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Abstract—Monitoring and assessing the distribution of eco-
nomic areas in East Africa such as low and high income
neighborhoods, has typically relied on the use of structured
data and traditional survey approaches for collecting information
such as questionnaires, interviews and field visits. These types of
surveys are slow, costly and prone to human error. With the
digital revolution, a lot of unstructured data is generated daily
that is likely to contain useful proxy data for many economic
variables. In this research we focus on satellite imagery data
with applications in East Africa. Recently East African cities
have been developing at a fast pace by building new infras-
tructure and constructing innovative economic zones. Moreover
with increased urban population, cities have been expanding in
multiple directions affecting the overall distribution of areas with
economic activity. Automatic detection and classification of these
areas could be used to inform a number of policies such as land
usage and could also assist with policy enforcement monitoring.
On the other hand, the distribution of different economic areas
in a specific city could provide proxies for various economic
development variables such as income distribution and poverty
metrics. In this research, we apply deep learning techniques to
satellite imagery to classify and assess the distribution of various
economic areas of a specific region for urban planning. By bench-
marking performance against various state-of-art models, results
show that the proposed deep learning techniques yielded superior
performance with an f1-score of 99%.

Index Terms—classification, deep learning; satellite imagery;
transfer learning; urban planning; remote sensing; monitoring.

I. INTRODUCTION

ECONOMIC areas range from low and high income
neighborhoods, industrial zones, trade areas, schools etc

[59] [62] [35]. There are various geographical factors and
economic drivers which influence the distribution of economic
areas including government policies. The spatial distribution
of various economic areas has been used in various urban
economic planning [36] such as transport [47], city expansion
[45] and land usage policies [63]. Moreover, their distribution
influences daily individual and household economic decisions
depending on their corresponding geographical location [43],
hence, indirectly influencing a number of macro-economic
variables. The analysis and monitoring of the spatial distri-
bution of these areas in East Africa has previously relied on
the use of structured data and traditional approaches for data
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collection such as paper questionnaires, face-to-face interviews
and field visits [3]. These survey methods are prone to human
error and are often slow and costly [14]. Yet, with the digital
revolution a lot of unstructured data is generated daily that
is likely to contain useful proxy data in line with various
economic variables, and could be analyzed to support existing
policy and generate new insights [12]. The sources of data
range from daily captured images by individuals, government,
social media as well as satellite imagery, which is our target
data source in this research.

There are different types of satellite imagery data to con-
sider such as night-time lights [49], weather estimates [19],
vegetation indices [67] and infrastructure [51]. There are
various patterns and relationships that have been identified
from big data sources which can be utilized to address various
challenges, resulting in different use cases. This includes, but
is not limited to, transport demand prediction [50], conflict
outbreak monitoring [38], disease outbreak prediction and
spatial area labelling [40].

Spatial area labelling and access to digital maps have
recently inspired innovations in technology, and contributed
various use cases such as self driving cars [75] and automatic
optimal routing [41]. Currently digital map labeling could act
as the ground truth for validation assessment or provide a
secondary data source for various research studies in line with
spatial areas such as economic area classification, which we
will focus on in this study.

Using deep learning and transfer learning [66], our research
seeks to classify spatial economic areas under five categories
(residential high income, residential middle income, residential
low income, commercial buildings and industrial areas) in East
Africa, by focusing on Rwanda. East African countries have
promoted infrastructure development with various programs
initiated to facilitate city infrastructure expansion. Some of
the initiatives included dispatching big government institutions
in various locations of city outskirts rather than having them
condensed in one central place of the city [4]. Moreover there
has been enormous effort to renovate cities with new master-
plans to promote more infrastructure and greenness. However,
reaching sustainable urban development has been a challenge
in developing countries [16].

With rapid urban migration in the region, under the absence
of a stable economic base, there has been an increasing trend
of overpopulation in urban areas, resulting in inactive rural
areas with shifting demographics, decreased tax base and slum
formation in the city [44]. Slums affect the expansion of
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urban infrastructure in various ways. Normally they provide
homes for many families on a very small area of land. Hence
in most cases, the government has to expropriate or find
ways to relocate various families that would be affected in
order to expand the infrastructure in the area. Hence, the
ability to analyze and classify spatial economic areas will
have various applications in facilitating monitoring such as
country infrastructure trends and distribution of different types
of residential areas and could guide various policies in urban
planning.

