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Abstract—Traditional survey methods for gathering informa-
tion, such as questionnaires and field visits, have long been used
in East Africa to evaluate road conditions and prioritize their
development. These surveys are time-consuming, expensive, and
vulnerable to human error. Road building and maintenance,
on the other hand, has long experienced multiple challenges
due to a lack of accountability and validation of conventional
approaches to determining which areas to prioritize. With the
digital revolution, a lot of data is generated daily such as call
detail record (CDR), that is likely to contain useful proxy data
for spatial mobility distribution across different routes. In this
research we focus on satellite imagery data with applications in
East Africa and Google Maps suggested inter-city roads to assess
road conditions and provide an approach for infrastructure pri-
oritization given mobility patterns between cities. With increased
urban population, East African cities have been expanding in
multiple directions affecting the overall distribution of residential
areas and consequently likely to impact the mobility trends
across cities. We introduce a novel approach for infrastructure
prioritization using deep learning and big data analytics. We
apply deep learning to satellite imagery, to assess road conditions
by area and big data analytics to CDR data, to rank which
ones could be prioritized for construction given mobility trends.
Among deep learning models considered for roads condition
classification, EfficientNet-B3 outperforms them and achieves
accuracy of 99%.

Index Terms—Deep-learning, mobile data, classification, vision
recognition, big data, satellite imagery

I. INTRODUCTION
A. Background

NTERCITY roads have always been important to our

countries’ development because they enable capital and
labor to move easily through regions. Despite recent efforts
to improve inter-city routes to promote trade of goods across
East African cities, a significant number of roads directly
connecting cities and districts remain in poor condition [22].
Some of these routes are vulnerable to bad weather due to a
lack of pavement, making them dangerous to use, especially
during rainy seasons [24].

While there are technologies which address routing such as
Google Maps, they tend to focus on the fastest route. And
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options they have for avoiding problematic road conditions
such as tolls and railways, may not be applicable in developing
countries[3]. Furthermore, in East Africa and most developing
countries, the methodology and process for assessing road
conditions continues to rely heavily on field visits, surveys,
and questionnaires, which take a long time [3], are expensive,
and are vulnerable to human error [7]. And as a result of the
low visibility of these methods, corruption can occur in some
cases [27][10].

However, with the rise of digital devices and access to
continuously updated satellite imagery, it is possible to support
or replace survey based methods with new methods that could
enable conducting the assessment of road conditions and
infrastructure prioritization more quickly and accurately [30].
This would provide more visibility into road infrastructure
budgeting, enhance mobility and reduce travel risk under un-
favorable weather conditions. And given the fact that weather
patterns have been changing in various parts of the world
due to climate change [21], better ways of understanding road
conditions could also be very instrumental to transport industry
for adaptation planning [9][4].

Other than travel risk, there is also a number of not-
well connected routes between neighboring cities, whereby
traveling between neighboring cities is only easier if you
have to use a third connecting district. These cases are
known for hindering economic activities across neighboring
cities affecting various sectors such as agriculture, tourism,
education, health care etc, where there is always a constant
need of moving products or capital from one side to another.
Thus, a good way of assessing badly connected city routes
would also further contribute to better prioritization of route
maintenance and construction across regions for the benefit of
various sectors.

We assess route conditions using deep learning methods
and satellite imagery and provide a data oriented approach
to infrastructure prioritization, using mobility trends extracted
from fully anonymized Call Detail Record (CDR).

While machine learning techniques and deep learning meth-
ods in particular are now viewed as state-of-art in various
fields, their application still lags behind in developing coun-
tries, especially in the field of remote sensing [34]. Conse-
quently, some of the machine learning techniques such as
deep-learning, which have demonstrated great potential for the
analysis and modeling of unstructured data such as imagery,
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are not widely used in infrastructure related studies in East
Africa. This research also seeks to fill this gap by contributing
to existing academic knowledge of applying machine-learning
techniques to solve real life problems in East Africa using
deep learning[12][36] and big data analytics [37][23].

