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Initial Investigation into Bipedal Turning: A
Trajectory Optimization Study
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Abstract—Humans and animals leverage agility to negotiate
the unpredictable environments we occupy. In order for legged
robots to leave sterile lab environments, they need to be agile
enough to negotiate our lives. Currently, human agility is far
superior to the state-of-the-art robotic platforms. Replicating
this on robotic platforms require a profound understanding of
how contact events are leveraged to complete agile tasks. In line
with this aim, this letter was an initial investigation into bipedal
turning, to gain insight into how turning was achieved, and to
identify any kinematic trends that emerged from the optimization
results. This research was conducted on a simulated 10 DoF
non-planar bipedal platform with point feet, and made use of
a realistic friction cone, and not a linearized approximation.
The mathematical model used was based on the bipedal robot
currently under development. Two experiments were conducted:
rapid turns with a fixed turn angle at varying speeds, and rapid
turns with varying turn angles at a fixed speed. Results indicated
that slip occurred 93.32% of the contact duration, and turn
overshoot was present in all trajectories analyzed. Additionally,
a long-time-horizon trajectory was presented to motivate the
feasibility and stability of the turn trajectories studied.
Index Terms- legged robot, turning, trajectory optimization

I. INTRODUCTION

Much research has been done studying multi-legged lo-
comotion [1]–[3]. However, there is stark contrast between
the capabilities and agility of human locomotion compared
to locomotion exhibited by the state-of-the-art bipedal robotic
platforms. Humans can efficiently complete complex tasks, in
an unpredictable world, and react to changes in a very agile
manner. Whereas robotic locomotion is constrained to steril-
ized environments where simplifications, such as prescribing
a fixed contact order, are used [4] and typically struggle to
achieve tasks that are considered simple for humans to achieve,
such as turning at speed. This paper aims at presenting a first
look at how robots should turn, and identify any trends that
emerge that can assist in developing future controllers.

One aspect of turning that is fairly complex to investigate,
is that of friction and the foots ability to slip. Animals make
use of claws to increase their friction coefficient, and humans
make use of shoes and studs to improve this for certain sports,
however, we still typically slip. Much of the current literature
relating to turning in locomotion is focused on steady-state
turns [2], [4]. These trajectories are seeded (starting point of
the optimizer) using steady-state gait patterns [2] (a series of
periodic steady-state gaits that veer in the desired direction of

The authors would like to thank the NRF (grant number 129830) and Sub
Comm B for funding this research.

1Authors are with the Department of Electrical and Electronic En-
gineering, University of Stellenbosch, 7599 Stellenbosch, South Africa
cfisher@sun.ac.za

Fig. 1. The aim of this research article is to investigate the optimal method
to turn for a bipedal robot being developed in our research lab.

the turn). This encourages locally optimal solutions close to
the initial seeded periodic gaits. Some of these articles also
have infinite friction and do not allow the foot to slip [4].

Previous work by Wensing et. al. makes use of a 3D
SLIP (spring-loaded-inverted-pendulum) model to generate
high speed turning trajectories, which are simulated on a 3D
bipedal robot [4]. The 3D SLIP model generated trajectories
for the center of mass (CoM) of the bipedal robot conducting
a turn. Additional controllers are implemented to ensure the
CoM of the body followed this trajectory, utilizing fixed
footholds which are inferred from this trajectory. This did
not allow the foot to slip or enable to optimizer to select
the optimal position, contact order or type of contact (stick
or slip).

The 3D slip model will quickly generate feasible and
accurate CoM trajectories for periodic (steady-state) motion
for a number of platforms, such as the monopod, biped and
quadruped. However, they do not accurately model transient
motions. Additionally, these models often assume conditions
that are not applicable to transient motions: such as mass-
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less legs, no foot slip, or with an implicit contact order [5].
Analysing nature, it can be seen that the dynamics present in
steady-state motions are very different to those experienced
during high speed and rapid turning manoeuvres.

Another approach is to make use of whole body dynamics,
instead of these simplified templates. Knemeyer et. al. gen-
erated a 60◦ turn trajectory at 8m/s on a 3D quadrupedal
robot [2]. This model is generated using three periodic gaits
as the initial guess for the optimization. Using periodic gaits
to seed an optimization will help guide the optimization to a
feasible solution. However, it will search in regions close to
the seeded periodic gaits, biasing the solution towards locally
optimal results close to that periodic gait.