As stated previously, urban economic monitoring has been
relying on traditional paper surveys and questionnaire methods
in most developing countries. Although this has been helpful
for various case studies, there are a number of down-sides as
we highlighted such as timeliness, high cost, human error and
enumerator fraud. By using artificial intelligence techniques
such as machine learning, it is possible to utilize satellite im-
agery and in parallel a number of these issues are automatically
mitigated.

While machine learning techniques and deep learning meth-
ods in particular are now viewed as state-of-art in various
fields, their application on unstructured proxy data such as
imagery for economic activities monitoring is still limited
in developing countries [68]. Consequently, some of the ma-
chine learning techniques such as deep-learning, which have
demonstrated great potential for the analysis and modeling of
unstructured data, are not widely used in economic studies.
This research also seeks to fill this gap by contributing to
existing academic knowledge of applying machine-learning
techniques to solve real life problems in sub-saharan Africa
using deep learning [22] [72] and transfer learning [52] [60].

A. Literature Review

Economic area analysis and classification have been of
great interest to various researchers especially for economic
monitoring and policy making [54]. Patterns underlying the
formation of economic areas and the resulting differences
between associated economic classes have been used in ad-
dressing a multitude of research problems across the globe in
various sectors.

Czapiewski et al. assessed the impact of location on the
role of small towns in regional development in poland [17].
The researchers demonstrate how depending on the location
of the small towns, they can play various roles such as
connecting rural and urban areas and serving as a local engine
for economic development. By classifying eighty six target
towns in three categories, small, medium-sized and big and
using a two step methodology [48], it was found that the
location of small towns has a significant impact on boosting
various economic factors such as education, access to health
care and cultural activities [17].

Location is one of the important features in spatial area
classification and has been used within other case stud-
ies. Lamnisos et al. analyzed the correlation between geo-
demographic areas and mortality. Using a Poisson distribution
for mortality estimation and K-means for area classification
the researchers found, at 95% confidence interval, that rural

areas and semi-rural areas had 44% and 36% higher premature
mortality rate respectively compared to metropolitan areas[34].
Further details of K-means and Poisson log-linear models can
be found in [31] [20]. Bański et al. conducted research on the
classification of rural areas for land usage policy in Poland. By
investigating economic structure, transport-wise accessibility
and development dynamics, the authors estimated the state of
development of rural areas [5].

Spatial distribution and classification of economic areas is a
broad subject with great relevance for the monitoring of eco-
nomic activities. Barbero et al assessed the correlation between
wages and the spatial distribution of various industries in
general equilibrium trade models [6] for asymmetric markets
[9]. Li et al [37] highlighted the geographical location determi-
nants of high-growth firms by assessing factors associated with
their emergence. Basu et al, analyzed house prices and spatial
autocorrelation [8]. Using estimated generalized least squares
[9] their research results showed that there is statistically
significant spatial autocorrelation for house transaction prices.
Yoo et al, also analyzed the spatial autocorrelation and spatial
heterogeneity of house prices controlled by the presence and
absence of agricultural conservation easement policy [77].
Some researchers have also studied the relationship between
spatial distribution of neighborhoods and violent crimes such
as Barton et al [7], Papachristos et al [53], He et al [23] hence
demonstrating that violent crimes influence various economic
activities in corresponding locations.

While the location of economic areas has an impact on eco-
nomic activities there are also factors influencing the formation
of economic areas. Hodgson highlighted some of these factors
such as transport infrastructure [28]. The paper shows that
there was a significant effect of railroad construction on the
geographical distribution of towns in the Western states of the
USA. Clausing et al measured the impact of taxes and big
firms headquarters locations [15]. Other factors affecting the
distribution of economic areas include but are not limited to
rural-urban migration[55], natural disasters[18] and weather
conditions [56].

There are various ways of analyzing and classifying eco-
nomic areas that aim to improve upon the traditional use
of surveys. Kussul et al used deep learning, specifically
convolution neural networks (CNN), to classify land cover and
crop types from satellite imagery [33]. The results of their re-
search showed that deep learning outperformed random-forest
with a significant margin. Sidike et al applied deep learning
on satellite imagery to label diverse agricultural landscapes
[61] for field management. The paper expresses how remote
sensing technologies are cost-effective compared to traditional
mapping practices with intensive field surveys and proposes a
deep learning method for mapping 19 different agricultural
landscapes. The model accuracy is compared against support
vector machines and random-forest. Deep learning scored the
highest accuracy with 86%.

