents scientific evidence from AI technologies 
applicable to building construction. 

2. LITERATURE REVIEW
2.1 Construction productivity 
Efforts to understand the concept of productivity have led to different 
perspectives on the meaning of productivity. A single definition of 
productivity is yet to be established, as the concept is usually based on the 
unique project control systems relevant to each organisation (Nasir et al., 
2014: 597). The Organization for European Economic Cooperation (OECC) 
later introduced a formal definition of productivity and defined productivity 
as a quotient obtained by dividing the output by one of the factors of 
production (Jarkas & Bitar, 2012: 816). The American Association of Cost 
Engineers added their contribution, by expressing productivity as a relative 
measure of production efficiency against an established benchmark that 
accounts for tasks performed against a previously established standard 
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(Nasirzadeh & Nojedehi, 2013: 907). The manufacturing sector has widely 
expressed productivity as the ratio of output to input, broadly consistent 
with the typical definition in many industries, including construction. This 
study evaluated productivity performance on contractors’ ability to deliver 
construction projects within the constraints of cost, quality, and time defined 
in the project documents. Studies have reported that many construction 
projects are not delivered within these objectives (Raykar & Ghadge, 2016: 
24). The study sought to establish possible AI technologies that can be 
deployed in building construction to improve both the performance of these 
project objectives and, ultimately, construction project productivity.

Many issues have been identified as the major causes of poor productivity 
in different countries. Delay in responding to requests for information was 
a major barrier to site productivity in Kuwait, Bahrain, and Oman (Jarkas, 
2015: 97; Jarkas, Al Balushi & Raveendranath, 2015: 336; Jarkas & Bitar, 
2012: 816). A similar finding was obtained in a study by Dai and Goodrum 
(2011: 693) in the United States. The study reported late response to 
drawing related information as one of the significant challenges contributing 
to low productivity on construction job sites. Challenges associated with 
workers’ supervision have been predominantly reported in most of the 
studies, suggesting that supervision is a major issue preventing productivity 
growth. Developed and developing countries are confronted with the 
problem of job supervision on job sites. In Australia, poor supervision was 
reportedly a major barrier to productivity growth (Loosemore, 2014: 253); 
United States (Dai & Goodrum, 2011: 692); New Zealand (Durdyev & 
Mbachu, 2011: 22); Turkey (Kazaz, Manisali & Ulubeyli, 2008; 98); United 
Kingdom (Chan & Kaka, 2007: 574), and Canada (Hanna & Heale, 1994: 
665). Similarly, developing countries such as Nigeria (Afolabi et al., 2018: 
687); Uganda (Alinaitwe, Mwakali & Hansson, 2007: 176), and Thailand 
(Makulsawatudom, Emsley & Sinthawanarong, 2004: 6) are reportedly 
affected by inadequate supervision. Skill shortage is also a major challenge 
to construction productivity. The problem of skilled labour is critical to 
construction productivity as an inadequately skilled workforce confronts 
countries such as Bahrain, Kuwait, and Yemen (Alaghbari, Al-Sakkaf & 
Sultan, 2019; 91; Jarkas, 2015: 108; Jarkas & Bitar, 2012: 820). Studies 
in Singapore (Hwang, Zhu & Ming, 2017: 12), Nigeria (Odesola & Idoro, 
2014: 107), Spain (Robles et al., 2014: 1018), New Zealand (Durdyev & 
Mbachu, 2011: 33), and Uganda (Alinaitwe et al., 2007: 176) have also 
reported poor productivity arising from the problem of skills for construction 
project delivery. 

The current poor productivity in construction is a serious concern for 
construction stakeholders (Cai et al., 2020: 6; Poh, Ubeynarayana & 
Goh, 2018: 378). The industry’s productivity is reportedly lower than most 
of the industries (Yang et al., 2019: 6). The McKinsey Global Institute 
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(2017: 1) reported that labour productivity in construction has grown at 
only 1% annually over the past two decades, which is much lower than 
manufacturing. Out of nineteen construction projects, eleven are behind 
schedule, and fourteen are over budget (Omran, Abdalrahman & Pakir, 
2012: 63). Performance has become more of a concern, given the industry’s 
contribution to micro- and macroeconomic performance (Adebowale & 
Agumba, 2023a; Adebowale, 2014: 45). Improving global construction 
productivity has an upside potential of $1.6 trillion, equivalent to a 2% 
global GDP increase (Barbosa, Woetzel & Mischke, 2017: 5). A steady 
increase in productivity in construction is now an essential aspect of project 
delivery (Buitrago et al., 2016: 8). The industry’s relatively conservative 
stance on adopting data-driven technology innovations has been cited as a 
pivotal contributor to slow growth (Busta, 2016: 1). In high-rise construction, 
there are even more concerns about the risks associated with the vertical 
transport of workers, materials and equipment, and the assembly of heavy 
objects, particularly in steel structures (Cai et al., 2018: 309).

The United Nations (UN) population estimates assume that the world 
population is expected to grow from 7.97 billion in 2022 to roughly 8.5 billion 
in 2030, and 9.7 billion in 2050 (United Nations, 2019). The need for the 
construction of high-rise buildings will continue to increase with population 
growth and the scarcity of land for construction projects. Construction 
difficulties increase with increasing building height, which is one of the 
productivity barriers in the building construction sector. This contributes to 
the growing advocacy of advanced technologies that promote safe working 
conditions which, ultimately, increase productivity performance (Cai et al., 
2020: 6). For the industry to meet its current and future needs for sustainable 
building infrastructure, adopting innovative technologies for construction 
operations is more critical than ever (Gharbia et al., 2020: 12). As the 
construction sector has enormous potential, the industry must recognise 
the potential of innovative technologies (Hosseini et al., 2018: 237; Kim, 
Soibelman & Grobler, 2008: 558). There is a significant opportunity for the 
industry to realise its potential and adopt new technological solutions to 
unlock higher productivity and transfer performance results to the broader 
economy (Fang et al., 2018: 62; Choi et al., 2020: 8). 