Another assumption that is typically assumed in the litera-
ture, is that of the polyhedral approximation of the 3D friction
cone [6]. This approximation is known to underestimate the
friction value, resulting in less friction force needed to initiate
slipping events. Underestimating the effects thereof, reduce the
reliability of results generated from employing this method.
However, in this research, a method of modelling a realistic
friction cone based on the Maximum Dissipation Principle
using complimentarity constraints is utilized. This method
describes the effects of friction and slip more accurately [7],
particularly in 3D, out of plane motion.

In this article, turns initiated at speeds ranging from 0.5m/s
to 4.0m/s are generated for the robotic platform shown in Fig.
1. Further, with the turn speed fixed at 2.0m/s, additional
turns are generated at multiple turning angles ranging from
22.5◦ to 90◦. From these experiments, the prevalence of slip
is assessed, and kinematic trends are identified. These results
will assist in generating controllers for the bipedal robot that
is under development.

This letter begins by detailing the trajectory optimization
experiments in Section II. Section III presents the results of
the experiments, which were further analysed and discussed
in Section IV with the future work being presented in Section
V.

II. METHOD

Currently a 10 degree of freedom (DoF) bipedal robot
is being developed, as seen in Fig. 1. The robot utilizes
four AK70-10 T-Motors, two per leg (2 DoF leg, with no
ab/adduction abilities), with point feet. Throughout this paper,
trajectories were generated for this robot, utilizing realistic
masses and inertia’s, which were estimated in CAD software.
As these trajectories will eventually be executed on the robotic
platform, an accurate friction cone was utilized [7], and the
optimizer could pick the foot contact order and type (stick or
slip), instead of enforcing it.

Trajectory optimization is an algorithmic tool that finds
trajectories as solutions to mathematical problems, which are
subject to a set of constraints, while minimizing an objective
function. Optimization was achieved by varying a set of
decision variables between bounds, and constraints, until an
optimal solution was found [8]. All trajectory optimization
experiments referenced in this letter were modelled in Python,
using the Pyomo library, and solved using the IPOPT Solver
[9]–[12].

Fig. 2. To reduce the complexity of the optimization, the long-time-horizon
trajectory was broken into smaller tasks, optimized separately, and then
stitched together. These tasks included acceleration, periodic steady-state
steps, rapid turn, and deceleration tasks.

To gain an initial insight into how a bipedal robotic platform
turns, a set of rapid turns were generated using trajectory
optimization methods. Furthermore, additional trends and an
analysis of slip was conducted to gain further insight into
rapid turning. In order to motivate the feasibility of these
rapid turn trajectories, a full (long-time-horizon [5], [13] )
trajectory of the robot was generated, shown in Fig. 1, which
included acceleration from rest, periodic steady-state steps, a
turn trajectory and deceleration back to rest.

Due to the complexity of the long-time-horizon trajectories,
the problem was broken into smaller tasks (acceleration,
steady-state, turn and deceleration tasks) and optimized sep-
arately. These fragmented trajectories were then “stitched”
together to form a long-time-horizon trajectory and analysed
as shown in Fig. 2. This reduced the complexity of the
optimization problem while increasing the accuracy of the full
trajectory [5].

Initially, periodic steady-state trajectories were generated
for each investigated speed and formed the base of the long-
time-horizon trajectories. Acceleration trajectories were then
generated from rest to the apex of the steady-state gait. Sim-
ilarly, deceleration trajectories were generated from the apex
of the steady-state gait to the rest position. Finally, trajectories
conducting rapid turns were generated. These trajectories were
bound to start at the apex of a steady-state gait and constrained
to end at the apex of the steady-state gait (with the final
heading angle offset, and the final velocity vector rotated, from
the sagittal plane to the desired direction according to the turn
angle).

In the following subsections the dynamics, model parame-
ters, objectives, constraints, and problem set-up are described.

