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1   Abstract—There is a significant population of hearing-
impaired people who reside in South Africa; however, 
South African Sign Language (SASL) has not yet been 
recognized as South Africa’s 12th official language, resulting 
in slow uptake of this important language. Since most 
people do not know SASL, there is a need for gesture 
recognition systems that convert Sign Language (SL) to 
verbal and/or text to reduce the communication barriers 
between the hearing and the hearing-impaired. This study 
presents an application for gesture recognition in 
converting SASL to both a verbal format and a textual 
format. By using gesture recognition from a single wearable 
glove, hand gestures were quantified, categorized, and then 
converted into an auditory format and played on a speaker, 
as well as the equivalent textual information displayed on 
an LCD screen. The complete prototype consists of a 
wearable glove with a transmitter and an associated 
receiver box which were all designed to cost less than $150. 
The glove consists of five flex sensors that measure the 
handshape and an inertial measurement unit which 
measures the hand motion. The handshape and motion data 
are processed and wirelessly transmitted to a receiver box. 
This then displays the associated English character on an 
LCD while also playing the audio on a speaker. The SL 
converter can convert the 26 letters of the SASL manual 
alphabet with an overall accuracy of 69%, It can also 
convert common words and phrases, as well as proper 
names when fingerspelled.  

Index terms— flex sensors, gesture recognition, hearing 
impaired, South African Sign Language, wearable glove   
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I. INTRODUCTION

outh African Sign Language (SASL) is the language 
primarily used by the South African Deaf community. Just 

like spoken languages, Sign Language (SL) is also a natural 
Language and signers use it to learn, communicate, and express 
their viewpoints. While SASL is still not understood by the 
majority of South Africans, in 2018, it was officially recognized 
as a home language in the South African education system [1]. 
While there are initiatives aimed at expanding the use of SL, 
there is a dire need for alternative modes of communication for 
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the Deaf community. Two modes include the conversion of SL 
to visual text and/or audible voice. Either of these two modes 
(text or voice) could reduce the communication barrier between 
hearing and hearing-impaired people. For a SL converter to 
offer a viable solution, some design goals need to be attained; 
namely, devices ought to fully represent all the linguistic 
properties of SL; such devices must be comfortable for the 
signer to wear and portable to use; and finally, these devices 
must be affordable.  

The conversion process of SL to verbal starts with a hand 
movement and a measurement of this movement, which must 
be recognized by a computing device. There are two main types 
of gesture recognition techniques for hand motion, namely, 
image-based, and non-image-based. Image-based techniques 
make use of a camera to capture the hand configurations. Non-
image-based techniques make use of sensors to capture hand 
configurations which are implemented as wearable gloves and 
bands [2]. 

Once the gesture data has been captured, it is then processed 
into meaningful information by microprocessors—acting as the 
interface between the signs made by the signer and the 
representation of those signs into a verbal format. An example 
of a microprocessor that is viable for this application is the 
Arduino open-source programmable microcontroller board [3]. 
Arduino-based devices can process the analog information from 
the wearable glove and convert it into text and speech. In this 
article, a SL to text and audio converter is presented, which is 
called the AudibleSigns Sign Language converter.  

II. LITERATURE REVIEW

A. South African Sign Language
South African Sign Language, just like any other SL, is 

characterized by its phonology. The SL phonological 
parameters include handshape, palm orientation, location, 
movement, and non-manual features which are not executed 
using hands, such as facial expressions [4]. As shown in Fig. 1, 
the SASL fingerspelling alphabet consists of 26 manual letters 
of the English alphabet. These manual alphabet signs are 
divided into static and dynamic gestures. The dynamic gestures 
are for signing the letters “J” and “Z”, as shown by the different 
handshapes and hand movements. The remaining letters are 
static gestures shown by handshapes only. Since SL does not 
have all words represented as signs, fingerspelling is an 
important part of SL. The English language, for example, has 
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over 400 000 words, although only about 170 000 are in current 
use [5]. SASL does have over 1000 words, but fingerspelling is 
still very important for names, places, and objects. 
Fingerspelling often evolves into generally accepted signs as 
well. For example, the sign for the month of July, is the 
fingerspelling of J-U-L-Y. There are many of these cases.  

Fig. 1. South African Sign Language manual alphabet [1]. 