2.2 Artificial intelligence technologies beneficial to 
building construction

2.2.1 Optimisation
Prefabrication methods are increasingly used to improve productivity 
in construction (Chen et al., 2020: 8). An effective decision support tool 
was developed for project members to evaluate design methods for 
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concrete buildings in the early prefabrication design stages. The decision 
tool effectively solves various problems of the whole project life cycle 
(Zavadskas et al., 2012: 516). Decision support is divided into strategic 
and tactical levels (Chen et al., 2019: 317). The strategic layer assesses 
prefabrication feasibility against a concise list of pre-fab attributes such 
as project characteristics, site conditions, market attributes, and local 
regulations. The tactical level assesses the extent to which components 
should be prefabricated for a given project based on sustainable 
performance attributes, assuming the outcome of the previous strategic 
level is to proceed with prefabrication (Smirnova, 2018: 1993).

Mathematical models have been adopted to optimise construction 
operations, by determining the total time required for residential building 
construction using prefabricated elements (Oleinik et al., 2019: 4). 
Considering substructure and superstructure, the average number 
of prefabricated elements erected per day was 22-23 elements. An 
optimisation model for safety in prefabricated construction has been 
achieved (Chang & Zhao, 2020: 7706). Essential influencing factors and 
prefabricated construction safety accident trees were established. The 
scheduling problem of prefabricated buildings from the time/robustness 
trade-off optimisation perspective was studied (Wang & Lian, 2020: 4). A 
bi-objective multi-mode resource-constrained project scheduling model 
and a non-dominated genetic algorithm were developed. The model and 
algorithm can guide construction managers to make informed decisions 
and invest resources economically.

Due to the complexity and responsibility associated with high-rise buildings, 
designers need more time to develop, analyse, and compare many design 
options. A computer application that significantly increases designers’ 
productivity and reduces design complexity was developed (Vasilkin, 
2018: 5). High-rise projects involve many simultaneous activities that 
must be carried out on different floors above ground (Yazdi et al., 2019: 
8). Completed floors are typically used for material storage to provide 
usable space to support construction activities. Frequent vertical material 
movements cause delays, while overtime can mean additional site work 
with correspondingly reduced productivity. A binary mixed-integer linear 
programming was formulated to optimise the use of material storage 
cells on lower completed floors (Huang & Wong, 2019: 14). This would 
minimise the overall material handling and transport costs, considering both 
horizontal and vertical movement paths. Delays in delivering materials and 
labourers to work floors were addressed through the optimisation of flexible 
lift processes in high-rise buildings (Yazdi et al., 2019: 8). A holistic model, 
which identifies the optimum operational plan for the lift systems, was 
developed. A computer tool has been used to calculate and verify the loads 
on slabs and shores (Buitrago et al., 2016: 7). This was needed, in order 
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to obtain optimal construction processes for multi-storey buildings with in 
situ castings. Exact and heuristic methods were used to search for optimal 
solutions. The exact method was suitable for buildings with fewer than four 
floors; heuristic methods can be applied to obtain the optimal processes in 
buildings with more than four floors.

2.2.2 Automation and robotics 
Automation and robotics can be considered old and new to the construction 
field. The early research in the field can be traced back to the 1970s 
and 1980s, and the technology has been used to improve construction 
productivity since the late quarter of the 20th century (Yang et al., 2019: 
8; Paulson & Boyd, 1985: 9362). Over the past decades, industrial robots 
have helped open up new application areas of robotics in on-site building 
construction (Bilal & Oyedele, 2020: 12). Automation and robotics have 
contributed to improving safety and productivity in construction (Vaha et 
al., 2013: 169). Robotic systems are suitable for performing dangerous 
and repetitive construction operations (Yang et al., 2019: 8). Robot-based 
automation systems’ high accuracy and repeatability resulted in high-quality 
performance and improved productivity compared to labourers (Jung, Chu 
& Hong, 2013: 71). Automation and robotics technology has the potential 
to improve construction productivity and solve challenges related to labour 
shortage and safety risks, especially in high-rise buildings (Cai et al., 2018: 
7). The systems are designed to stabilise the construction process and 
improve productivity in high-rise buildings, by establishing a comfortable 
working environment (Cai et al., 2018: 310). 

Robotic technologies are increasingly used in high-rise buildings (Chu et 
al., 2013: 52). Robotic automation of steel beam assembly was achieved 
by developing a robotic beam-assembly system. The system consists of a 
robotic bolting device performing beam-assembly work. A robotic transport 
mechanism, which transports the robotic bolting device to target bolting 
positions around a building under construction, was achieved (Jung et al., 
2013: 68). Climbing robots with considerations for locomotive and adhesion 
mechanisms are used in construction (Chu et al., 2010: 639). Despite its 
benefits, the construction sector has witnessed low practical implementation 
of automation and robotics. Determining the key development priorities for 
automation and robotics technologies in high-rise buildings is essential to 
improve implementation (Cai et al., 2018: 309). The priorities should include 
prefabricated component assembly, facade construction and maintenance, 
quality inspection, safety control of work performed at high elevations, 
construction equipment, and steel works. 
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An autonomous mobile robotic solution for building task execution was 
achieved, using onboard sensing (Gawel et al., 2019: 2304). The system is 
based on the comprehensive integration of software solutions on a mobile 
platform to extract tasks from building plans. Automated bricklaying in 
building construction has been demonstrated (Shutin, Malakhov & Marfin, 
2018: 3). The system improved bricklaying accuracy and productivity in 
building construction. A networked robotic camera system can automatically 
monitor construction details and allows remote human experts to zoom in 
on features as construction proceeds (Song et al., 2005: 174). The system 
helps archive the construction process timely and reduces travel costs. 
Digital building models in building designs can provide extensive semantic 
and geometric knowledge of buildings (Follini et al., 2020: 8).

