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Abstract—To date there have been great advances in the legged
robotics community. However, these platforms are extremely
costly to develop and require complex controllers to perform
agile motion, limiting their research to well funded institutions,
or purely simulation based studies. This research focuses on an
extremely low cost robotic monopod platform that consists of a
high powered servo motor as well as a pneumatic actuator. Due
to the on/off (bang bang) nature of pneumatics, the platform
is challenging to mathematically model. Using a reduced order
model of the pneumatic actuator, trajectory optimization methods
were implemented to generate acceleration, steady-state and
deceleration trajectories. These were then analyzed and a simple
state machine controller was developed to implement these
trajectories on the robotic platform, with comparisons to the
simulation results. In order to test the capabilities of the monopod
robot, the above method was further extended with the robot
running on multiple different surfaces (hard surface as well as
two different gravel surfaces). Results are promising and reveal
that simple models and controllers are sufficient to generate
stable transient motions for a legged robot running on non-
uniform terrain.

Index Terms- legged robot, rough terrain, trajectory optimization

I. INTRODUCTION

Recently, there has been great advancements in using trajec-
tory optimization to study complex motion such as turning [1],
acceleration [2] and deceleration [2]. New novel methods to
implement an accurate friction model in simulation have also
been investigated [3], along with improved through contact
methods [4] (allow any contact order) and integrator accuracy
[4] (resulting in more accurate trajectories). The problem with
these more accurate and advanced methods, is that they dras-
tically increase the complexity of problem, which increases
the time taken to solve the problem, placing a strain on
computational resources [2], making these methods somewhat
infeasible for real time optimization.

A common trend amongst the robotic literature is to use
model predictive control (MPC) methods to control the robot,
such as on the Mini Cheetah [5] and MIT Cheetah 3 [6]. These
methods generally rely on complex whole body models, in a
hierarchical control structure [7]. This typically results in a
number of simplifications, such as a fixed contact order [8], [9]
or the assumption of no slipping (infinite friction) [10]. Even
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Fig. 1. The hybrid pneumatic-electric robot attached to the boom system is
shown in the image. The generalized coordinates are indicated on the image.

with these assumptions, these controllers are fairly complex
to implement.

Some advantages of MPC includes the ability to embed ad-
ditional complex controllers, such as balance and locomotion
into the modular control architecture, as done on the MIT
Cheetah 3 [6]. Results showed that the robot was capable
of handling terrain disturbances, by utilizing reactive gait
modifications.

It is in our opinion that advanced locomotion in the presence
of rough terrain, can be achieved using simplified models and
simple controllers. Raibert [11] has shown that simplicity in
controlling these platforms is key. This is backed up with
research done on the simplified SLIP template used as an
assumption to mathematically model the CoM trajectory of
legged animals and robots.

Additionally, a common trend in the literature is to perform
purely simulation based studies. These studies are crucial in
developing the theoretical framework, however, many of these
research groups cannot test their results due to the lack of
funds to develop a robotic platform. Simulation based studies
have been vital in studying animal locomotion in order to gain
insight for controller design [12]. They have also been used to
investigate non-periodic, complex transient locomotion, such
as rapid acceleration [2], deceleration [2], turning [1] and other
a-periodic motions [13].

Our approach is to leverage off trajectory optimization
methods to aid in controller design and tuning. These con-
trollers will be tested and validated on a low cost free-body
hybrid pneumatic-electric monopod robot, as seen in Fig. 1.
As the robot makes use of pneumatics, it is infeasible to create
an accurate complex model of the robot, as the fluid dynamic
equations of motion for the cylinder will certainly not solve
in the trajectory optimization problem in a reasonable time
span. However, the commonly used simplified SLIP model
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will not be implemented, instead a full kinematic model of the
robot will be utilized, which includes leg mass and inertia. To
further complicate the matter, the robot will also be expected
to perform non-periodic motions such as acceleration and
deceleration and traverse non-smooth terrain (gravel).

The methods followed throughout this research are detailed
in Section II, which also covers the hardware, mathemati-
cal modelling as well as the trajectory optimization method
utilized. These methods resulted in a number of trajectories
generated in simulation, which were analyzed and aided in
the controller design detailed in Section III. This is followed
by a description of the experiments performed on the physical
robot as well as the results in Section IV. The paper ends with
the discussion and conclusion in Section V and VI respectfully.