There are a number research works that have been done
in line with route conditions assessment [16][2][28], however
most of them are not applicable to Africa context, and a
few, none to our knowledge, have considered using both
CDR based mobility trends and road conditions to provide
an infrastructure prioritization approach in East Africa.

In this paper we conduct our research in East Africa,
focusing mainly on Rwanda, located at latitude:-1.940278
and longitude:29.873888. We assess 133 inter-city connecting
routes suggested by Google Maps API in the country and
provide a way for quick road condition classification and
infrastructure prioritization using satellite imagery and CDR
data.

B. Literature Review

Route infrastructure analysis and classification has been of
great interest to the research community around the world
especially for infrastructure monitoring and policy making.
Given a strong connection of road infrastructure and other
economic sectors, patterns underlying efficient and bad road
networks and their impact on other sectors, have been studied
in addressing multiple research problems across the globe.

Gibbons et al. assessed the impact of construction of new
road infrastructure in small towns in Britain. The researchers
measured exposure to transport improvement and estimated its
impact on employment and labor productivity. The research
shows that improved transport infrastructure such as construc-
tion of new road schemes has substantial positive effects on
area level employment and number of establishments. Where
by 1% increase to good road accessibility led to 0.3%-0.5%
increase in establishments and employment. The paper also
states that there was a strong positive correlation between
improved transport infrastructure and output per worker, wages
and use of intermediate inputs [11].

Petrucci et al. assessed road conditions during bad weather
periods in Italy. Researchers highlight that during bad weather
conditions, roads with bad conditions are likely to be affected
and cause life threatening risk. Landslides were the most
frequent cases. Among the assessed cases 84% of people
who were injured were motorists. And of the victims, 50 %
were killed along fast-flowing roads [26]. This highlights the
importance of well designed routes and continuous assessment
of road conditions.

Oshri et al. used deep learning and satellite imagery to as-
sess infrastructure quality in Africa [25]. While infrastructure
quality is one of the important features in United Nations
Sustainable Development Goals, the research highlights how
monitoring progress in developing regions is still expensive
using traditional survey methods and proposed a remote sens-
ing approach using deep learning. By training convolutional
neural networks (CNN), researchers were able to predict the
ground truth labels of the Afrobarometer round five survey.
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The labels comprised Electricity, Sewerage, Piped Walter and
Roads. The researchers achieved classification accuracies of
88%, 86%, T4% and 78% respectively.

Berriel et al. used deep learning for automatic classification
of crosswalks [5]. The research focuses on filling the gap of
zebra crossing classification problem for automatic retrieval
and annotation of crosswalks satellite imagery data. The results
of the research showed that deep learning could be used to
perform crosswalk classification with a 97% accuracy on a
global scale.

Surface object segmentation has also been done using satel-
lite imagery and deep learning, demonstrating the potential
of deep learning models to not only identify, but also detect
the boundaries of the object pattern throughout the learning
process. Using deep learning and satellite imagery, Bischcke
et al. segmented building footprints [6]. The study centered
on using a multi-task loss to develop semantic segmentation
approaches. The results showed that they were able to boost
accuracy by eight percent over current state-of-the-art semantic
segmentation methods.

Khan et al. studied automatic target object detection in satel-
lite images [ 8]. According to the writers, conventional image
feature extraction methods including Histogram of Oriented
Gradients, Gabor Feature, and Hough Transformation do not
work well for large datasets with varying sizes, orientations,
and noisy backgrounds. They propose using CNN to process
the set of target object pixels positions using an edge boxes
method. Van also used YOLT (you just look twice) CNN archi-
tecture to identify small and large objects in satellite imagery,
such as vehicles, planes, boats, buildings, and airports, more
quickly [35].

There are various ways of analyzing and classifying infras-
tructure to improve upon the traditional use of surveys.

Cole et al. conducted a research on the analysis and
detection of power outages in urban areas that may appear
as a result of natural and anthropogenic hazards damaging
physical infrastructure. To address this researchers applied a
feed forward neural network model on night light satellite
data and locally-relevant geo-spatial data, achieving Pearson
coefficients between 0.48 and 0.58. Cadamuro et al. assess
road infrastructure quality in Kenya using satellite imagery.
The researchers demonstrate how deep learning methods on
satellite imagery could be used for assigning grades on road
infrastructure in developing countries. In this paper the grades
considered were great, good, fair, bad, poor [&].