2.2.3 Machine learning
Machine learning (ML) is a sub-field of AI, where a computer observes 
a given data set and generates a model based on the input data to 
solve problems (Baduge et al., 2022: 18). ML is different from traditional 
programming. In traditional programming, rules are coded in a computer 
language without explicit learning from the data. By contrast, ML uses data 
to generate predictive models, which are then used for predictions with 
unseen data (Baduge et al., 2022: 9). ML has been used for health and 
safety monitoring (Oyedele et al., 2021; Poh et al., 2018: 377). Despite its 
success in other fields, it has yet to be widely used in construction (Cai et 
al., 2020: 9). ML has been used to develop leading indicators that classify 
construction sites following their safety risk in construction projects (Poh et 
al., 2018: 384). Frequent electrical injuries in construction were considered, 
in order to develop machine-learning algorithms to quantify and model 
the causes of injuries (Oyedele et al., 2021: 8). ML has also been used to 
predict production time, using real-time radio frequency identification data 
in industrialised building construction (Mohsen, Mohamed & Al-Hussein, 
2022: 3). The production cycle time in industrial building construction was 
estimated. A mean absolute percentage error and correlation coefficient 
of 11% and 0.80 was achieved between the actual and predicted values. 
An algorithm based on ML was used to build engineering safety risk 
assessment and early warning mechanisms (Liu & Tian, 2019: 769). A 
safety evaluation index system was established for the construction sites 
of common accidents, and the analytic hierarchy process determined the 
index weight.
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2.2.4 Natural language processing
Natural language processing (NPL) has been applied to overcome 
documentation issues in building construction (Locatelli et al., 2021: 12). 
It aims to represent human language through a formal and machine-
readable language (Young et al., 2018: 307). The AI solution has the 
potential to enhance information flow, thus supporting effective and efficient 
management of construction projects (Di Giuda et al., 2020: 99). The 
application of NPL is prevalent in construction safety and risk management 
(Locatelli et al., 2021: 19). The system has been used to analyse the 
uncertainty of bidding documents in terms of predicting risks during the 
bidding process of construction projects (Lee & Yi, 2017: 8; Zou et al., 
2017: 69). It is also useful in both analysing construction site accidents, 
preventing the recurrence of similar accidents, and enhancing scientific risk 
control plans (Baker, Hallowell & Tixier, 2020: 9; Tixier et al., 2017: 42).

2.2.5 Image-based analysis
Computer vision and image-based learning techniques are recently 
considered to allow computers to automatically analyse images and videos 
(Yan et al., 2019: 6). Researchers have investigated advanced image-
based methods in construction with potential applications to improve 
workers’ safety, monitor activities progress, and assess structural damages 
(Mostafa & Hegazy, 2021: 12). Most of the research efforts were geared 
toward workers’ detection and tracking to identify major safety concerns 
such as the absence of hard hats, safety harnesses, and awkward postures 
(Wei et al., 2019: 6; Yan et al., 2019: 9; Yu et al., 2019: 12). Besides its 
health and safety benefits, image-based analysis has great potential to 
monitor the progress of activities on construction sites (Deng et al., 2020: 
10; Luo et al., 2020: 13; Kazemian et al., 2019: 96) and assess damages 
in building components (Chen et al., 2020: 9; Wang & Cheng, 2020: 171).

2.3 Challenges of implementing artificial intelligence 
technologies in building construction

Although the practical needs of AI in construction keep rising, the on-site 
application of AI technologies still needs to be improved (Delgado et 
al., 2019: 6). Its limited application results from, among other things, 
construction environments and the peculiarity of the construction operation. 
A few studies have reported some of the critical challenges of AI adoption 
in construction. Insufficient development of prototypes and managerial 
barriers have been identified as some of the challenges (Warszawski & 
Navon, 1998: 38). Most of the construction tasks require mobility but the 
construction environments are highly unorganised. Many challenges for 
robotic systems characterise the construction environment. Among these, 
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the most relevant is the unstructured space subject to weather conditions, 
the very rough tolerance of operation, and the collaboration with workers 
not used to robotic systems (Follini et al., 2020: 12). While some of the 
AI innovations have overcome the barrier of the construction environment, 
most of the systems have yet to overcome this barrier for their full 
application on construction projects.

Construction sites are usually remote and need more power, 
telecommunications, and internet connectivity (Louis & Dunston, 2018: 
326). Sometimes, even construction activities lead to interruptions in 
power and internet connectivity. This poses a serious problem in using AI 
tools on construction sites whose operation relies mainly on good internet 
connectivity and power supply (for example, robots and site monitoring 
systems) (Abioye et al., 2021: 13). Managerial barriers relate to construction 
managers being highly conservative about innovations (Delgado et al., 
2019: 9). Construction is a risky industry, and managers are reluctant to 
add another risk factor to those already inherent in their work (Warszawski 
& Navon, 1998: 41). Unlike sectors such as manufacturing, construction 
sites are unique and different and require AI that can learn and adapt fast to 
wide-ranging construction projects (Zhao et al., 2022: 14). The uncertainty 
associated with the usability of AI technologies in different construction 
projects or sites contributes to the resistance of construction organisations 
(Delgado et al., 2019: 10). This is connected with economic justification 
for such technology in some specialised construction projects. Thorough 
testing must establish their adaptability and suitability for different projects, 
in order to convince construction contractors and businesses to adopt AI 
technologies (Zhao et al., 2022: 16). 