B. Gesture recognition methods
The reason why hand gestures are important in SL is the

critical role the hand plays in displaying a significant number 
of recognizable configurations. Various techniques have been 
implemented to capture and recognize these hand gestures. 
Smart gloves, non-wearables, and wearable bands are the types 
of non-image-based techniques used for hand gestures. Smart 
gloves usually require wire connections and sensing devices. 
Sensors in the form of accelerometers, gyroscopes, flex sensors, 
proximity sensors, and abduction sensors are common in glove 
applications [6]. These sensors are mounted on a wearable 
glove, and they aim to precisely calculate the hand and finger 
orientation and configuration.  

Non-wearable sensors make use of radio frequency (RF) 
signals to detect gestures without physical contact with the 
human body [2]. An example is Google’s Project Soli, which 
makes use of low-power radar sensors for gesture recognition. 
The radar emits a beam of electromagnetic waves that physical 
objects (the hand) reflect back to the radar. It can capture 
information about the object’s shape, size, orientation, distance, 
and velocity [7].  

Another method called SignFi uses Wi-Fi signals to 
recognize hand gestures. The signer makes signs in front of a 
computer at the Wi-Fi station, which in turn sends data packets 
over Wi-Fi to the computer via the access point. The packets 

are then classified by a convolutional neural network to give an 
output word [8].  

Band-based sensors, which is another type of wearables, rely 
on sensors placed on a wristband. An example of this technique 
is the Myo Armband that makes use of arm muscle patterns to 
recognize sign gestures. An electromyography sensor on the 
armband measures the arm muscle’s electrical pulses which 
classify the hand gestures with the help of support vector 
machines [9].  

Image-based techniques make use of a camera as the input 
device and includes markers, stereo cameras, and depth sensors. 
Markers are placed on the human hand to detect hand motion. 
These markers are either reflective—they are passive, and they 
shine when exposed to a strobe—or they may be active—light-
emitting diodes that have a sequence of lighting [10]. A camera 
captures the hand positions and these positions are interpreted 
onto a 3D space. Detection and segmentation of the predefined 
colors from the captured image would show which fingers were 
active when the gesture was made.  

The early researchers who used image-based methods used 
single cameras in gesture recognition applications. However, 
these single cameras were found to be inaccurate for vigorous 
hand gestures due to restricted viewing angles. Stereo cameras 
were then introduced to capture vigorous hand gestures. They 
were used to build a 3D environment that has the depth 
information of objects. A depth sensor is a non-stereo device 
with its output as 3D information, which is better suited to 
preventing problems of calibration and illumination—a known 
challenge with stereo camera rigs [2].  

Time-of-Flight technology makes use of depth sensing by 
measuring the time of flight of short light pulses emitted by an 
infrared projector, then reflected and captured by a sensor. This 
technology has been implemented in Microsoft’s Kinect camera 
system [11]. The Kinect relies on a depth sensor that detects 
motion and creates a 3D scan of captured objects. It has an 
infrared projector that illuminates the object and an infrared 
sensor that reads the infrared light and measures the depth of 
the pixels of the captured images.  

C. Comparison between image and non-image-based gesture
recognition techniques

The main advantage of image-based techniques is the use of 
a camera to detect hand motion, which is preferred over having 
a wearable glove [6]. The unconstrained nature, in terms of 
making handshapes, of the image-based technique allows the 
signer to naturally execute the sign without the hindrance of a 
glove with sensors worn on the hand. Important depth and color 
data of images can be obtained by using a camera [12]. If used 
with the Microsoft Kinect camera, there is an increased 
capability to detect handshapes [6]. Despite its successful 
application in 3D human action gaming, human skeleton 
estimation, healthcare [13], sports [14], and facial recognition 
[15], there is still a problem with its application in vigorous 
hand gesture recognition.  

According to [16], they have found that the Microsoft Kinect 
camera has a low-resolution depth map (640×480) which works 
well for tracking large objects like the human body. However, 
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there are some difficulties in detecting and segmenting small 
objects from images using this low resolution. With the human 
hand/fingers occupying a small space of the image/frame, the 
process becomes complex. The signer’s position might also 
change in front of the camera which results in variable hand 
size. Thus, for camera-based methods to be effective as hand 
gesture recognition, the signer must keep their hand in front of 
the camera in the correct predefined position for a considerable 
amount of time [17]. With SL relying on a fairly rapid and 
continuous hand motion, this limitation of momentarily paused 
hand motions is thus not ideal. This critical challenge is 
overcome by non-image-based techniques—wearing a glove, 
for example—which does not require the signer to be in the 
view of a camera, in turn improving the signer’s mobility [6].  