II. METHOD

Firstly, a low cost hybrid pneumatic-electric monopod robot
was developed, as seen in Fig. 1. The purpose of the platform
was to validate all methods and results detailed in this paper.
The platform is further described in Section II-A. Once the
robot was developed, a simplified mathematical model of the
system was developed and is detailed in Section II-B. Follow-
ing this, the trajectory optimization problem was formulated
(Section II-C) and the results were analyzed to aid in the
controller design, detailed in Section III.

A. Mechanical Robot

A low cost platform in the form of a hybrid pneumatic-
electric monopod was developed and shown in Fig. 1. The
motivation for the use of pneumatics was two fold. Firstly
they are extremely explosive low cost actuators that are suited
for dynamic agile manoeuvres, secondly they add a level of
complexity to the problem (fluid dynamics) that will validate
our approach of using simplified mathematical models.

The robot consisted of a Festo DSNU-16-125-P-A pneu-
matic cylinder that lengthened and shortened the length of the
leg. The cylinder operated at 8 bar from a 100 litre compressor
and was controlled using two Festo CPE10-M1BH-5L-QS-6
solenoid valves. A Feetech DS5160 servo motor was utilized
to rotate the leg (hip actuator). The body of the robot was free
to rotate and the robot was attached to a support rig that kept
the robot in the sagittal plane.

The support rig provided real time state information such as
X and Z position (and velocity) as well as body angle (and
velocity) through the use of encoders (1000 PPR encoders
were used to measure the body angle, angle of the support
arm and the distance the support arm had moved). All on
board control and data logging was performed on a Teensy
4.0 micro controller at 200H z.

A gravel pit was also constructed with two different types of
gravel, namely fine and coarse. The gravel pit was sufficiently
deep so that the hard bottom would not influence the results.
The relevant parameters for the robot can be seen in Table I.

B. Mathematical Modelling

Once the robot had been developed, measurements (mass,
size, inertia etc) could be performed to create a moderately

TABLE I

PARAMETERS
Parameter Value
Myrobot 195kg
Mpody 1.6kg
Micg 0.35kg
lhody 300mm
lieg 271 — 396mm
Frax 160N
Tmax 40kg/cm
Cpneumatic 36.5
Wmaz 5.82rad/s
Boom arm length | 50cm
Boom arm mass 0.303kg
Fine Gravel 5.2mm
Course Gravel 27.4mm

accurate mathematical model of the robot. A number of
simplifications were implemented such as:

1) The mass was assumed to be uniformly distributed

2) The pneumatic cylinder was modelled as a bang-bang
force with damping [14] and hard-stops to limit the
extension and contraction

3) Only planar motion was allowed, with the support rig
modelled as an added mass to the body

4) The leg (pneumatic cylinder) and support rig were
assumed to attach directly to the CoM of the body

Euler-Lagrange methods, in the form of the manipulator
equation, were utilized to generate the EoM of the system.
These equations were in the form:

M(q)q + C(q, 4)q + G(q) = BT + AX ()

where q are the generalized coordinates (with ¢ being
their velocities) of the robot, as seen in Fig. 1. M(q) is the
mass matrix, C(q,q) is the Coriolis matrix and G(q) the
gravitational potential matrix. The applied forces and torques
due to the actuators are represented by 7, and are mapped to
the generalized coordinates due to the matrix B. The external
ground reaction forces, A, are mapped to the generalized
coordinates through the matrix A.

C. Trajectory Optimization

Once the EoM of the system had been defined, the trajectory
optimization problem could be formulated. This involved spec-
ifying the problem in terms of constraints, variable bounds and
specifying how the problem would be optimized and solved.

As the long-time-horizon trajectory consists of multiple
distinct phases of motion (acceleration, steady-state and decel-
eration), the trajectory was split into three smaller trajectories
[2]. This reduces the burden on the solver and allows for
quicker solve times. The required constraints to ensure a
smooth trajectory are listed below.