The problem of economic justification for AI solutions has been long-
lasting. The benefits of AI-driven solutions in the construction industry are 
indisputable. However, contractors’ initial and maintenance costs to invest 
in such AI solutions are usually very high (Cai et al., 2020: 9). This may 
be unaffordable for the majority of subcontractors and small firms that 
constitute the bulk of the construction industry (Abioye et al., 2021: 10). 
There is resistance to AI solution adoption, partly because there is no 
hard evidence that adoption will genuinely represent a cost reduction in 
the delivery of construction projects (Delgado et al., 2019: 11), considering 
the low profit and high risk that characterise some construction projects. 
Besides, the high cost clients have to incur could contribute to low 
infrastructure spending (Delgado et al., 2019: 11). Therefore, construction 
firms and the public sector are usually careful to determine the cost savings 
and return on investment of AI technologies, in order to establish whether 
to invest or not. As AI technologies become more accepted and prevalent 
in construction, prices are expected to drop, making them affordable for 
smaller construction organisations (Adebowale & Agumba, 2022: 17). 
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Due to the global shortage of AI engineers with the requisite skills to 
spearhead serious developments across industries (Technology Review 
Insights, 2018), it is challenging to get AI engineers with experience in the 
construction sector to build custom solutions targeted at solving industry-
specific problems. Winfield and Jirotka (2018: 13) reported the challenge 
of public trust. Establishing and maintaining public trust in AI technologies 
depends on inclusive, transparent, and agile governance. When there 
is a breach of public trust, the use of AI solutions could lead to an unfair 
advantage for some construction organisations. Public trust is required for 
the system to be regulated, in order to avoid accidents and eventualities 
that may slow the progress of construction operations with attendant cost 
implications (Winfield & Jirotka, 2018: 13).

3. RESEARCH METHODOLOGY
3.1 Research design
A systematic literature search was carried out in this study. The review 
included a scientific research approach that assesses, summarises, and 
presents the research results. Several studies have used systematic 
literature review to study different areas of construction, including 
augmented reality (Adebowale & Agumba, 2022: 1-17); robotic technologies 
(Gharbia et al., 2020: 1-15), and lean construction (Babalola, Ibem & 
Ezema, 2019: 34-43). The authors have made diverse contributions to their 
research areas. This study used the Scopus database for article selection. 
The database was chosen because it covers a broader range of scientific 
publications than other databases (Babalola et al., 2019: 39). Scopus is 
said to be the largest research literature citation database, containing 
publications from various journals and conferences in many fields of study 
(Abioye et al., 2021: 8). Figure 1 depicts the systematic literature review 
process employed for this study. This systematic literature review adhered 
to the preferred reporting items for systematic reviews and meta-analyses 
framework for retrieving relevant literature from the Scopus database. The 
figure illustrates a step-by-step research process, offering a comprehensive 
account of the approach taken.
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Database 
Scopus 

(2018 – 2022)

Search strings 
“Artificial intelligence” AND “Building” AND “construction 

productivity”

First outcome 
118 documents

Filtered by
• Document type
• Publication stage
• Language

Document excluded
• Book chapters, erratum, 

conference review, letter
• Articles in press
• French, German, Ukraine

(N=19)

Document included
• Published articles
• Articles written in English 

language
• Journal articles, conference 

papers
(N=99)

Document included
• Medium relevance
• High relevance

(N=86)
Document excluded
• No relevance
• Low relevance

(N=13)

Filtered by relevance 
(Title and Abstract)

Content analysis 
(N=86)

Figure 1: Articles selection process

3.2 Article search
The database was explored on 11 August 2022, to extract publications 
relevant to the study. The search keywords used include “artificial 
intelligence” AND “building” AND “construction productivity”. The search 
yielded AI articles that consider productivity in the building sector. The 
documents extracted were journal articles, conference papers, book 
chapters, erratum, conference reviews, and letters. The database produced 
118 documents. 

3.3 Articles screening
It was necessary to select publications with more substantive information 
and empirical evidence. Book chapters, erratum, conference reviews, and 
letters were excluded from the list, while journal articles and conference 
papers were retained. Journal articles and conference papers contain 
more information than other scholarly literature (Hosseini et al., 2018: 239). 
Although book chapters, erratum, and conference reviews can provide 
empirical evidence, most of the articles in these sources would have been 
published as journals or conference articles (Babalola et al., 2019: 40); 
hence, the sources were eliminated. After the initial screening, 109 articles 
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were found to be satisfactory. Articles in languages other than English and 
articles in the press were subsequently eliminated. Article abstracts were 
read to determine which articles were relevant to the research objective. 
The inclusion and exclusion criteria used by Babalola et al. (2019: 38) were 
adapted to choose articles following their relevance to the research goal. 

The rating scale consisted of 0 for no relevance, 1 for little relevance, 2 for 
medium relevance, and 3 for high relevance. The relevance of the articles 
was determined by analysing their methods and results. Thirteen articles, 
including Guyot et al. (2019: 6680-6720), GhaffarianHoseini et al. (2017: 
935-949), as well as Lee, Kim and Kim (2016: 1-14) were eliminated. The 
86 articles that met the screening criteria were reviewed, by examining 
their abstracts, discussions, and conclusions. The articles’ contents were 
reviewed to determine AI technologies relative to productivity in building 
construction. 