Non-image-based gesture recognition techniques require 
physical sensing of the movements using sensors on the person. 
Historically this was bulky and limited the person’s mobility. 
However, modern-day technology has enabled the design of 
wearable devices that do not need to have a physical connection 
to a computer, thus allowing for portability and flexibility of 
movement. For instance, a wireless data glove offers reasonable 
flexibility [18]. With the miniaturization of electronic devices, 
wearable gloves have become lightweight, making them more 
convenient to wear [6]. Accelerometers and flex sensors, unlike 
optical sensors in the image-based techniques, are not affected 
by a cluttered background or illumination fluctuations [16], 
which are both challenges for the image-based gesture 
recognition systems.  

Despite most sensor-based gloves being unaffected by 
ambient lighting, the sensors do sometimes require calibration 
to distinguish gestures. This calibration requirement does 
hinder the natural gesture articulation [18]. Most modern-day 
data gloves make use of flex sensors, which are low cost and 
quite hardy 2, but these sensors often have non-linearity and 
provide less sensitivity at minute bending angles. For example, 
finger pivot joints provide a wide angular movement ranging 
from small angles to large angles [19], with all these angles 
being important in the accurate recognition of the hand sign. 
With the complex phonology of SL and the added challenge of 
handshape variability, there is a need to improve the linearity 
and sensitivity of flex sensors if they are to be used with more 
accuracy. 

From the above comparison, each mode of gesture 
recognition has advantages and disadvantages, but for this 
study, the non-image-based method of the wearable glove was 
found to be the most feasible option. The feasibility is defined 
in terms of overall development cost, affordability for the user, 
and increased mobility for the signer. In this study, a wearable 
glove and a converter device utilizing wireless communication 
were developed. The prototype presented in this article was 
designed to convert the 26 letters of the SASL manual alphabet 
and common words and phrases that have specific signs in the 
SASL dictionary, as well as words that do not have specific 

 
2 The resistive flex sensors can be bent, dropped, stood on, and even wetted. 

However, they do wear out from extensive use which is discussed as one of 
their limitations.   

signs in the SASL dictionary. The description of the prototype 
follows next.  

III. CONVERTING SOUTH AFRICAN SIGN LANGUAGE TO 
VERBAL: AUDIBLESIGNS 

AudibleSigns is a device that converts SASL to text and 
speech to improve communication between hearing and non-
hearing people. The main parts of the prototype are the wireless 
glove and the standalone wireless converter device (Figs. 2 & 
3). Wireless technology was used to improve the comfort of the 
signer by removing any wires from the glove to the converter. 
The 2.4 GHz nRF24L01 wireless transceiver pair enables 
wireless communication between the glove and the converter 
device; thus, this is a two-part system—a transmitter side and a 
receiver side. The type of microcontroller board used for the 
glove and converter device is the Arduino Nano, based on the 
ATMEGA328 microprocessor. The prototype was designed for 
converting the SASL manual alphabet as well as words that do 
not have specific signs in the SASL dictionary. The messages 
were first converted from text to speech using an online text to 
speech service, and then the audio files were downloaded and 
stored on a microSD card. Rechargeable lithium polymer 
batteries were used owing to their smaller footprint and longer 
lifespan. 

A. Method  
The scope of the research and the prototype design were 

centered on four SL phonological parameters of the hand: 
handshape, palm orientation, movement, and location. This 
excludes non-manual features or non-hand signs like facial 
expressions and head movements. The block diagram and the 
hardware design for the two-part prototype are shown in Figs. 
2 and 3.  

 

 
Fig. 2.  Block diagram showing the hardware implementation of the 
AudibleSigns Sign Language converter. 
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Fig. 3.  Image of the glove and converter device of the AudibleSigns Sign 
Language converter prototype. 

 
B. Transmitter Side  

 Five flex sensors were sewn on top of each glove finger 
compartment to allow the flex sensors to capture the handshape 
by measuring the finger flexion. Flex sensors behave like 
variable resistors whose resistance is directly proportional to 
the amount of bend. Each flex sensor is connected between a 
5V supply and a 10kΩ fixed value resistor to form a potential 
divider circuit to create a variable voltage that is dependent on 
the change in resistance. This output voltage is inversely 
proportional to the flex sensor resistance. The output from each 
potential divider circuit, a varying voltage, is then fed into the 
Arduino Nano, which reads this as an analog signal.  