Additional constraints are also added to accurately model
the robot and the environment. These constraints ensure the
problem results in a kinematically feasible result that can be
implemented on the robotic platform. These are discussed in
further detail below.
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D. Constraints

A number of constraints were applied to the optimization
problem to accurately model the robot, support rig and the
environment (contact events etc). As trajectory optimization
works on discrete problems, methods were implemented to
generate an accurate representation of the continuous system.
The constraints are listed below:

e 3 Point Collocation: Each state variable was divided
by the specified number of node points, denoted N.
Polynomials were used to link each node point. For
this research, 70 nodes were used for the steady-state
trajectories, 120 for the acceleration trajectories and 50
for the deceleration trajectories. These polynomials were
in the form of a Runge-Kutta basis, with 3 collocation
points (3 point Radau) [4]. These polynomials were used
to solve the differential equations in (1), at specified
points in time. However, as contacts are extremely hard to
solve, a variable time-step integrator was required, with
the time between node points governed by the following
equation:

0.2h,, < h(i) < 1.5h, 2)

where h,, is the time constant defined as h,, = T'/N,
where 7' is the expected duration of the trajectory (rang-
ing from 0.2 to 1.5 seconds) and NN is the number of
nodes. h(i) is the duration of the i'" node.

o Contact Implicit Methods: These methods allowed the
optimizer to pick the contact order and type (slipping or
sticking), as well as the duration and time of the contact.
This was made possible with the above mentioned vari-
able integrator. This method does require a large number
of complex complimentary constraints, which are detailed
in [15], equation (8) to (16). Slipping was modelled using
coulomb friction, with an inelastic collision [15]. As
complimentary constraints are inherently difficult for tra-
jectory optimization methods to solve, epsilon relaxation
methods were implemented [4] as follows:

o/ (i)B'(i) < €

K

=Y a(i,j
j=0

(i) =Y B(i,5)
j=0

where «(4, j) and 5(i, j) are the two parts of the compli-
mentary constraint for the i** node and j** collocation
point. € is the relaxation parameter that starts off large and
tends towards zero. These variables are summed across
the collocation points (positive variables) and evaluated
at the node points, reducing the overall complexity of the
problem.

o Actuator Models: The robotic model consisted of a servo
motor at the hip, with a pneumatic actuator acting as the
leg (lengthening and shortening). These were modelled
as follows:

3

— Servo motor: A standard linear torque motor model
was utilized using the parameters of the servo motor

(max RPM and stall torque). This ensured that the
generated trajectories would work on the physical
system. The motor model took the following form:

— Tmazx — Tmaz LU(Z) < T(Z) < Tmaz — Tmas UJ(’L)
Wmaz mazx
“)

where 7,4, and wy,q, are the maximum torque and
angular rate of the actuator. 7(i) and w(i) are the
applied torque and angular rate at node i.
Pneumatic cylinder: The pneumatic cylinder was
modelled as a bang-bang actuator (on/off actuator)
due to the dynamics of the solenoids controlling
the air flow into the cylinder. The velocity of the
cylinder was determined by the applied force (due to
the pressurized air) and the damping present in the
cylinder. Solenoids were used to either extend the
cylinder, contract the cylinder, or leave the cylinder
un-pressurized. End stops were also modelled to
ensure the cylinder did not over extend or contract.
As the solenoid had a mechanical delay (of approx-
imately 20 ms), the rate of solenoid toggling was
limited to every 10 nodes. This was implemented by
breaking the N nodes into K buckets of 10 nodes
each, as follows:

Feztension (Z) == Fbucket eztension(k) (5)
Fcontraction(i) - Fbucket contraction(k)
where Fe:vtension (Z) and Fcontraction (Z) are the
applied forces to extend and contract the cylin-
der due to the pressurized air at the i** node.
Frucket extenszon(k) and Fyycpet contructzon(k) limit
the rate at which the force can vary, with k €

(1, N/10)

A number of complimentary constraints were imple-
mented to model the actuator. The bang-bang force
was implemented as follows:

0 < Featension(k) < Fina
0 < Feontraction(k) < Fina
(Fmrwc - Femtension (k)) €Tt€n91071( ) S (6)
(Frnaz — Feontraction(k)) Feontraction (k) < €
Fcontraction(k)Fe:L’tension(k) <e

where the applied force on the leg is split into two
components, Femtension (Z) and Fcontraction(i)- The
top two equations makes sure each component of
the force is a positive number between zero and the
maximum force. The next two equations ensures that
each component is either zero or F),,,. The final
constrain ensures that only one force has a value
greater than zero. The applied force on the leg is
then F(Z) = Fe:vtension (7/) - Fcontraction(i)-

The end stops were similarly modelled as follows:

(rmam - T(i))Feztend reaction (Z) S €
(T(l) - Tmz'n)Fcontract reaction(i) <e

where r is the leg length with r,,,, and 7.,
the bounds on the leg length. The two forces,