3.4 Publication channels
Table 1 presents the summary of selected research articles by publication 
source. The table shows that Automation in Construction, International 
Symposium on Automation and Robotics in Construction, Conference 
Proceedings of IEEE International Conferences, Journal of Construction 
Engineering and Management, Buildings, and Web of Conferences have 
the highest number of articles, accounting for 45.35% of the total number 
of selected publications. In general, 52.33% of the articles (45 out of 
86) were published in scientific journals, while 41 articles, representing 
47.67% (41 out of 86), were published at conferences. The publications 
are spread across 33 countries and regions. China (25), the United States 
(17), Hong Kong (7), and South Korea (6) have 55 publications, constituting 
approximately 64% of the total publications in the 33 countries and regions. 

Table 1: Distribution of articles according to the publication source 

Source Publication channels No. of 
publications

%

Journal Automation in Construction 13 15.12
Journal of Construction Engineering and 
Management

5 5.81

Buildings 4 4.65
Energy and Buildings 2 2.33
Journal of Computing in Civil Engineering 2 2.33
Sustainability Switzerland 2 2.33
Advanced Engineering Informatics 2 2.33
Boletin Tecnico Technical Bulletin 1 1.16
Computers in Industry 1 1.16
Energies 1 1.16



Adebowale & Agumba 2023 Acta Structilia 30(2): 161-195

175

Source Publication channels No. of 
publications

%

Engineering Journal 1 1.16
Engineering Structures 1 1.16
International Journal of Advanced 
Manufacturing Technology

1 1.16

Journal of Building Engineering 1 1.16
Journal of Computational and Theoretical 
Nanoscience

1 1.16

Journal of Control Science and Engineering 1 1.16
Journal of Sensors 1 1.16
Management Systems in Production 
Engineering

1 1.16

Mathematical Problems in Engineering 1 1.16
Robotics 1 1.16
Safety Science 1 1.16
Transactions on Environment and 
Development

1 1.16

Total  45 52.33
Conference International Symposium on Automation and 

Robotics in Construction 
7 8.14

Conference Proceedings of IEEE 
International Conferences

6 6.98

Web of Conferences 4 4.65
Proceedings of Earth and Environmental 
Science 

3 3.49

Physics Conference Series 3 3.49
Symposium On Advancement of 
Construction Management and Real Estate 

3 3.49

International Conference on Healthy 
Buildings 

2 2.33

European Modelling and Simulation 
Symposium

2 2.33

Space Conference and Exposition 2010 2 2.33
Conference of the Association for 
Computer-Aided Design in Architecture

2 2.33

Advanced Materials Research 2 2.33
Building Simulation Conference Proceedings 2 2.33
Chinese Control Conference 1 1.16
International Conference on Computing in 
Civil Engineering

1 1.16

Engineering For Progress, Nature, and People 1 1.16
Total 41 47.67
Grand total 86 100.00
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4. DISCUSSION OF THE FINDINGS
4.1 Artificial intelligence technologies in building 

construction
The application of AI has ushered in a transformative era for the 
construction sector. One of the central themes in contemporary construction 
is the optimisation of operations in multi-storey buildings. AI systems have 
proven instrumental in streamlining various aspects such as transportation, 
loading, and unloading. These optimisations extend to intricate processes 
such as material storage and supply in high-rise structures. By harnessing 
the power of AI, construction teams can achieve substantial cost savings 
and efficiency gains. The optimisation of storage cell utilisation represents 
a key advancement. These cells can be strategically placed on any floor, 
allowing material requests to originate from all levels. AI-driven algorithms 
fine-tune the positioning of storage cells to minimise work times and costs 
for material deliveries (Buitrago et al., 2016: 10). Notably, this optimisation 
has the potential to mitigate overtime costs, by reducing transportation 
times and vertical travel distances within the building. It is worth mentioning 
that the optimal design of lift systems in multi-storey buildings is a significant 
contributor to minimising vertical travel time, incorporating characteristics 
and constraints specific to each project (Yazdi et al., 2019: 13). Table 2 
presents some of the applications of AI in building construction.

Table 2: Applications of AI technologies in building construction

AI sub-fields Application Source
Optimisation Effective and productive 

prefabrication strategy; 
prefabricated elements 
production time; prefabricated 
construction safety accident tree; 
time optimisation in scheduling for 
prefabricated buildings; improve 
designers’ productivity; material 
handling in high-rise buildings; 
lift systems for material and 
labourers’ transportation; optimal 
construction processes for multi-
storey buildings; building life cycle

Chang & Zhao (2020: 
7706-7711); Chen et al. 
(2020: 1-9); Wang & Lian 
(2020: 1-5); Huang & Wong 
(2019: 1-16); Oleinik et al. 
(2019: 1-6); Yazdi et al. 
(2019: 1-13); Smirnova (2018: 
1991-2000); Vasilkin (2018: 
1-7); Buitrago et al. (2016: 
1-10); Song, Yang & Kim 
(2012: 895-912); Zavadskas 
et al. (2012: 501-520)
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AI sub-fields Application Source
Automation and 
robotics

Tasks at heights; steel beam 
assembly; robotic transport 
system; development priorities 
for automation and robotics; 
mobile robotic for building 
tasks execution; bricklaying in 
building construction; inspection 
and documentation; obstacle 
detection; material handling

Follini et al. (2021: 1-19); Bilal 
& Oyedele (2020: 1-17); Cai 
et al. (2020: 1-15); Gawel et 
al. (2019: 2300-2307); Yang 
et al. (2019: 1-10); Shutin et 
al. (2018: 1-5); Chu et al. 
(2013: 46-61); Jung et al. 
(2013: 62-79); Vaha et al. 
(2013: 168-178); Chu et al. 
(2010: 633-647); Song et al. 
(2005: 172-177)

Machine learning Health and safety monitoring; 
predict production cycle time; 
hazard prevention 