The MPU6050 was used as the inertial measurement unit 
(IMU) to measure the hand orientation and movement. It 
consists of a three-axis accelerometer and a three-axis 
gyroscope that measures the hand’s acceleration and rotation, 
respectively. These were measured with respect to the pitch, 
roll, and yaw hand orientations as shown in Fig. 4. The 
acceleration and rotation are both converted to pitch, roll, and 
yaw angles measured in degrees. The values from the flex 
sensors and IMU are read as analog signals by the Arduino 
Nano. The Arduino Nano converts these analog signals to 
digital data using the onboard analog-to-digital converters. The 
nRF24L01 transmitter sends the data from the sensors as RF 
signals to the nRF24L01 receiver on the converter side. 

 

 
Fig. 4.  Pitch, roll, and yaw hand orientations [20]. 

 
 
 

C. Receiver side 
The receiving and converting device uses the nRF24L01 

receiver, which picks up the signals transmitted from the glove. 
A local SASL database was created using the data from the 
sensors and is stored inside the memory of the Arduino Nano 
on the receiver side. When a sign is made by the signer, the 
Arduino Nano compares the received data with the one in the 
SASL database and looks for the closest match. When there is 
a match, the microcontroller sends serial commands to the LCD 
to print the letter or message that corresponds to the sign which 
is then played audibly on the speaker. The audio messages 
played by the mini MP3 player are stored on a 2GB microSD 
card formatted as FAT32. The audio files are played via a serial 
interface from the Arduino.   

 
D. Power source 

 The power supply design is the same for the transmitter side 
(glove) and the receiver side. Both the glove and the receiver 
device are powered by 3.7V rechargeable lithium polymer 
batteries. Each battery terminal voltage is boosted by a 5V DC 
booster to power each Arduino microcontroller on the glove and 
receiver. The 5V from the DC booster is regulated down by a 
3.3V voltage regulator to power the 3.3V-tolerant components 
like the IMU and nRF24L01 transceivers. Shunt capacitors on 
the input and output pins of the 3.3V regulator smooth any AC 
ripple that might be present in the DC supply. The dual power 
supplies of 3.3V and 5V are manually controlled by slide 
switches to turn the devices ON or OFF.  

E. Functionality 
Examples of the performance of the AudibleSigns SASL 
converter are shown in Figs. 5 to 7. Figs. 6 and 7 show the 
conversion for words that do not have specific signs in the 
SASL dictionary. For such words to be converted to verbal, the 
letters of the words are individually finger-spelled. The LCD 
displays each letter of the word, one after the other, while the 
audio speaker mounted on the receiver plays the corresponding 
sound. 

 
Fig. 5. Signing letter “A” and its associated text on the display at the receiver. 

 

 
Fig. 6.  Signing the word “read” by fingerspelling 

Hand gesture Receiver’s text display

E R A D 



Vol.114 (2) June 2023 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 53

 

 
Fig. 7.  Corresponding LCD text display for fingerspelling the word “read” 

 

F. Sensor calibration and test results 
The flex sensors and IMU were calibrated using the Arduino 

serial monitor. Some of the calibration results for letters “A” 
and “B” are shown in Figs. 8 and 9. The labels FLX1-FLX5 are 
values for flex sensor readings measured in degrees, while ax, 
ay, and az are accelerometer readings. The readings shown as 
gx, gy, and gz are gyroscope values measured in degrees per 

second. The x-sets represent the pitch of the hand, the y-sets 
represent the roll, and the z-sets represent the yaw. Comparing 
Figs. 8 and 9, the gyroscope readings are almost the same, and 
owing to “A” and “B” being static gestures, there is no rotation 
of the hand. The accelerometer readings were mostly utilized 
for distinguishing static gestures.  

Owing to the high sensitivity of the sensors to slight finger 
flexion and hand movements, the sensor values for each gesture 
are not constant despite maintaining the same handshape for 
each case. To improve the accuracy of distinguishing the signs, 
certain ranges were allowed for each set of sensor values while 
making sure that the handshape still represents the correct sign. 
Giving a range of acceptable values for each sensor reading 
helps to minimize fluctuation of readings that occurs with 
inconsistent bending of fingers and hand orientation for the 
same sign. This small deviation from the ideal handshape for 
each sign is such that the deviating handshapes still resemble 
the intended sign. Table 1 shows how the ranges were set for 
letters “A” and “B” in the SASL database. 