Khalil et al. assessed infrastructure growth in Dubai using
multi-temporal satellite imagery. The researchers use super-
vised and unsupervised learning classification methods such as
Jenks Natural Breaks Classification method, with image pro-
cessing to detect locations which experienced massive growth
of infrastructure in the city [17]. The results of the research
show that one could confidently quantify infrastructure growth
using satellite imagery and machine learning.

Clearly, a great deal of research has gone into using deep
learning on satellite imagery, and the findings have been re-
markable as compared to conventional image classification and
detection methods. In conclusion, as compared to conventional
field-intensive survey approaches, the combination of deep
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learning and satellite imagery has proven to be very cost-
effective and less time-consuming.

In this research we seek to use deep learning methods for
classification of roads in East Africa. The four categories
considered are (1) paved big road; (2) paved small road; (3)
not-paved big; (4) not-paved small (5) industrial zone. In the
following section we discuss our methodology starting with
the exploration of our data. We also use CDR data to assess
infrastructure prioritization for not-paved roads given mobility
patterns.

II. METHODOLOGY
A. Data

Satellite imagery used in this research is retrieved from
Google earth which is supported by Data SIO (Scripps Institu-
tion of Oceanography), NOAA (National Oceanic and Atmo-
spheric Administration), US. Navy (United States Navy), NGA
(National Geospatial-Intelligence Agency), GEBCO (General
Bathymetric Chart of the Oceans), Image Landsat, and Image
IBCAO (International Bathymetric Chart of the Arctic Ocean).
For resolution, we used a 1000 meters eye altitude and a 400
by 400 view per selection.

For mobility trend study, we have used fully anonymized
CDR data collected by Rwanda’s major network operators
(MNOs).

Below we describe and visualize various metrics of the
datasets being considered.

B. Roads Data

Using random sampling of spatial route areas, 50,000 thou-
sands images were retrieved under the four road categories:
paved big (5000), paved small (5000), not-paved big (10000),
not-paved small, (20000). Our target areas were guided by field
survey results obtained from Rwanda Transport Development
Agency (RTDA) report [1] on spatial distribution of inter-city
routes in Rwanda as highlighted in the map below, Figure 1.

Figure 1: Source: RTDA, Spatial distribution of routes and
conditions in Rwanda, 2020.

Using human review and spatial distribution of roads per
area as displayed in Figure 1, and their associated legend,

images which were labeled as paved-big, Figure 2, were
district class road 1. Most of these consisted of big roads
within districts.

Figure 2: District big paved roads sample in Rwanda

Labels for paved-small were given to areas marked as only
paved in Figure 1, which consisted of mainly small sized paved
roads, Figure 3.

Images which were labeled not-paved-big were roads la-
beled as unpaved in Figure 4, but which had bigger width
size than paved-small class, Figure 3.

Unpaved roads with same or less than the size of paved-
small roads class, Figure 3, were marked as unpaved-small,
Figure 5.

C. CDR Data

We analyze 3,01 billion of fully anonymized CDR events
in March, 2020 with a total of 17 million subscribers. It is
towards the end of this month that the first lock-down was
introduced in the country due to the pandemic, Covid19, on 21
of March. Hence the insights from this month will capture both
before and after lockdown announcement mobility patterns.
CDR data is comprised of many fields, but our field of interest
for this research were, msisdn for subscriber ID, tower ID
from which the event happened, tower ID and it’s latitude and
longitude, and date-of-charge timestamp which is basically the
timestamp at which the CDR event was charged by the MNOs
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Figure 3: District small paved roads sample in Rwanda

from subscriber’s account. In Figure-6,7, we visualize CDR
events throughout the considered month of March. The results
in 7 show that there were more cdr events produced after the
announcement of first lock-down due to Covid-19, perhaps
as a result of the cashless oriented policies that followed the
announcement in favor of mobile transactions.