Baduge et al. (2022: 1-26); 
Mohsen et al. (2022: 1-12); 
Oyedele et al. (2021: 1-14); 
Cai et al. (2020: 1-15); Liu & 
Tian (2019: 764-771); Poh et 
al. (2018: 375-386)

Natural 
language 
processing

Risk analysis; site accident analysis; 
the flow of information; safety and 
risk management

Locatelli et al. (2021: 1-33); 
Baker et al. (2020: 1-12); Di 
Giuda et al. (2020: 95-102); 
Lee & Yi (2017: 1-15); Tixier et 
al. (2017: 39-54); Zou et al. 
(2017: 66-76)

Image-based 
analysis

Workers’ safety, productivity, and 
progress monitoring; assessing 
structural damages 

Mostafa & Hegazy (2021: 
1-14); Chen et al. (2020: 1-9); 
Deng et al. (2020: 1-12); Luo 
et al. (2020: 1-19); Wang 
& Cheng (2020: 162-177); 
Kazemian et al. (2019: 
92-98); Wei et al. (2019: 1-9); 
Yan et al. (2019: 1-13); Yu et 
al. (2019: 1-12)

Modern prefabricated building construction is characterised by its rapid 
and efficient structural systems and shortened production-to-deployment 
timelines. However, the management codes governing prefabricated 
buildings require further development in many countries, in order to prevent 
frequent accidents during construction (Song et al., 2022: 22). Efforts are 
underway to mitigate these safety concerns through a combination of 
optimisations, daily safety management investments, safety education, 
and improved construction sanitation measures. Optimisation techniques 
are invaluable in managing the increasing complexity of building projects, 
enabling engineers to synthesise multiple design options. Structural and 
parametric optimisation methods play a vital role in delivering tasks that 
meet engineers’ requirements (Song et al., 2022: 22). It is important 
to acknowledge that ineffective feedback mechanisms can hinder 
engineers’ ability to synthesise structures. However, structural and 
parametric optimisation effectively reduces building design complexity, 
promoting constructability.
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The adoption of robotic technologies in construction represents a paradigm 
shift in addressing industry challenges. While organised environments in 
the automobile and manufacturing industries favour robots, the construction 
sector grapples with diverse and less structured tasks, necessitating 
manual labour. However, the urgency to counteract the shrinking labour 
force and the ageing of skilled workers has driven recent efforts to develop 
robotic construction systems (Cai et al., 2020: 12; Gawel et al., 2019: 
2304). These robotic systems promise increased safety and productivity, 
particularly in high-risk tasks such as steel beam assembly. Robots are 
poised to replace ironworkers in this context, offering both enhanced 
safety and time efficiency (Cai et al., 2020: 12). Autonomous mobile robotic 
solutions are also emerging as powerful tools for task execution. They can 
automatically derive construction tasks from 3D building models, localise 
operations using sensors, and dynamically navigate around obstacles 
(Gawel et al., 2019: 2304). However, it is crucial to acknowledge the 
substantial initial investments required for the procurement of automation 
and robotics technologies in construction organisations (Adebowale & 
Agumba, 2022: 12). The promise lies in their potential to yield substantial 
returns by boosting productivity and reducing construction costs. Climbing 
robots represent a specialised category of construction robotics with the 
unique ability to navigate complex 2D and 3D environments, including 
walls, ceilings, roofs, and geometric structures (Chu et al., 2010: 642). 
These robots are engineered to replace human workers in high-risk tasks 
within hazardous environments, effectively eliminating the need for costly 
scaffolding and staffing expenses. The design criteria for climbing robots 
centre on equipping them with locomotive and adhesion mechanisms 
tailored to specific environmental demands, allowing them to adapt and 
operate seamlessly. 

BIM integration plays a pivotal role in the deployment of collaborative 
robotics in construction. BIM leverages sensors to detect unforeseen 
obstacles within the unstructured construction site environment (Song et 
al., 2022: 22). As sensor technologies advance and BIM becomes more 
widespread, new possibilities emerge throughout the building’s life cycle. 
The expanding use of BIM holds the potential to redefine adaptability 
and efficiency within the construction industry, promising safer and more 
streamlined operations.

Machine learning stands as a game-changer for the construction industry, 
offering precise prediction of production cycle times. This capability was 
demonstrated in a panellised wall manufacturing shop, where real-time 
loading conditions and panel properties were used to forecast production 
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times (Mohsen et al., 2022: 8). Accurate predictions empower managers 
to make sound decisions regarding resource scheduling and capacity 
planning. Predictable production schedules are invaluable for mitigating 
delays and adapting to unexpected interruptions in factory production, 
benefiting industrialised building construction.

AI technologies, especially distributed computing and cloud security 
management, introduce an early warning mechanism for assessing 
construction site security (Liu & Tian, 2019: 767). These systems 
judge the overall safety status based on information feedback, aiding in 
hazard recognition. However, challenges exist in the practical adop-
tion of these systems, due to complicated set-up requirements and 
information-transfer limitations.

NLP enhances information flow and management within construction 
projects. Its applications extend to safety enhancement, risk prediction 
during the bidding process, and accident prevention during project 
deliveries (Liu & Tian, 2019: 767). Furthermore, the development of 
computer vision and image-based learning techniques allows computers 
to autonomously analyse images and videos. This technology enables 
researchers to tackle complex issues such as assessing workers’ postures 
to prevent work-related musculoskeletal disorders.