A. Dynamics and Parameters

The biped robot that was under development is shown in
Fig. 1 and consists of two, two link legs, with a wide hip,
and a torso. All links were modelled as solid cylindrical tubes
rotating around their respective inertia axes, with parameters
taken from CAD designs. Additionally, each leg consisted of
a hip and knee actuator (located at the hip), resulting in four
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active DoF, two per leg. The generalized coordinates of the
robot were:

q = [X Y Z θb ψb ϕb qleg(left) qleg(right)]

qleg = [θhip θknee]
(1)

where the first 6 generalized coordinates in q were the DoF
of the body, 3 degrees of rotational freedom, and 3 degrees of
translational freedom, allowing it to freely move in 3D space.
This was followed by the two active DoF for each leg (using
absolute angles). The model did not contain any ab/adduction
DoF. This constrained the applied torque of the motors, τ ,
around the y-axis of their respective inertia axes. The robot
feet were also modelled as point contacts.

Euler-Lagrange dynamics were used to describe the equa-
tions of motion for the non-planar system. These dynamics, in
the form of the manipulator equation, were implemented as:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Bτ + A(q)λ (2)

where M(q) was the mass matrix, C(q, q̇) described the
Kinetic Coriolis forces, and G(q) described potential gravita-
tional forces. A(q) and B were used to map the motor torques
applied to the revolute joints, τ , and external ground reaction
forces, λ, to q [14]. This research made use of a µ = 1, as
the robot foot was a silicone dome, which has a coefficient of
friction of 1 in many cases.

B. Constraints

Transient motions are notorious for being complex, and
characterised by discontinuous dynamics and unpredictable
contact events. Therefore, constraints were implemented to aid
the solver in finding kinematically feasible solutions. These
constraints and techniques are further described below.

1) Discretization: The trajectories generated in this exper-
iment were all discretized to N = 100 nodes. Trajectories
from the 4.0m/s experiments proved an exception to this, and
required N = 150 nodes to generate an optimal trajectory.
In order to provide the solver with added flexibility to model
intermittent contact events, a variable time-step was employed,
such that:

0.1hM ≤ hi ≤ 2hM . (3)

This allowed the duration of a discretized time-step, hi with
i ∈ {1, N}, to vary between 10% and 200% of a master
time-step, hM . hM was used to describe a ratio between an
approximated time needed to complete the task, T , and the
number of nodes the trajectory was discretized to, such that
hM = T

N . T was experimentally tuned for each velocity.
Three-point collocation methods were used to further dis-

cretize q using third order Radau polynomials and Runge-
Kutta integration methods, increasing the accuracy of the
results while keeping the problem computationally tractable
[15].

2) Contact Implicit Trajectory Optimization: In order to
fully investigate non-intuitive transient motions, a fixed contact
order was not prescribed. Instead, contact implicit trajectory
optimization techniques were used to give the optimizer free-
dom to determine the optimal contact order and type (stick or
slip) for the given tasks. These methods have been proven to
be vital in studying rapid locomotion [6], [15].

All contacts were modelled as inelastic collisions, on a
contact surface with a uniform coefficient of friction, µ = 1.0
(due to the silicone foot), while adhering to Coulomb’s law of
dry friction [16]. To study the slip required to conduct rapid
turning, the contact model described in [7], equations (4) to
(7), were used. Here, the Maximum Dissipation Principle was
used to accurately determine the direction of applied friction,
while satisfying Coulomb’s law.

Unfortunately, this required complimentarity constraints that
are notorious for being computationally intractable. Therefore,
ϵ-relaxation schemes [17], [18] were applied to assist in
solving these constraints, along with three-point collocation
methods to increased the accuracy [15] of the solution as
follows:

α′
iβ

′
i < ϵ

α′
i =

K∑
j=0

αij β′
i =

K∑
j=0

βij
(4)

Here, αij and βij described the complimentarity variables
discretized to the ith node and the jth collocation point. ϵ
described a relaxation parameter used to satisfy the com-
plimentarity constraints within an acceptable tolerance (see
Section II-D for more details on the tolerance value). These
complimentarity variables were summed across the collocation
points and the complimentarity was solved at individual node
points [15].

3) Motor Model: In order to ensure the generated trajecto-
ries could work on the robotic platform, a linear motor model
was implemented. This constrained the applied motor torques
as a function of the relative velocity of the joint as shown:

−τmax −
τmax

ωmax
ωi ≤ τi ≤ τmax −

τmax

ωmax
ωi (5)

where τi was the applied motor torque, and ωi was the
relative joint speed, at the ith time-step. Furthermore, τmax and
ωmax described the respective stall torque, and no-load speed,
for the motor [5], [19]. These parameters were determined
from the data-sheet of the motor used on the robotic platform
(T-Motor AK70-10).