D. Retrieving Inter-districts Routes

To focus on inter-city connecting routes, we use Google
Maps APIs to retrieve route positions for all pairs of districts
with associated travel time and distance. Travel time and dis-
tance retrieved from Google Maps, together with classification
of road conditions using satellite imagery, are used in the local-
ization of not-well connected districts routes. See section 1I-G,
II-C. They were also used in mining CDR data, particularly in
checking long trips subscribers have done throughout the day
and filter out noise in CDR data. Filtering is done by checking
one’s traveling speed between two locations. Trips which were
above 100KM/h were removed from consideration.

E. Deep Learning

Road conditions are classified using deep learning methods
into four categories: paved-big, paved-small, not-paved-big,
and not-paved-small. For training, we use MobileNet version
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Figure 4: District big unpaved roads sample in Rwanda

2 (Mobilenet-V2), Inception version 3 (Inceptionv3), Resnet50
version 2 (Resnet50V2), and EfficientNet (EfficientNet-B3)
deep neural network architectures. We also adopt deep transfer
learning [31] with imagenet pre-trained weights.

1) InceptionV3: The model architecture aims to increase
accuracy while minimizing added computation per layer by
using factorized convolutional layers and aggressive regular-
ization. InceptionV3 architecture is implemented as in Szegedy
et al. [29].

2) ResNet50V2: Resenet50V2 is among deep residual net-
work architectures, they focus on learning residual functions
rather than learning unreferenced functions. Resnet architec-
tures demonstrated higher accuracy and fast convergence[60].
Resnets models fall in different categories depending on the
number of layers used in model building. The most common
are Resnetl8, Resnet34, Resnet50, Resnet101 and Resnet153
[13]. In this research we use Resnet50V2 [14]. Resnets add
non-linearity between layers and the main difference between
Resnet version 1 and Resnet version 2 is the removal of
non-linearity in the last layer on version 2. This was done
to promote easy continuous connection in a form of identity
connections. Resnet architecture used are presented in He et
al. [14].

3) EfficientNet-B3: EfficientNets focus on efficient scaling
of deep learning modeling [32]. While some of the mod-



SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

Figure 5: District small unpaved roads sample in Rwanda

4-
o||||||||||||||||||||||‘|||||‘|

2020-03-05 2020-03-17 2020-03-29

w

(]

-

Figure 6: Daily estimated CDR % of total events - March,
2020, Rwanda

els have interchangeably focused on depth and width based
scaling. EfficentNet uniformly scales each dimension with a
fixed set of scaling coefficients [15]. The proposed method of
scaling coefficients in EfficientNets was proved to outperform
conventional methods which use arbitrarily scaling of network
dimensions, such as focusing only on width, depth and reso-
Iution [32]. There are multiple structures of EfficientNets, in
this research we used EfficientNet-B3.

As previously mentioned, InceptionV3, Resnet50V2 and
EfficientNet-B3 are used as our base-models for our research
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Figure 7: Average estimated % CDR events per hour of the
day - March, 2020, Rwanda

task. The models are initiated without the final layer (head)
and imagenet weights are used with these models to speed up
learning and minimize risk of convergence to local minimum
using transfer learning. Then we add one dense layer of size
512 with sigmoid activation and the output layer with softmax
activation.

4) Compactness and Separability Visualization: To visually
understand the separability and compactness of considered
predictive models, we use t-stochastic neighborhood embed-
dings (t-SNE) [19]. t-SNE converts similarities between data
points to joint probabilities.

FE Origin Destination Matrices

There are different ways for computing OD matrices. Some
approaches consider computing home location, where home
location is defined as the position where you were most spotted
in specified period between 7PM and Midnight, and then
joining one’s home-location against every other location they
are spotted in other than their home-location. This is done
sequentially during the day.

Others match one’s previously spotted location from the
start of day against subsequent locations. Both scenarios could
have more complex variants depending on the target goal of
the OD matrix [33]. But in most cases, the end goal is to
maximize accuracy of the estimated travel location demand,
and make sure to filter out data points that could introduce
noise in the dataset. Most of the noise in the case of CDR data,
comes in when subscribers produce CDR activities during
travel not necessarily because they have stopped by that
particular location where the activities happened.