The AI sub-fields discussed, in this instance, find diverse applications in 
various facets of building construction, ranging from floor slabs and shores 
to steel works, safety and risk management, as well as material and labour 
handling in multi-storey buildings. (See Table 3 for a summary of AI sub-
fields and their applications in building construction.) The integration of 
AI technologies into building construction holds immense promise for the 
industry. These technologies address long-standing challenges, while 
opening doors to new opportunities for productivity improvement in building 
construction. Despite hurdles and complexities, the progress made thus 
far underscores the transformative potential of AI, paving the way for safer, 
more efficient, and technologically advanced building processes. As AI 
continues to evolve, it will undoubtedly play an increasingly pivotal role in 
shaping the construction sector’s future.
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Table 3: Areas of AI technologies application

Application area Source
Floor slabs and shores Buitrago et al. (2016: 1-10)
Steel works Chu et al. (2013: 46-61); Jung et al. (2013: 62-79)
Panellised wall 
manufacturing shop

Mohsen et al. (2022: 1-12)

Brick wall Shutin et al. (2018: 1-5)
Prefabricated building 
construction

Chang & Zhao (2020: 7706-7711); Wang & Lian (2020: 1-5); 
Oleinik et al. (2019: 1-6); Smirnova (2018: 1991-2000)

Safety and risk 
management

Follini et al. (2021: 1-19); Locatelli et al. (2021: 1-33); 
Mostafa & Hegazy (2021: 1-14); Oyedele et al. (2021: 
1-14); Baker et al. (2020:1-12); Cai et al. (2020: 1-15); Liu & 
Tian (2019: 764-771); Wei et al. (2019:1-9); Yan et al. (2019: 
1-13); Yu et al. (2019: 1-12); Poh et al. (2018: 375-386); Lee 
& Yi (2017: 1-15); Tixier et al. (2017: 39-54); Zou et al. (2017: 
66-76)

Project monitoring and 
control

Chen et al. (2020: 1-9); Deng et al. (2020: 1-12); Luo et al. 
(2020: 1-19); Wang & Cheng (2020: 162-177); Gawel et al. 
(2019: 2300-2307); Kazemian et al. (2019: 92-98); Song et 
al. (2012: 172-177)

Material and labour 
handling and their 
transportation in multi-
storey buildings

Huang & Wong (2019: 1-16); Yazdi et al. (2019: 1-13)

Walls, ceilings, roofs, and 
geometric structures

Chu et al. (2010: 633-647)

Design options for 
complex buildings

Vasilkin (2018: 1-7)

4.2 Challenges of implementing artificial intelligence 
technologies in building construction

The implementation of AI technologies in the construction industry presents 
several complex challenges, as highlighted in the reviewed literature. These 
challenges are multifaceted, encompassing technical, logistical, economic, 
and societal aspects. This section discusses these challenges and their 
implications for the effective integration of AI in building construction.

4.2.1 Technical challenges
One of the fundamental technical challenges in applying AI to construction 
lies in the unique nature of construction environments. Construction sites 
are dynamic, unstructured spaces that are susceptible to adverse weather 
conditions. The construction operations often involve collaboration with 
human workers who may not be accustomed to working alongside AI-driven 
systems. As noted by Follini et al. (2020: 12), these factors pose significant 
challenges for the deployment of robotic systems and other AI-driven 
technologies. While some advancements have been made to adapt AI to 
these conditions, it is clear that many AI systems have yet to fully overcome 
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these barriers. This raises questions about the adaptability and robustness 
of AI technologies in real-world construction settings (Follini et al., 2020: 
18). In addition, the need for reliable power, telecommunications, and 
internet connectivity on remote construction sites cannot be overstated. 
AI tools such as robots and monitoring systems heavily rely on these 
resources. The intermittent interruptions in power and connectivity, as 
highlighted by Abioye et al. (2021: 13), pose a significant obstacle to the 
seamless operation of AI technologies on construction sites. Overcoming 
this challenge requires innovative solutions to ensure that AI systems can 
function effectively even in resource-constrained environments.

4.2.2 Managerial and organisational barriers
The existing literature also sheds light on the managerial and organisational 
barriers that impede the adoption of AI technologies in construction. 
Construction managers, as described by Delgado et al. (2019: 9), tend to be 
conservative when it comes to embracing technological innovations. This 
conservatism is driven by the inherent risks associated with the construction 
industry (Locatelli et al., 2021: 22), where even minor errors can lead to 
costly delays and overruns. Therefore, construction managers are often 
hesitant to introduce additional uncertainties through the integration of AI. 
Also noteworthy is the variability and uniqueness of construction projects, 
which require AI systems that can adapt rapidly. Zhao et al. (2022: 14) 
emphasised the importance of AI technologies that can learn and adjust 
to diverse construction contexts. The uncertainty surrounding the usability 
of AI technologies in different projects contributes to the resistance within 
construction organisations, making it crucial to establish the adaptability 
and suitability of these technologies through rigorous testing.

4.2.3 Economic justification
Economic considerations play a pivotal role in the adoption of AI solutions 
in construction. While the benefits of AI-driven solutions are undeniable, 
the initial and maintenance costs associated with implementing these 
technologies can be prohibitively high, particularly for small subcontractors 
and firms (Cai et al., 2020: 9). There is a pressing need for compelling 
evidence that AI adoption will genuinely lead to cost reductions in 
construction project delivery, considering the industry’s slim profit margins 
and high-risk nature. It should be noted that, as AI technologies become 
more accepted and prevalent in construction, prices are expected 
to decrease, making them more accessible to smaller construction 
organisations (Adebowale & Agumba, 2022: 12). This transition toward 
affordability could potentially drive wider adoption, but the construction 
industry must carefully assess the cost savings and return on investment 
associated with AI technologies.
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4.2.4 Skills shortage and public trust
A crucial challenge mentioned in the literature is the shortage of AI 
engineers with expertise in the construction sector (Technology Review 
Insights, 2018). This skills gap hampers the development of custom 
AI solutions tailored to address industry-specific problems. Bridging 
this gap will require targeted efforts to train AI professionals in the 
nuances of construction, facilitating the creation of specialised solutions. 
Maintaining public trust in AI technologies is another paramount concern, 
as highlighted by Winfield and Jirotka (2018: 13). Public trust is essential 
for transparent and responsible AI governance, particularly in an industry 
such as construction, where safety and fairness are critical. A breach of 
public trust could not only lead to unfair advantages for some construction 
organisations, but also hinder the progress of construction operations with 
potentially severe cost implications.