 
 

 

 
Fig. 8.  Arduino serial monitor display for letter “A” for the AudibleSigns Sign Language converter. 

 

 
Fig. 9.  Arduino serial monitor display for letter “B” for the AudibleSigns Sign Language converter. 

 
 

TABLE I  
DATABASE FOR LETTERS “A” AND “B” WITH RANGES SHOWN IN DEGREES 

Letter FLX1(°) 
Little finger 

FLX2(°) 
Ring finger 

FLX3(°) 
Middle finger 

FLX4(°) 
Index finger 

FLX5(°) 
Thumb 

ax(°/𝑠𝑠𝑠𝑠) 
Pitch 

ay(°/𝑠𝑠𝑠𝑠) 
roll 

A 30-50 35-55 45-65 29-50 110-125 ax≤10 ay≥245 

B 100-120 85-105 120-135 95-105 85-100 ax≤10 ay≥245 
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  At least 5 trials for each letter were undertaken for the slight 
variations in handshape from the ideal handshape. When 
performing the trials, the position of the hand in front of the 
signer (determined by the elbow flexion and extension), as well 
as the extension and flexion of the wrist and fingers were 
considered for each letter. The corresponding sensor values 
were captured, as shown in Fig. 9. All the values for each sensor 
in all the trials were compared and their minimum and 
maximum values were then determined. This method was 
repeated for all the letters, and this was how the database for 
each letter was created (Table 1 shows the ranges for letters A 
and B). The ranges shown in Table 1 were chosen after trying 
out possible and acceptable deviations of each handshape from 
the ideal handshape for each sign and capturing the values for 
all the trials. These ranges of values were also chosen in such a 
way that they would improve the accuracy of distinguishing one 
sign from the others. For some letters a trade-off was made; if 
the range was set too wide, the categorization of the correct 
letter may overlap into another letter. 
 

G. Signing accuracy 
Fig. 10 shows the prototype’s accuracy when signing all of 

the 26 letters of the manual alphabet. To determine the 
accuracy, 10 repetitions were completed for each letter, and a 
percentage accuracy was ascertained. Of the 26 letters, 18 had 
an accuracy of at least 70%; eight had an accuracy of 40% or 
lower. Of the 18 letters with 70% accuracy or better, the average 
accuracy was 86.8%. The average accuracy of all 26 letters was 
69.6%. It was easier to sign words that had letters with an 
accuracy higher than 40%. These words are those with signs 
that are not found in the SASL dictionary and require 
fingerspelling of each constituent letter. The word “read” was 
tested as an example. Furthermore, the phrase “thank you” with 
specific dynamic signs in the SASL dictionary was tested and 
had 100% accuracy.    

 

 
Fig. 10.  Accuracy of AudibleSigns for each letter. 

 

H. Costing 
The breakdown of costs for the prototype is shown in Table 

II. The total cost is under R2500 (<$150).  
 

TABLE II 
COST BREAKDOWN FOR AUDIBLE SIGNS PROTOTYPE 

                   Description  Cost (ZAR) 
  Flex sensor × 5 900 
  Electronic components and enclosure 521 
  Arduino Nano × 2  278 
  DfPlayer 118 
  Liquid Crystal Display  115 
  LiPo charger + boost converter × 2 110 
  LiPo battery × 2 90 
  MPU6050 (IMU) 89 
  Protoboards × 4 65 
  Speaker 65 
  Glove 30 

Total R 2381  
($144) 

 

IV. LIMITATIONS 
The prototype was designed for the following configurations: 
i. Converting 26 letters of the SASL manual alphabet. 
ii. Converting common words and phrases that have 

specific signs in the SASL dictionary. For this prototype, 
“thank you” was used for demonstration purposes. 

iii. Converting some words that do not have specific signs 
in the SASL dictionary, such as people’s names. 

The prototype was not designed to convert the entire SASL 
dictionary, which has over 1000 signs. Due to only one glove 
being used in this prototype, the prototype cannot capture all 
aspects of the SASL phonology. The protype was specifically 
designed to convert the manual alphabet as used in 
fingerspelling as fingerspelling is an important part of SL. Thus, 
the focus for this prototype was on words and phrases that non-
signers would not readily understand. 