4) Average Velocity: To generate the steady-state trajecto-
ries at specified speeds, an average velocity constraint was
enforced. The constraint was implemented as follows:

vavg = (xN − x0)/(ttN − tt0) (6)

where xN was the final x position (x0 was the initial
position and was set to zero) and ttN was the final time of the
periodic steady-state trajectory (with tt0 being the initial time
and was set to zero). vavg was the desired average velocity
constant, which was varied between 0.5m/s and 4.0m/s.
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5) Initial and Terminal Conditions: As the long-time-
horizon trajectory was split into smaller tasks, the initial and
final conditions varied according to the task being optimized.

• Steady-state Trajectories: The steady-state trajectory was
generated first, as it was required for the initial/terminal
constraints of the other tasks. In order to achieve this,
the initial pose was left unspecified, except that is was
constrained to the origin of the Cartesian plane and
the vertical velocity, ż = 0.0m/s, and acceleration
z̈ = −9.81m/s2, was fixed. This pose described the
apex of the steady-state gait. Periodicity was enforced
by constraining the initial conditions to equal the final
conditions, except for the x variable, which allowed the
robot to travel forward. The desired velocity was enforced
as described in Section II-B4. This allowed the optimizer
to find an optimal initial and final pose along with a
periodic steady-state trajectory.

• Acceleration Trajectories: The initial conditions were set
to start at rest, with all joints stacked vertically (robot
standing vertically, with zero motion), at the origin of
the Cartesian plan. Whereas, the final conditions were
constrained to equal the apex pose of the steady-state
trajectory (excluding the x variable). This allowed the
robot to accelerate from rest into the periodic gait.

• Deceleration phase: Similarly, the initial conditions of the
deceleration phase was constrained to equal the apex pose
of the steady-state trajectory. The terminal conditions
were set to stop the robot in a rest position (excluding
the x variable). This allowed the robot to decelerate from
the steady-state gait back to rest.

• Rapid turn: The initial conditions were set to start at the
origin, in the apex pose of the steady-state trajectory.
The final conditions were constrained to the same apex
pose of the steady-state trajectory, however, the final yaw
and velocity vector was offset by the desired turn angle,
θTurn. This allowed the robot to start and end in a
periodic gait while implementing a turn manoeuvre.

C. Objective Function

Due to the complexity of the desired motions, a combination
of two objective functions were implemented in these experi-
ments. Minimum time, Jtime, and minimum torque, Jtorque,
cost functions were implemented in tandem and integrated in
the ϵ-relaxation techniques:

Jtime =

N∑
i=0

h2
i Jtorque =

N∑
i=0

τ2i (7)

where τ2i represented the square of the individual motor
torques at the ith node, in order to penalize positive and
negative torque. Additionally, hi represented the time-step
duration of the ith node.

D. Solver Setup and Optimal Solutions

In order to successfully search the solution space, q, q̇,
and q̈ were initialised using randomized seeds interpolated
between their respective variable bounds. Variable bounds

were selected to ensure kinematic realisation of the robot
(for example, the range of motion of the hip and knee were
enforced with bounds), with other bounds used to restrict
the search space (for example, the X position of the robot
was limited from 0m to 5m), without ruling out non-intuitive
solutions. Whereas the rest of the optimization variables, τ
and λ, were initialised to 0.01 [13].

Additionally, ϵ-relaxation schemes were used to iteratively
solve the model (see equation (4)). For the first iteration, ϵ
was set to 1000, and the objective function set to a constant
1.0 (looking for a feasible solution to improve the initial seed,
and not an optimal solution in terms of the cost function).
Thereafter, the objective was set to a minimum time cost
function, Jtime, and ϵ was reduced by a factor of 10 for each
iteration of the optimization. As soon as an infeasible solution
was returned, the respective seed was discarded and the solve
process reset. The advantage of this method was that after the
first successful solve (with the random seed), the optimizer
was warm started with the previous iterations trajectory, and
a new ϵ value, which sped up the solve time.