8AM

/\4
8PM

8AM
ﬁ C
Home 2PM

Figure 8: CDR-based Mobility pattern illustration example
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To address this for inter-city trips extraction, We divide the
day in three window times, midnight to 10am as window
I, 10am to 4pm, window 2 and 4pm to midnight, window
3, Figure 8, and extract OD matrices based on these three
windows.

G. Localization of not-well connected Neighboring Districts
Routes

To identify neighboring districts with not-well connected
routes, we extract travel time between neighboring districts
from Google Maps APIs and find a trio districts (ABC) where
travel time tap —tac +top < L.

Implying that it takes longer to travel directly from A to B
than traveling from A through C to B. Cases where this is true,
districts A to B, are likely to have no direct connecting routes
or just have bad designed connecting routes, Algorithm-1.

Algorithm 1 Not-well Connected Neighboring Districts

Routes based on Travel Time

Require: f(z,y,z) = T(z,y)+T(y, z) where T(z,y) is the
travel time from point x to y and T'(x,y) is the travel time
from point y to z where x, y, z in this case are districts. R
is the set of considered routes.

Ensure: C(z,y) = True if  and y are neighbors else
C(z,y) = False. R;,, = T(z,y), for route i, i < N
where NNV is the total number of routes considered, R.

N <« length(R)
C(z,y) < True
C(z,z) < False
for : < 1to N do
tapc < f(z,y,2) « T(x,y) + T(y, 2)
tace < f(xv Zvy) — T('T7 Z) + T(Zv y)
if tagc > tacp then
R; .y = not-well connected
end if

Besides, neighboring districts connected with a not-paved
road are automatically included among districts with not-
well connected routes , Algorithm-2.. We use deep learning
methods previously discussed in section II-E, to identify pairs
of districts with not-paved connecting routes.

H. Route Infrastructure Prioritization

Given not-well connected districts identified using method-
ology in section II-G, let total of movements between a pair of
not-well connected districts, AB, over total movement between
neighboring districts be MAB, total movement in and out A
be MA, total movements in and out B be MB.

Let average distance between A to 3 most travel location
cities be AVDA and average distance between B to 3 most
travel location cities be AVDB.

Let total movements in and out of districts be TM, total
movement between pairs of neighborign districts be TNDM,
social economic index (SEI) and Financial Economic Index
(FEI).

There are multiple approaches of computing SEI and FEI,
but as indicated by Marcelo et al. [20], SEI, Formula-1, is com-
posed mainly of the following indicators: direct jobs created
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Algorithm 2 Not-well Connected Neighboring Districts
Routes based on Travel Time and Not-paved Condition

Require: Dx =g(f(z)) = g(WTX+B) = g(w71+wara+
oo + Wy, + b) where g(x) is an activation function and
g(f(z)) a fine-tuned baseline deep model, n, the number
of layers, and X the input, which in this case is the road
condition image. f(z,y,z) = T(z,y) + T(y,z) where
T(x,y) is the travel time from point « to y and T'(z,y)
is the travel time from point y to z where x,y, z in this
case are districts. R is the set of considered routes.

Ensure: C(z,y) = True if = and y are neighbors else
C(z,y) = False. R;,, = T(x,y), for route 4, i < N
where NNV is the total number of routes considered, R.

N « length(R)
C(z,y) + True
C(z,z) < False
Dx >t + not-paved
threshold
for : < 1 to N do
tapc < f(2,y,2) « T(x,y) + T(y, 2)
tace < f(xv Z7y) — T(‘Ta Z) + T(Zay)
if taApc > tacp or Dx >t then
R; 4.y = not-well connected
end if

> t is the deep classification

(DJC), number of direct beneficiaries (NDB), people affected
by land use restructuring (PA), possible cultural and environ-
mental risks and pollution in terms of C02. On the other hand
FEI, Formula-2, mainly consist of financial internal rate of
return (RR), multiplier effects (ME), Priority Economic Zones
(PE), Implementation Risk (IR), Complementary/Competition
effects (CC). For more info on SEI and FEI implementation
see Marcelo et al. [20].