Due to the constraints caused by the flex sensors, there are 
some accuracy limitations in distinguishing similar signs.  
These are for signs of A, E, M, N, O, S, T, U, and V. While the 
use of flex sensors did manage to solve the problem, flex 
sensors alone are not the best method for capturing handshape. 
Flex sensors measure finger flexion, not abduction and 
adduction. This means that they are not accurate at signing 
letters like “U” and “V” which are distinguished by finger 
abduction and adduction.  

The flex sensors are susceptible to wear and tear owing to 
repeated extensions and flexions, resulting in reduced 
sensitivity of the sensors. Improvements in the flex sensor 
materials would need to be investigated to increase the lifespan.  

V.   DISCUSSION 
Methods of reducing communication barriers between 

hearing and non-hearing people is an important field of 
research. Deaf people face additional daily challenges owing to 
communication barriers between hearing-impaired and non-
hearing-impaired people, resulting in reduced employment 
opportunities and difficulties in accessing healthcare [21]. Deaf 
communities may be assisted with a SL to verbal device to 
reduce possible marginalization of Deaf communities owing to 
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a lack of interactions within hearing communities. The 
AudibleSigns prototype presented was designed to convert the 
manual signs of the 26 letters of the SASL manual alphabet. 
Thus, words that do not have specific signs in the SASL 
dictionary can also be converted to audible language. This 
prototype can also convert common phrases in the SASL 
dictionary. This prototype achieves an accuracy in 
distinguishing the manual alphabet signs using the available 
sensors despite their limitations, achieving an average success 
rate of 69.6%. Most letters achieved high conversion accuracy; 
however, there were a few letters that did not. The main reason 
behind the lower success rate is that the flex sensors used were 
55.8 mm in length and were cheaper than the longer ones, 
measuring 115 mm. The shorter flex sensors used were not long 
enough to entirely cover the length of fingers; thus, there was a 
problem with the flex sensors not being bent enough at the distal 
interphalangeal joints. This made it difficult to distinguish 
between signs with similar handshapes. Longer flex sensors 
would achieve better accuracy than shorter ones.  

 There was a trade-off between accuracy and the deviation 
of handshapes during signing. Narrowing down the range of 
values for each flex sensor improves the signing accuracy but 
limits the deviations of handshapes. These deviations are 
important considerations because they result from the signer 
being inconsistent with their handshape every time they make 
the same sign. In practice, it is very difficult to maintain the 
exact handshape repeatedly. Therefore, an optimum trade-off 
was chosen during design to make sure that all the letters could 
at least be converted correctly despite the prototype achieving 
low accuracy for some letters. The results show that to a greater 
extent, the designed prototype of a single glove system is an 
affordable pathway for bridging the communication barrier 
between hearing and non-hearing people which can be used as 
a basis for future design improvements. The AudibleSigns 
converter offers portability owing to it being battery operated 
but there is still a need for improvements in gesture recognition 
of certain manual alphabet letters such as the letters N, S, U, V, 
Z. Improvements in the type of flex sensors used, as well as the 
addition of a second glove are possible methods for increasing 
the range of usability and accuracy for a SL to verbal converter. 
Flex sensors can be used together with contact sensors placed 
on fingertips and between fingers to measure the finger 
abduction and adduction which will improve the accuracy of 
the conversions. Thus, improvements to the range of the signs 
to verbal are achievable. 

The focus for this prototype was on words and phrases that 
non-signers would not understand. This is particularly useful in 
healthcare settings whereby specific medical terms or 
descriptions need to be communicated to the healthcare 
practitioner. In such cases, the hearing-impaired individual 
could use such a device to fingerspell her symptoms to her 
healthcare worker.  

VI. RELATED WORK 
The work on AudibleSigns builds on ideas from previous 

prototypes that were made for other countries’ SL. As SL is not 

a universal language but rather country specific, AudibleSigns 
was developed in the South African context. Within the SASL 
context, work presented in [22] from the University of Cape 
Town focused only on developing a SASL dataset from a 
Bluetooth glove using machine learning algorithms. The work 
was then improved in [23] where a smart phone was used to 
convert and display only 24 static signs and 7 numerical digits 
from the Bluetooth glove. In comparison, AudibleSigns 
captures both static and dynamic gestures and goes beyond 
single letter conversion by demonstrating phrase or word 
construction through fingerspelling. In addition, with a 
smartphone, the user must hold the phone with the non-signing 
hand in a position that would show the phone’s display to the 
person that the user is communicating with. This can be 
strenuous and uncomfortable for the user. The convertor device 
that AudibleSigns uses can be hung from one’s neck using a 
string/strap and can rest on the chest area making it more 
comfortable to use. This is also safer than holding a 
smartphone, which in South Africa could be a risky activity. 