(N
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Femtend reaction(i) and Fcontract reaction(i)’ are
forces at the end stops to stop the cylinder from
over/under extending/contracting.

o Stitching Methods and Initial/Terminal Conditions: As

the trajectory was divided into a number of smaller
trajectories, constraints were included to ensure these
trajectories could be joined to form a smooth trajectory
(the end state of the accelerating trajectory must match
the start point of the steady-state trajectory, etc). Initially
steady-state trajectories were generated with the follow-
ing initial and terminal conditions:

X(1)=0

(1) = g() ©
Z(1) =0

q(1) = ¢(N)

where the first equation ensures the robot starts at the zero
position, the second equation ensures the configuration
(angles) of the robot at the end of the trajectory match
the start configuration (periodic). This equation does not
apply for the X coordinate (which is detailed in the first
equation).

The third equation ensures the trajectory starts at the apex
of the steady-state trajectory, with the fourth equation
enforcing periodicity in terms of start and end velocities.
This does not apply to the Z coordinate (which is detailed
in the third equation).

The acceleration trajectories had the following initial
(start at rest) and terminal (end at the apex of the steady-
state trajectory) conditions:

q(1) = qrest

(1) =0

q(N) = (4SS apex

Q(N) - QSS apex
where the first equation forces the robot to start from
the rest position with zero velocity (second equation).
The third and fourth equation ensure the robot ends in
the apex position and velocity of the steady-state step.
The deceleration trajectories swap the start and terminal
conditions of the acceleration trajectory.
Soft Contact Model: Drop tests were first performed
on the two gravel surfaces, to estimate the average
penetration depth. The gravel was then modelled as a
combination of a spring and damper system (during initial
penetration) and a rigid contact (once the gravel had been
penetrated). In order the estimate the spring and damper
parameters, the rigid contact trajectories were analyzed to
determine the average velocity of the foot before contact.
This was used, along with the estimated force to stop
the contact (from the GRF) to estimate the parameters as
follows:

C))

c= Fa/z.'foot contact
k=F,/d

where c and k are the damping and spring constants. F}, is
the estimated force required to stop the foot, Zfoot contact

(10)

is the velocity of the foot before it hits the ground and
d is the penetration depth of the foot, measured from the
drop tests.

In order to model this in the trajectory optimization
problem, a prescribed contact order was enforced, where
the contact node was determined from the rigid terrain
trajectories. The contact was also split into the soft
contact, and hard contact (once fully deformed) by ana-
lyzing the rigid terrain trajectories. For the soft contact
portion, the spring damper model was implemented to
generate a force on the foot, once fully compressed, the
complimentarity constraints for the rigid contact was then
enforced until the foot left the ground.

E. Bounds

In order to implement these trajectories on the physical
robot, a number of variable bounds were implemented. These
bounds also narrowed the search space of the trajectory
optimization problem, enabling a solution to be found quicker.
Table II shows the variable bounds for the generalized coor-
dinates and their velocities.

TABLE II
VARIABLE BOUNDS

Parameter Position Velocity

X (0,1.2) m (—2,2) m/s
z (0,0.5) m (—2,2) m/s
0Body (=m/2,7/2) rad | (—8,8) rad/s
Oleg (=7/2,7/2) rad | (—8,8) rad/s
licg (0.235,0.38) m (—2,2) m/s
Parameter Lower bound Upper bound
A 0 10mrobotg N
slack variables | O inf

Bounds were placed on the remainder of the variables.
These bounds were sufficiently high as to not rule out any
feasible solutions, but to sufficiently narrow the search space.
For example, all slack variables were bounded as positive
variables, with GRF variables bound to 10 times the mass
of the robot. This ensures the external forces lie within a
reasonable range that will not cause damage to the robot.

F. Solve Method

In order to start the solving process, a starting point, known
as the seed, is required for the optimization problem. In order
to thoroughly search the solution space, and to not bias the
optimizer into a known solution, multiple random seeds were
generated. The optimal trajectory was considered as the best
result in terms of the cost function of all the feasible results
generated. All trajectories were generated using the minimum
time cost function:

J= Z h(i) (11)

where N is the total number of nodes, and h(7) is the time
duration of the i*" node.

Vol.113 (4) December 2022
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To generate the random seed, a number of methods from the
literature were implemented, which improved the convergence
rate and time. This involved randomizing the generalized
coordinates between their bounds [16], while initializing all
other variables to a constant value [17] (0.01).