SEI = wlDJC + w2NDB + w3PA + wiC02 +¢; (1)

FEI = wlRR+w2ME+w3PE+wil R+wbCC+e; (2)

While most of researches focus mainly on SEI and FEI to
build infrastructure prioritization score of which variables, in
most cases, consist of qualitative variables [20], we propose a
novel approach for inter-city route infrastructure prioritization
which introduces a quantitative component that takes into
consideration movements in and out, visual road condition,
travel time distance between adjacent cities, and their distances
from main cities such as capital cities.

We compute route prioritization score (RPS) for route AB
as,

MA MB MAB

MA 4 MB :
_ TM TM TNDM
RPS(a.5) = b1 0L 2 D] +b2P+b3SE1+b4F£I

Whereby coefficient c, is the distance disadvantage from
famous travel location cities and b are weights to considered

variables. P is an output of O if road paved or 1 if not
paved, derived from a classification deep learning model, D x
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=g9(f(2) = g(WTX+B) = g(w1 21 +waxs+...+wpx, +b)
where g(z) is an activation function and ¢(f(z)) a fine-tuned
baseline deep model, n, the number of layers, and X the input
to the model, which in this case is the road condition image.

For the scope of this research we keep b1 = 1, 2 = 0,1
and b3 = b4 = 0. With b2 = 1, non-paved roads are given
high priority, whereas for b2 = 0, both paved and non-paved
roads are given equal priority.

To allow diversification while setting the 3 most travel
locations, cities in the capital city are considered as one city.
Since cities in Kigali are combined on AVDA and AVDB, we
take the shortest distance to one of the three cities in Kigali.
Algorithm-3, highlights the flow of the proposed approach.

Algorithm 3 Intercity Connecting Routes Infrastructure Pri-
oritization

Require: Dx = g(f(z)) = g(WT X+B) = g(wiz1+waza+
woe + Wpxy, + b) where g(z) is an activation function and
g(f(x)) a fine-tuned baseline deep model, n, the number
of layers, and X the input, which in this case is the road
condition image. f(z,y,2) = T(z,y) + T(y,z) where
T(z,y) is the travel time from point = to y and T'(z,y)
is the travel time from point y to z where z,y, z in this
case are districts. R is the set of considered routes.

Ensure: C(z,y) = True if x and y are neighbors else
C(z,y) = False. R; ,, = T(z,y), for route i, i < N
where N is the total number of routes considered, R.

N < length(R)
C(x,y) + True
C(z,z) + False
Dx >t + not-paved
threshold
for : < 1to N do
ABC <+ f(x,y,2) + T(z,y) +T(y,2)
ACB + f(x,z,y) < T(z,2) + T(z,9)
if ABC > ACB or Dx > t then
score < RPS(x,y)
end if

> t is the deep classification

> Formula-3

1. Testing

The dataset, as described in II-A subsection, is divided into
training and testing dataset. 70% is used for training and 30%
is used for testing for our target models. The test results are
then used to evaluate both accuracy and speed in order to
draw conclusions about the best model to recommend for
policymakers and practitioners.

III. RESULTS & DISCUSSION
A. Modeling

Each model was trained on batch size 32, and 16 epochs
with weight decay of 5e-04 and the overall accuracy of
EfficientNet-B3, InceptionV3 and Resnet50 is 93%, 95%, 98%
respectively. Input shape used was 224x224 for EfficientNet-
B3 and Resnet50, 299x299 for Inception, 300x300 for
EfficientNet-B3. In the following parts of this section we
discuss in detail the classification results of our three target
models.

1) InceptionV3: Below we present detailed classification
results of InceptionV3, Table-I.

Table I: InceptionV3 classification results

precision  recall  fl-score  Support
Paved-big 1.00 0.94 0.97 1500
Paved-small 0.89 0.97 0.93 1500
Not-paved-big 0.94 0.92 0.93 3000
Not-paved-small 0.94 0.96 0.95 6000
Accuracy 0.95

Inception scores 95% overall accuracy on the four road
condition categories. Paved-big, Not-paved-small and Not-
paved small areas are the most well classified categories by
the model. Table-I.