However, it was noticed that the minimum time cost func-
tion guided the solution towards a local minima that produced
very erratic and infeasible trajectories that violated the con-
servative motor model. Therefore, once ϵ = 1.0, the objective
function was changed to a minimum torque objective, Jtorque,
to smooth the trajectories and find a more torque sensitive
solution. After 8 successful iterations, and ϵ = 1E − 4, all
complimentarity constraints were considered satisfied within
an acceptable tolerances.

III. EXPERIMENTS AND RESULTS

Initially, steady-state, acceleration, and deceleration tra-
jectories were generated as described in Section II. These
trajectories were generated at multiple velocities, such that
vavg ∈ {0.5, 1.0, 2.0, 4.0}m/s.

Thereafter, two investigations were conducted into rapid
turning. First, rapid turning was conducted at each velocity,
vavg , with a fixed turn angle, θTurn = 45◦. Secondly, rapid
turn optimizations were conducted at a fixed velocity, such
that vavg = 2.0m/s, and multiple turn angles, such that
θTurn ∈ {22.5◦, 30◦, 45◦, 60◦, 90◦}.

Finally, optimal trajectories for each phase described in
Section II-B5 were stitched together to generate a long-
time-horizon trajectory, in which the robot started at rest,
accelerated to a steady-state velocity, performed a rapid turn,
proceeded with a steady-state velocity and then decelerated
back to rest.

These results are split into three sections, and detailed
below:

A. Turning at varying speeds

In Table I, the characteristics of the trajectories conducting
a rapid turn with a fixed turn angle, θTurn = 45◦, at
multiple speeds, such that vavg ∈ {0.5, 1.0, 2.0, 4.0}m/s, are
presented. Five rapid turn trajectories were generated at each
speed of interest.
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As the speed of the robot increased, a decreasing trend was
noticed in the average contact time relative to the average
trajectory duration. Contact occurred 75.24% of the trajectory
duration when the robot was turning at 0.5m/s; 61.19% at
1.0m/s; 34.38% at 2.0m/s; and 26.02% at 4.0m/s.

Additionally, an increasing trend was noticed in the amount
of slip relative to the average contact time. Slip occurred
93.32% of the average contact duration at 0.5m/s; 94.42%
at 1.0m/s; 99.65% at 2.0m/s; and 100% at 4.0m/s.

TABLE I
CHARACTERISTICS OF RAPID TURNS CONDUCTED AT VARYING SPEEDS.

Average Speed [m/s] 0.5 1.0 2.0 4.0
Mean traj. duration [ms] 493.16 469.75 390.20 495.54
Variance in traj. duration [ms] 4.04 7.62 0.07 2.8
Mean air time [ms] 122.11 182.29 256.03 366.57
Variance in air time [ms] 2.15 7.52 0.11 1.96
Mean contact time [ms] 371.06 287.46 134.17 128.97
Variance in contact time [ms] 0.45 14.49 0.13 0.82
Mean slip time [ms] 346.29 271.44 133.71 128.97
Variance in time [ms] 0.45 14.49 0.13 0.82

In Fig. 3, the optimal trajectories for the change in heading
angle of the robot conducting 45◦ rapid turn at varying speeds
can be seen. An overshoot in the turn angle was present in all
of the turns, and the magnitude of the overshoot was noticed
to increase proportionally to the speed of the robot. For turns
conducted at 0.5m/s an overshoot of 0.25◦ was observed;
10.07◦ at 1.0m/s; 21.29◦ at 2.0m/s; and 35.80◦ at 4.0m/s.

Fig. 3. The image displays the optimal trajectories for the robot conducting
a 45◦ turn at varying speeds.

B. Turning at varying degrees
In Table II, the characteristics of the trajectories con-

ducting rapid turns at varying turn angles, θTurn ∈
{22.5◦, 30◦, 45◦, 60◦, 90◦}, at a fixed speed, vavg = 2.0m/s,
were presented. Five rapid turn trajectories were generated at
each turn angle of interest. The characteristics relevant to 45◦

turns were displayed in Table I under the 2.0m/s column.
A flat trend was noticed in the average contact time relative

to the average trajectory duration, ranging between 31.00%

and 41.15%. Similarly, a flat trend was noticed in the average
amount of slip relative to the average contact duration, rang-
ing between 97.75% and 100.0%. An increasing trend was
noticed in the average trajectory duration: 331.67ms at 22.5◦;
353.46ms at 30◦; 390.20ms at 45◦; 484.77ms at 60◦; and
566.43ms at 90◦.