The seed was solved iteratively, implementing e relaxation
methods [18]. Initially e started at 1000, being divided by 10
each solve loop for a total of 8 solves. This aids in solving the
complex complimentary constraints. All optimizations were
performed in Jupyter notebooks using Pyomo, with the [IPOPT
solver [19].

III. CONTROLLER DESIGN

First trajectories were generated for the steady-state motion.
Acceleration trajectories were then generated from rest to the
apex of the steady-state trajectory (and vice versa for the
deceleration trajectory). These were stitched together to form
the long-time-horizon trajectory (start and end at rest while
travelling a fixed distance).

Initially, the trajectories were implemented directly on the
robot, in open loop control. However, with the free body,
the robot could not successfully achieve the trajectory. The
simulation results were analyzed and a state-machine was
developed to control the servo motor and pneumatic cylinder.
This enabled the robot to successfully traverse rigid terrain,
however it failed on the rough gravel, as seen in Fig. 2.

Rigid Terrain X-Pos vs Robot Data
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Fig. 2. X-position comparison between the simulated rigid terrain trajectory,
the robot on a rigid terrain, and the robot on a compliant terrain.

The above method was repeated for two additional tra-
jectories for the two different soft contacts (fine and rough
gravel). These trajectories were then analyzed and aided in
the controller design. In order to generate these, the average
penetration depth was determined by doing drop tests (from
the apex height of the steady-state trajectories on the hard
contact). For each of the three terrain types, an actuation height
was identified. For the rigid terrain, a height of 34.6 c¢m, for
the rough gravel, 34.9 ¢m and 36.2 cm for the fine gravel.

When the robot is above this height, it contracts the cylinder,
when it is below, it extends the cylinder. Touchdown and lift
off angles were also identified from the simulation results
(different angles for the three different terrain types). The
state-machine also sent these angles (relative to the X axis,
requiring a measurement of p,q,) to the servo.

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

IV. EXPERIMENTS AND RESULTS

The above controllers were implemented on the hybrid
pneumatic-electric monopod robotic platform to achieve the
long-time-horizon trajectory. This involved starting in the rest
configuration, accelerating to a steady-state velocity, and then
decelerating back to the rest configuration, while travelling a
fixed distance.

Initially, only the rigid terrain controller was tested on the
robot. It successfully ran on rigid terrain, however, it failed on
the gravel surface and was not able to travel the required dis-
tance, as seen in Fig. 2. The above relevant gravel controllers
were then tested on the two gravel surfaces, and were shown to
track the desired trajectories and achieve the correct distance.
The results can be seen in Fig. 3. Further investigation into

Simulation vs Robot results
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Fig. 3. Z- and X-Position comparison between the hard surface trajectory
and the free body robot hopping on a hard surface.

running on multiple terrains was also investigated, taking a gait
library approach. The state-machine parameters were initially
set for a rigid terrain, after an X position of 40 c¢m, the terrain
either changed to the rough gravel, or fine gravel, along with
the relevant state-machine parameters. These results can be
seen in Fig. 4, and indicate that the robot can successfully
transition between gaits stored in the gait library in real time,
without having to re-optimize or implement new controllers.

V. DISCUSSION

In order to leave the confines of the laboratory, it is crucial
that our legged robots can transition on multiple different
terrain types, and remain stable even on non-uniform terrain
such as gravel. Novel trajectory optimization techniques were
utilized to implement the bang-bang nature of the pneumatic
actuator, while taking into account the solenoid mechanical
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Hard contact and gravel multi-surface results
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Fig. 4. Z- and X-position comparison between the simulated multi-surface
trajectory and the robot hopping from a hard surface to fine gravel.

delays. These simplified models enabled the solver to find op-
timal trajectories in a feasible amount of time. The results were
then studied for trends to design a state-machine controller
around. These controllers were of the same form, however
had unique parameters for each terrain type, forming a gait
library of different controllers.

These simple controllers showed that the robot can reliably
perform long-time-horizon trajectories on a number of differ-
ent terrains, as well as transitioning from one terrain to another.
Similar observations were made about simple controllers by
Raibert [11]. These results show that complex, detailed models
of the system and terrain are not required, as well as simple
controllers can perform dynamic and complex motions, such
as acceleration and deceleration.