2) ResNet50V2: Same as in the previous two sections,
detailed classification results of Resnet50V2 are presented in
this section, Table-II.

ResNet50V2 scores 97% overall accuracy on the four road
condition categories. Paved-big, Not-paved-small and Not-
paved-big areas are the most well classified categories by the
model. Table-I.

Table II: Resnet50V?2 classification results

precision  recall  fl-score  Support
Paved-big 1.00 0.96 0.98 1500
Paved-small 0.94 0.97 0.95 1500
Not-paved-big 0.96 0.96 0.96 3000
Not-paved-small 0.96 0.98 0.97 6000
Accuracy 0.97

3) EfficientNet-B3: Below we present detailed classification
results of EfficientNet-B3, Table-III.

Table III: EfficientNet-B3 classification results

precision  recall ~ fl-score  Support
Paved-big 1 1 1 1500
Paved-small 1 0.97 0.98 1500
Not-paved-big 0.96 1 0.98 3000
Not-paved-small 1 0.98 0.99 6000
Accuracy 0.99

The results in Table-IIT show that EfficientNet-B3 scores
99% overall accuracy on the four road condition categories.
Paved-big and Paved-small are the most well classified cate-
gories by the model.

Table-II shows that EfficientNet-B3 outperforms the rest
of deep learning models by keeping a high accuracy across
categories, especially for paved-big, not-paved-big categories.

B. Mobility Analytics

Using fully anonymized CDR data and the approach dis-
cussed in section II-F, we observe the number of trips from
origin district, where trips originated from, to destination
district, where trip ended. Below we visualize the average
percentage volume of origin to destination daily trips per pair
of districts, Figure 9. A total number of 1,333,243 trips was
estimated for all pairs of districts.

The results show that capital city districts, Gasabo,
Kicukiro, Nyarugenge, have more trips in and out, compared
to the rest of districts in the country. In Table IV, we combine
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Figure 9: Average origin to destination daily % of total
journeys per district

capital city districts into one city, Kigali city, and rank the top
10 districts per number of incoming trips to have the overall
picture of famous travel location preference in the country.

Table IV: Top 10 Travel Locations in Rwanda, March 2020

Destination Estimated Incoming Trips (% of total)
Kigali (capital city) 344
nyagatare 4.7
rwamagana 4.6
rubavu 4.4
musanze 4.0
kayonza 3.9
rusizi 3.5
kamonyi 33
gatsibo 3.2
bugesera 3.2

C. Route Infrastructure Prioritization

Considering neighboring districts, we use Google Maps
APIs to extract route location, distance and time to travel
from one district to its neighboring districts. Then we apply
the algorithm discussed in the methodology section II-G to
localize not-well connected inter-city routes for neighboring
districts, Figure 10.

Results show that districts which are not well connected
between them are: Bugesera-Kamonyi, Nyanza-Gisagara,
Nyamagabe-Nyamasheke, = Nyabihu-Rutsiro, = Nyagatare-
Gicumbi. Table V.

Using inter-city suggested roads retrieved for neighboring
districts, we assess not-paved roads, using the best performing
model in section II-E, EfficientNet-B3. Neighboring districts
connected with a not-paved road are automatically included
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Figure 10: Not-well connected Districts Routes by Travel Time

Table V: Not-well connected districts routes by travel time

District A District B Estimated Monthly Trips (group %)
Nyabihu Rutsiro 55.1
Bugesera Kamonyi 18.8
Nyagatare Gicumbi 13.6
Nyamagabe | Nyamasheke 12.5
Nyanza Gisagara 11.7

among districts with not-well connected routes. See results in
Figure 11.
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Figure 11: Not-well connected Districts Routes Including Not-
paved Roads

By doing this, the following districts are added to
neighboring districts with not-well connected routes:
Nyabihu-Gakenke, Ngororero-Gakenke, Ngororero-Karongi,
Nyamagabe-Karongi, Bugesera-Nyanza, Ruhango-Karongi,
Rusizi-Nyaruguru. Table VI.