However, a relatively flat trend was noticed in the amount
of overshoot relative to the turn angle. An overshoot of 4.45◦

was observed for a 22.50◦ turn; 24.07◦ for a 30◦ turn; 13.84◦

for a 45◦ turn; 14.48◦ for a 60◦ turn; and 9.84◦ for a 90◦

turn. Fig. 4 displays the optimal trajectories for the change in
heading angle of the robot conducting a rapid turn, of varying
degrees, at 2.0m/s.

TABLE II
CHARACTERISTICS OF RAPID TURNS CONDUCTED AT VARYING TURN

ANGLES.

Turn angle [◦] 22.5 30 60 90
Mean traj. duration [ms] 331.67 353.46 484.77 566.43
Variance in traj. duration [ms] 3.55 1.86 3.14 5.76
Mean air time [ms] 195.20 220.88 334.46 341.82
Variance air time [ms] 0.59 0.83 3.22 1.27
Mean contact time [ms] 136.47 132.58 150.31 224.61
Variance contact time [ms] 1.64 1.79 0.92 3.16
Mean slip time [ms] 133.39 129.39 150.12 224.61

Fig. 4. The image displays the optimal trajectories of the change in heading
angle of the robot conducting rapid turns at varying degrees.

C. Long-Time-Horizon Trajectory

Typically, rapid turns are conducted once the robot has
reached a desired speed and needs to rapidly change its
direction. To make the results presented in this research more
realistic, an optimal 45◦ turn was stitched onto acceleration,
deceleration, and steady-state trajectories to generate a long-
time-horizon trajectory. Fig. 5 shows the speed and the heading
angle profile of this long-time-horizon trajectory. The turn was
only initiated after an acceleration trajectory and two steady-
state periodic steps (0.86s into the trajectory). During the turn
phase, the heading angle was offset as specified. Finally, the



Vol.114 (3) September 2023 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 85

6

trajectory concludes with two more steady-state periodic steps,
and a deceleration trajectory. The total trajectory duration was
2.34s long.

Fig. 5. The image displays the speed profile along with the heading angle
profile of a long-time-horizon trajectory.

IV. DISCUSSION AND CONCLUSION

In this letter, the presence of slip is shown to be significant
in performing turning manoeuvres. Comments on the kine-
matic trends that emerged during these turning manoeuvres are
also made. Two different trajectory optimization experiments
are presented in this research, namely: rapid turning at varying
degrees with a fixed speed, and rapid turning to a set degree
at varying speeds.

Results shown in Section III are significant as they show an
initial insight into how a bipedal robot should perform turning
manoeuvres, especially concerning slip. These results show
the importance of modelling friction as well as allowing the
slip condition to occur (through the use of contact implicit
methods). Table I, and Table II, both indicate significant
amounts of slip needed for conducting a rapid turn at all speeds
and turn angles investigated. On average, slip occurred at least
93.32% of the contact time while conducting 45◦ rapid turns at
all speeds investigated. Similarly, slip occurred at least 97.52%
of the contact time while conducting rapid turns at 2m/s at
all turn angles investigated. Additionally, a long-time-horizon
trajectory is generated to show that the robot (in simulation)
is capable of accelerating to, and decelerating from a steady-
state gait, as well as being able to perform a rapid turn from
the steady-state gait.

Further, this research set out to comment on kinematic
trends noticed when conducting rapid turns. Fig. 3, and Fig.
4, provide evidence of turn overshoot for all optimal results
displayed. However, it is also noted that for rapid turns
conducted at 2.0m/s with varying turn angles, the overshoot
is approximately the same magnitude, ranging between 5.26◦

and 14.12◦. Whereas, the overshoot increased with the speed
for 45◦ turns conducted at varying speeds. Similar comments
can be made when analysing the initial undershoot for all
turns. This is inline with the observation made by Perkins
et. al., that the overshoot is proportional to the speed of the
turn, and not the degree of the turn [3].

V. FUTURE WORK

Future work involves implementing these trajectories onto
the bipedal robot shown in Fig. 1, which is currently under
construction. This will involve developing controllers to ensure
that the robot accurately tracks the generated trajectories.
Some of the parameters in the optimizer may have to be
tweaked, should the developed robot drastically differ from
the mathematical model used.
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