A single glove prototype was developed for Arabic SL called 
the Sign-to-Speech/Text [24]. This prototype uses flex sensors 
only, whereas the AudibleSigns’ glove has flex sensors and an 
inertial measurement unit (IMU) for better sign capturing of the 
SASL. It also uses an Arduino Nano and an Arduino Mega2560 
compared to the two Arduino Nano microcontrollers used for 
AudibleSigns. For the audio processor, the Emic 2 text to 
speech module was used in this Arabic to SL converter 
prototype, while a mini MP3 player was used for the 
AudibleSigns. 

A group of researchers at Notre Dame University developed 
their S2L System, which is a Sign to Letter translator system 
[25]. This affordable system uses a five-flex sensor-based glove 
and has an LCD to display the corresponding signed letters. The 
system has an overall signing accuracy of 94%; however, the 
crucial “J” and “Z” signs have a lower accuracy of 85%. This 
lower accuracy is due to the dynamic nature of these signs, 
which flex sensors cannot yet accurately detect. Owing to the 
S2L system lacking an audio output, the researchers 
recommended a future improvement that replaces the LCD with 
a mobile phone to incorporate verbal speech into their system. 
The AudibleSigns prototype has an audible output. 

Scholars from the American International University in 
Bangladesh developed the Speak Up prototype for speech-
impaired people [3]. The system translates signs made by a flex 
sensor-based glove into both text and speech using an LCD and 
a speaker. The system does not make any reference to any SL; 
thus, the user makes four random gestures (defined by the 
designer) that translate into audible and visual phrases.  

Scholars from the University of Washington in the United 
States won the Lemelson-MIT Student Prize for their work on 
the SignAloud project [26]. This is a system of a pair of gloves 
that recognizes American SL signs into words and phrases. It 
uses Bluetooth communication between the gloves and a 
computer that will produce the corresponding phrases via the 
speaker. 
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The success of having devices that converts SL to verbal 
being marketable relies on how much they replicate the art of 
SL. For instance, some devices have been developed where any 
random signs (with no reference to SL) were made to give the 
verbal output of words and phrases that already have specific 
signs in the SL dictionary. Such devices were criticized for not 
representing SL as a Natural Language, implying that they 
could not be marketed.  

VII. FUTURE STUDY 
The overall accuracy of the single glove prototype can be 

improved by adopting more sensitive approaches to sensor 
movement tracking. An example includes metallic nanomeshes 
that make soft conformal electrical interfaces with the skin. 
This approach has been used in recent wearable electronics as 
highly precise sensing platforms [27]; however, their 
fabrication costs are high. New technologies such as microfibre 
sensors have emerged in gesture recognition for data glove 
applications. They are a potential replacement for flex sensors 
as they have higher sensitivity, a faster response, and a smaller 
footprint than flex sensors. This technique was developed for 
the InfinityGlove for gaming applications [28]. Future research 
could investigate this technology for SL translation. 

To improve the portability of a SL converting system, 
improvements can focus on adding the functionalities of these 
systems to our smart devices. Some of the discrete components 
of the converting device can be miniaturized and fabricated on 
nanochips to reduce the number of standalone components, 
which in turn reduces the overall footprint. These nanochips can 
then be integrated into smart watches. In addition, Bluetooth 
connectivity can be used to link the glove to a mobile phone. 
The mobile phone would then provide both the audio and visual 
outputs.   

If these SL devices were to be marketed as a complete 
solution, they should address most aspects of SL, including 
sentence construction and non-manual features like facial 
expressions. The devices should be accurate when signing both 
static and dynamic gestures. Since not all SLs across the world 
are the same, there is a requirement for the SL converter to be 
specifically designed for the country of use. Overcoming these 
challenges underscores the need for more research in trying to 
expand the reliability and accuracy of these devices. The 
application of artificial neural networks in gesture recognition 
also promises to be a viable solution [29].  

Lastly, it would be best to design systems that not only 
convert SL to verbal but also convert speech to gestures at the 
same time to have two-way communication between the Deaf 
and non-Deaf people. 
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