Oshri et al used deep learning and satellite imagery to as-
sess infrastructure quality in Africa [51]. While infrastructure
quality is one of the important features in United Nations
Sustainable Development Goals, the research highlights how
monitoring progress in developing regions is still expensive
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using traditional survey methods and proposed a remote sens-
ing approach using deep learning. By training convolutional
neural networks researchers were able to predict the ground
truth labels of the Afrobarometer round five survey. The labels
comprised Electricity, Sewerage, Piped Walter and Roads. The
researchers achieved classification accuracies of 88%, 86%,
74% and 78% respectively.

Berriel et al used deep learning for automatic classification
of crosswalks [10]. The research focuses on filling the gap of
zebra crossing classification problem for automatic retrieval
and annotation of crosswalks satellite imagery data. The results
of the research showed that deep learning could be used to
perform crosswalk classification with a 97% accuracy on a
global scale.

Satellite imagery and deep learning have also been used
in surface object segmentation, showing the ability of deep
learning models to not only classify, but also understand
the boundaries of the object pattern in the learning pro-
cess. Bishcke et al segmented building footprints using deep
learning and satellite imagery [11]. The research focused on
improving semantic segmentation approaches with a multi-task
loss. The results showed they were able to increase accuracy
by a significant eight percent on existing state-of-art methods
in semantic segmentation.

Khan et al conducted research on automatic target object
detection in satellite images [70]. The authors highlight how
traditional image feature extraction such as Histogram of
Oriented Gradients, Gabor Feature and Hough Transformation
don’t work well for huge data of varying size, orientation and
noisy background. They propose an edge boxes method using
a convolution neural network to filter the set of target object
pixels position. Van also used a deep learning method called
YOLT (you only look twice) for faster detection of small and
big objects in satellite imagery such as vehicles, airplanes,
boats, buildings and airports [32].

Sanya et al [58], used convolution networks on satellite
imagery to identify patterns in urban housing density in
developing countries by classifying satellite imagery into high-
density, medium density, and low density.

Clearly a lot of research has been done in line with the
use of deep learning on satellite imagery and yielded tangi-
ble results over traditional image classification and detection
methods. In summary, the combination of deep learning and
satellite imagery has proved to be very cost-effective and
less time consuming compared with traditional field intensive
survey methods.

In this research we seek to introduce customized deep
learning methods for classification of economic areas cat-
egories in East Africa. The five categories considered are
(1) residential low-income; (2) residential middle-income; (3)
residential high-income; (4) commercial buildings; and (5)
industrial zone.

In addition to the proposed methods, to our knowledge no
research has focused so far on economic areas classification in
East Africa in terms of high, middle, low income residential
areas, commercial and industrial zones.

In the following section we discuss our methodology start-
ing with the exploration of our data.

II. METHODOLOGY

A. Data

In this research we use satellite imagery data retrieved from
Google earth 2021 which is supported by Data SIO (Scripps
Institution of Oceanography), NOAA (National Oceanic and
Atmospheric Administration), US. Navy (United States Navy),
NGA (National Geospatial-Intelligence Agency), GEBCO
(General Bathymetric Chart of the Oceans), Image Landsat,
and Image IBCAO (International Bathymetric Chart of the
Arctic Ocean).

Using random sampling of spatial area in Kigali per target
area, 342,843 thousands images were retrieved under the five
categories: residential high income (78941), residential low
income(162501), residential middle income(101401), commer-
cial building, (67400) and industrial zone,(24400). While it
is clear that areas considered are not evenly represented,
data augmentation and within-sample random re-sampling was
applied to boost the sample size of small-population classes,
see Section-II-B. For the industrial zone, we also included
some images from Nairobi, Kenya industrial spatial area. The
average number of samples for a category is 86929. The
size of the sample per category is proportional to the size
of the spatial target area considered per category. Kigali is
located at latitude:-1.985070 and longitude:-1.985070, coor-
dinates. Nairobi is located at latitude:-1.286389 and longi-
tude:36.817223, coordinates.