VI. CONCLUSION AND FUTURE WORK

From the above results it is clear that simplified models and
controllers for a relatively complex hybrid dynamic robot is
suitable to perform agile transient manoeuvres. These results
also show how a gait library can be utilized to transition
between multiple different terrain types while still remaining
stable. Future work involves extending the above methods to
a hybrid pneumatic-electric bipedal robot, on more complex
and dynamic terrain.

REFERENCES

[1] P. M. Wensing and D. E. Orin, “3d-slip steering for high-speed humanoid
turns,” IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2014.

C. Fisher, C. Hubicki, and A. Patel, “Do intermediate gaits matter when
rapidly accelerating?” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 3418-3424, 2019.

(2]

(3]

[4

=

(5]

[6

—

[7

—

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Vol.113 (4) December 2022

D. Pretorius and C. Fisher, “A novel method for computing the 3d
friction cone using complimentary constraints,” IEEE International
Conference on Robotics and Automation, 2021.

A. Patel, S. L. Shield, S. Kazi, A. M. Johnson, and L. T. Biegler,
“Contact-implicit trajectory optimization using orthogonal collocation,”
1IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2242-2249,
2019.

D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint,arXiv:1909.06586, 2019.

G. Bledt, M. Powell, B. Katz, J. Carlo, P. Wensing, and S. Kim, “Mit
cheetah 3: Design and control of a robust, dynamic quadruped robot,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2245-2251, 2018.

J. Luo, Y. Su, L. Ruan, Y. Zhao, D. Kim, L. Sentis, and C. Fu, “Robust
bipedal locomotion based on a hierarchical control structure,” Robotica,
vol. 37, no. 10, 2019.

W. Xi, Y. Yesilevskiy, and C. Remy, “Selecting gaits for economical
locomotion of legged robots,” Int. J. Robot. Res., vol. 35, no. 9, pp.
1140-1154, 2016.

T. Kamimura, S. Aoi, K. Tsuchiya, and F. Matsuno, “Body flexibility
effects on foot loading in quadruped bounding based on a simple
analytical model,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 2830-
2837, 2018.

K. T. T. Kamimura, S. Aoi, and F. Matsuno, “Body flexibility effects
on foot loading in quadruped bounding based on a simple analytical
model,” IEEE Robotics and Automation Letters, 2018.

M. Raibert, B. B. Jr, M. Chepponis, J. Koechling, J. K. Hodgins,
D. Dustman, and W. K. Brennan, “Dynamically stable legged locomo-
tion,” Massachusetts Institute of Technology, 1989.

T. Nath, A. Mathis, A. C. Chen, A. Patel, M. Bethge, and M. W. Mathis,
“Using deeplabcut for 3d markerless pose estimation across species and
behaviors,” Nature protocols, vol. 14, no. 7, pp. 2152-2176, 2019.

P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” 2013
IEEE International Conference on Robotics and Automation, pp. 3103—
3109, 2013.

C. Fisher, J. V. Zyl, R. Govender, and A. Patel, “Optimization-inspired
controller design for transient legged locomotion,” IEEE International
Conference on Robotics and Automation, 2021.

C. C. M. Posa and R. Tedrake, “A direct method for trajectory opti-
mization of rigid bodies through contact,” The International Journal of
Robotics Research, vol. 33, no. 1, pp. 69-81, 2014.

S. Safdarnejad, J. Hedengren, N. Lewis, and E. Haseltine, “Initialization
strategies for optimization of dynamic systems,” Journal of Computers
and Chemical Engineering, vol. 78, 2015.

C. Hubicki, M. Jones, M. Daley, and J. Hurst, “Do limit cycles matter
in the long run? stable orbits and sliding-mass dynamics emerge in task-
optimal locomotion,” IEEE International Conference on Robotics and
Automation (ICRA), 2015.

D. Ralph and S. Wright, “Some properties of regularization and penaliza-
tion schemes for mpecs,” Optimization Methods and Software, vol. 19,
no. 5, p. 527-556, 2004.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25-57, 2006.

Callen Fisher received his PhD in the
department of Electrical Engineering at
the University of Cape Town in 2021.
Dr. Fisher is now a senior lecturer at
Stellenbosch University and is currently
focused on legged robotics in extreme
environments.

Jacques Meyer received his MEng in
Electrical and Electronic Engineering at
Stellenbosch University, South Africa in
2022. He is currently the co-founder and
director of Simplifi Engineering, an 10T
consulting startup.

CONTENTS PAGE