Given an identified pair of districts with bad road conditions
we compute RPS as discussed in section II-H to assess which
route could be given high priority for construction, upgrade
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Table VI: Not-well connected districts routes due to unpaved
roads

District A District B Estimated Monthly Trips (group %)
Nyabihu Gakenke 45.2
Ngororero Gakenke 13.8
Ngororero Karongi 13.0
Bugesera Nyanza 12.5
Ruhango Karongi 6.4
Nyamagabe | Karongi 6.2
Rusizi Nyaruguru 2.8

or redesign. Table VII. Given that Rwanda is a small country,
we set the distance disadvantage coefficient from famous travel
location cities to 0.

Table VII: Route infrastructure prioritization score (b2 = 0)

District A District B RPS

Nyagatare Gicumbi 0.13210008
Bugesera Kamonyi 0.12905084
Bugesera Nyanza 0.11334041
Nyabihu Rutsiro 0.10820377
Nyabihu Gakenke 0.09263452
Rusizi Nyaruguru 0.08622971
Nyamagabe | Nyamasheke | 0.08571947
Ruhango Karongi 0.08380273
Nyamagabe | Karongi 0.083089
Ngororero Karongi 0.08066083
Ngororero Gakenke 0.07186639
Nyanza Gisagara 0.06658903

Results show that top five routes which would be
prioritized using this approach are, Nyagatare-Gicumbi,
Bugesera-Kamonyi, = Bugesera-Nyanza, = Nyabihu-Rutsiro,
Nyabihu-Gakenke. With b2 = 1, for our case, only the scores
would be affected but not the ranks as all of the roads selected
using Algorithm-1, turned out to be also unpaved, Table VIII.

Table VIII: Route infrastructure prioritization score (b2 = 1)

District A District B RPS

Nyagatare Gicumbi 1.13210008
Bugesera Kamonyi 1.12905084
Bugesera Nyanza 1.11334041
Nyabihu Rutsiro 1.10820377
Nyabihu Gakenke 1.09263452
Rusizi Nyaruguru 1.08622971
Nyamagabe | Nyamasheke | 1.08571947
Ruhango Karongi 1.08380273
Nyamagabe | Karongi 1.083089
Ngororero Karongi 1.08066083
Ngororero Gakenke 1.07186639
Nyanza Gisagara 1.06658903

IV. CONCLUSION

Assessing road conditions and prioritizing their construction
in East Africa, has long relied on the use of structured data and
traditional survey approaches for collecting information such
as questionnaires, interviews and field visits. These types of
surveys are often slow, costly and prone to human error. Using
Google Maps APIs we retrieve connecting routes location
between neighboring districts to identify not-well connected
routes given travel time and road conditions. By using Deep
Learning methods and satellite imagery, in this research study
we are able to assess with 99% accuracy four different types

of road conditions. Namely, Paved-big, Paved-small, Not-
paved Big, Not-paved-small. The best performing model for
assessing these road conditions in terms of an accuracy of 99%
was EfficientNet-B3.

Given districts with bad road conditions and not-well con-
nected routes, we use extracted mobility patterns from CDR
data to provide a data oriented method on how efficiently their
construction and maintenance could be prioritized. Among
not-well connected routes the following pair of districts
rank higher in terms of construction and maintenance prior-
itization: Nyagatare-Gicumbi, Bugesera-Kamonyi, Bugesera-
Nyanza, Nyabihu-Rutsiro, Nyabihu-Gakenke.

The results show that given a specific country in East Africa,
one could assess with confidence inter-city road conditions
suggested by Google Maps API and rank them for infrastruc-
ture prioritization.

On the other hand this highlights that Google Maps API
does not always suggest the roads with better conditions in
the context of Africa (paved vs not-paved), rather the ones
with less travel time. With the methodology provided in this
research it’s possible to find a better traveling route network by
avoiding roads with bad conditions given classification results.

Classification results in this research express that the deep
learning models used were able to learn different patterns
independently by observing the ranking accuracy per category.
Additional studies of blended optimal deep model architec-
tures for classification of more variety of road conditions
would be interesting to explore.
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