Our target areas for residential areas were mainly guided by
field survey results obtained from Uwayezu et al [69] on spatial
distribution of the affordable housing projects and informal
settlements in Kigali city as highlighted in the map below.
Figure-1.

Figure 1: Source: Ernest et al [69], Spatial distribution of the
affordable housing projects and informal settlements in Kigali
city.

Using human review and target areas in Figure-1, images
which were labeled as low incomes, Figure-2, were mostly
slums without easy access to main roads, minimal or no
neighborhood road infrastructure and primarily consisted of
small compounds.

Labels for middle income areas were given to images which
consisted of bigger compounds and evidence of road access.
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Figure 2: Residential low income sample images

Furthermore there were a few houses which share some of
the characteristics of the houses that were found in the low
residential income category, Figure-3.

Images which were labeled under residential high income
had easy access to roads, bigger compounds and had modern
roofs overall from the space view. Figure-4

Images containing a collection of skyscrapers and other low
elevation buildings, mainly in the central business district and
towns were labeled as commercial buildings. Figure-5

Images labeled as industrial zone category are typically
made up of large flat buildings. Most of these images were
retrieved from known industrial zones locations in East Africa
focusing on Kigali and Nairobi.

B. Methods and Proposed Work

1) Baseline Models: Deep learning methods are used to
classify economic areas under five distinct categories: residen-
tial low income, residential middle income, residential high
income, commercial buildings and industrial areas. We select
three deep neural network architectures to restrict the scope of
the research: Mobilenet version 2 (MobileNetV2), Inception
version 3 (InceptionV3), Resnet50 version 2 (Resnet50V2).
Models were chosen mainly for their performance despite their
light-weight architecture, but the proposed approach could be
implemented across other architectures.

MobileNetV2 is based on inverted residual structure with
depth-wise separable convolutions. It minimizes non-linearity
in narrow layers to improve robustness in representational

Figure 3: Residential middle income sample images

power. The model is light-weight, but has proved to maximize
both accuracy and computational speed in various computer
vision tasks. MobileNetV2 base-model architecture could be
found in Sandler et al [57].

By using factorized convolutional layers and aggressive reg-
ularization, the model architecture seeks to improve accuracy
and at the same time minimize added computation per layer.
InceptionV3 base-model architecture is implemented as in
Szegedy et al [65].

Resenet50V2 is among deep residual network architectures,
they focus on learning residual functions rather than learn-
ing unreferenced functions. Resnet architectures demonstrated
higher accuracy and fast convergence[60]. Resnets models fall
in different categories depending on the number of layers used
in model building. The most common are Resnet18, Resnet34,
Resnet50, Resnet101 and Resnet153 [24]. In this research
we use Resnet50V2 [25]. Resnets add non-linearity between
layers and the main difference between Resnet version 1
and Resnet version 2 is the removal of non-linearity in the
last layer on version 2. This was done to promote easy
continuous connection in the form of identity connections.
Resnet architecture based-model used are presented in He et
al [25].

2) Proposed Work: As previously mentioned, Mo-
bileNetV2, Resnet50V2 and InceptionV3 are used as our base-
models for our research task. The models are initiated without
the final layer (head) and ImageNet weights [64] are used
with these models to speed up learning and minimize risk
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Figure 4: Residential high income sample images

of convergence to local minimum. These models are only
used for baseline architecture where each model structure
is initiated with ImageNet weights without a top layer. The
top layer is replaced with our proposed customized dense
blocks, with mixed multi-layer stacked pooling to extract
final features which are passed through a traditional machine
learning model for the final label, Figure-7. Given an output
layer, L, of the baseline model with size k, we introduce model
customization using dense-net blocks, Formula-1, and mixed
multilayer stacked pooling.

D(k) =




d(zs) at s = 0

p d(zs) at s ∈ Z : s > 0

zs = akc + b at s ≥ 0




(1)

Where D(k) is the dense block structure given k, s = step,
which is the nth iteration for block customization, d = dense−
layer, k = layer− output− size, a,b,c are parameters to be
set. The output layer of the baseline model is at step 0, that
is s = 0.

Using Formula-1, in this research, we opt for a = 2 at
s = 1, a = 1 at s = 2 and a = 1/2 at s = 3. We set
b = c = 1 and hold p at 3 for s > 0, Figure-7. As mentioned
for s = 0, we use the output layer of the baseline model, in
that case a = c = 1 and b = 0.