The challenges of implementing AI technologies in building construction 
are intricate and multifaceted, and existing studies have identified some of 
these challenges. Technical hurdles, managerial conservatism, economic 
considerations, skills shortages, and public trust are all integral aspects 
that require thoughtful and strategic solutions. Addressing these challenges 
will be pivotal in unlocking the full potential of AI to enhance productivity in 
building construction.

5. SUMMARY OF THE FINDINGS
The global construction industry faces many challenges, of which low 
productivity is one of the leading challenges. The construction sector’s 
productivity has been compared to productivity in other industries, and 
several researchers have reported that most of the industries are ahead 
of construction in terms of productivity growth. Many industries with high 
productivity performance are quick to leverage advanced technologies, 
while the construction sector has age-long resistance to adopting new 
technologies. Reports indicate the industry’s resistance to advanced 
technology adoption as one of the factors responsible for its inefficiency. 
Construction stakeholders have repeatedly cited the nature of the 
construction environment as the leading factor responsible for the industry’s 
aversion to innovations. The stakeholders have recently begun to clamour 
for the need to overcome the factors that make the sector not favourably 
disposed to take advantage of advanced technologies.

Consequently, research on AI’s potential to improve construction operations 
efficiency has continued to grow. The application of AI technologies 
is gradually increasing; its relevance is further strengthened by other 
emerging trends such as BIM, IoT, quantum computing, augmented reality, 
cybersecurity, and blockchain. Most of the existing studies focus on the 
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entire construction sector, while a few have focused on the building arm 
of the industry. The research projects that examined AI applications in the 
building sector conducted field experiments on specific applications and 
developed models and algorithms that construction organisations can 
leverage. The building sector contributes significantly to the construction 
sector’s total output. Therefore, improved operational efficiency in the sector 
would translate to a substantial impact on the construction sector. This 
study systematically reviews existing studies to evolve a comprehensive 
view of AI applications in building construction. The AI sub-fields that have 
the potential to improve efficiency in building construction are reported. 
These include optimisation, automation and robotics, machine learning, 
natural language processing, and image-based learning. The study 
identified applications of these fields of AI. Aspects of building construction, 
where AI technologies have been used, include floor slabs and shores, 
steelworks, safety and risk management, material, and labour handling 
in multi-storey buildings. The AI research and development experts could 
draw on the evidence about aspects of construction where AI technologies 
have been implemented. This would increase information on the potential 
of AI technologies and further provide guidelines on efforts to enhance the 
application of AI technologies for future building construction. 

Due to the nature of construction environments and other peculiarities 
in construction, managerial barrier, power, and internet issues, initial 
and maintenance costs, as well as uncertainty associated with return 
on investment are some of the challenges that limit the adoption of AI 
technologies. These challenges must be overcome, in order to increase 
the adoption of AI solutions and increasingly derive their benefits. Industry/
academic engagements are required to create awareness of AI’s potential 
to improve efficiency in the construction sector. Besides, through research, 
evidence-based justification on the economic value of investing in AI 
technologies should be provided to construction organisations. This should 
quantify the short- and long-term cost implications of AI technologies 
adoption against traditional construction methods. Scholars give more 
prominence to optimisation, automation, and robotics. Although more 
research efforts are required in these sub-fields of AI, researchers should 
further intensify efforts in applications of ML, NLP, and image-based 
analysis, which have recorded minimum publications. Subsequent studies 
should also consider the efficiency and cost implication of AI technologies 
in building construction. Besides, future research should consider other 
AI sub-fields, which include automated planning and scheduling and 
knowledge-based systems, to determine how their applications can be 
leveraged to improve efficiency in construction. The articles reviewed in this 
study are limited to the Scopus database, which constitutes a limitation to 
the study. Future research should investigate additional databases to gain 
a broader understanding of the subject matter. 
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6. CONCLUSION
The global business environment, including the construction industry, 
is constantly evolving and becoming increasingly competitive. There is 
a growing recognition that productivity is essential to competitiveness in 
any sector. Unfortunately, the construction sector has an age-long record 
of poor productivity, which can be partly attributed to its resistance to 
adopting innovative technologies to improve production efficiency. This 
study investigated the transformative potential of AI technologies to 
enhance productivity in building construction. Due to the potential benefits 
that AI adoption presents, the study emphasised the urgent need for the 
construction sector to overcome its historical resistance to technology and 
embrace innovation. The study identified AI applications that are beneficial 
to building construction, including optimization, automation, robotics, 
machine learning, natural language processing, and image-based analysis. 
These applications are useful for key facets of construction, ranging from 
floor slabs to safety management. However, the wider implementation 
of these applications has been hindered by factors such as technical 
complexities, managerial conservatism, economic considerations, skills 
shortages, and public trust issues. Addressing these challenges is essential 
to fully harness AI's transformative potential to improve productivity in 
building construction. This study recommends collaboration between 
industry and academia as one of the key measures to promote AI adoption 
and provide evidence-based economic justifications for its implementation. 
Future research should explore AI's applications and cost implications 
in greater depth, especially in underexplored sub-fields such as natural 
language processing and image-based analysis.
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