Figure 5: Commercial building sample images

As usual, given input vector x, transformation for the vector
is given by:

f(x) = wTx+ b (2)

Where w=weights, b=biases, the extended output for
Formula-2, is given by:

f(x) = (w1x1 + w2x2 + ...+ wnxn + b) (3)

Since this is linear, looking at Formula-3, to introduce non-
linearity, activation functions are usually applied, Formula-4:

g(f(x)) = g(w1x1 + w2x2 + ...+ wnxn + b) (4)

Relu activation function [1], Formula-5, which is currently
widely used, adjusts input values less than zero, forcing them
to zero to avoid the vanishing gradient problem [30].

f(x) = max(0, x) =




xi if xi ≥ 0

0 if xi < 0





(5)

However it could take on a different architecture depending
on the problem being addressed, for more feature extraction.
[39].

In this research the proposed function is modified to,
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Figure 6: Industrial zone sample images

f(x) =




xi if xi ≥ b

log(pxn
i ) if a ≤ xi <b

0 if xi < a




(6)

Where a, b, p, n are parameters to be set. In this research
we used a = −10e4, b = 0, p = −1, n = 1. This is done to
introduce some controlled minimal variation on transformed
negative values instead of categorically setting them to zero.

On our final stack pooling, we also use a custom pooling
where we keep values close to the global mean of total
observations during the pooling, Formula-7. We do this to
enrich the focus of features extracted for our classification
task.

f(x,X) =




xi if |xi − X̄| ≤ min(x− X̄) + α, xi ∈ x



(7)

Where x, is the target observations for pooling, X total
observations, and X̄ = mean(X) and α a constant.

C. Data Augmentation

For classes with low numbers compared to the rest, such
as industrial zone and commercial, rotation, up-sampling and

within-sample re-sampling was applied to increase their size
and balance the represented classes during training. This was
only done on the training data. Test and validation data
remained as it is.

1) Visualization: To visually understand the separability
and compactness of considered predictive models, we use t-
stochastic neighbor embedding (t-SNE) [46]. t-SNE converts
similarities between data points to joint probabilities.

D. Testing

The dataset, as described in II-A section, is divided into
training and testing dataset. 70% is used for training and 30%
is used for testing on both our target models and benchmark
models. The test results are used to evaluate the accuracy in
order to draw conclusions about the recommended approach
for policymakers and practitioners.

III. RESULTS & DISCUSSION

A. Data Analysis

While shape and size is a clear distinct pattern between
economic areas as shown in Figures-4,3,2,5,6, color cross-
areas pattern could also be an important feature, especially in
Africa. This is due to the fact that high income areas roof aerial
view and roads tend to be neat with paved roads compared to
middle income and low income areas. The same applies for
commercial building areas versus industrial zones.

Using random sampling of 5000 images per category, below
we present the color histogram distribution of our dataset.

1) Color Histogram Analysis: In Figures-8,9,10, we plot
color histograms by channels; Red, Blue, Green (RGB) and
present further color patterns behind our economic areas.

Figure-8 shows that residential low-income category blue
channel spikes in between fifty and ninety pixel values, and
one hundred and sixty and one hundred and eighty compared
to green and red channels which are skewed to the right with
spikes in between seventy and one hundred and ten pixels
values. Overall, this shows that the tonality of residential low-
income tends toward zero.

On the middle income side, Figure-9, the blue channel
spikes are between thirty and fifty and one hundred on the left
side and seventy and one hundred and eighty on the right side
with a more narrow curve angle turning area compared to the
low-income category. Green and red channels of the category
are also right-skewed but with more variation compared to
the low-income category. It shows that the middle-income
residential category has more color variation compared to low-
income residential category.

This is likely due to the fact that designs in middle class
residential are more variant. In most cases, middle class
neighborhoods are made of houses which have been gradually
improved from low to middle class houses rather than newly
built houses from scratch. Hence, making their designs and
roof colors to be more variant compared to low income class
which tend to use the same form of cheap house materials.

Looking at residential high-income, Figure-10 shows that
histogram values for all channels tend to spike all together
in central with few spikes and minimal spikes intervals.
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Figure 7: a) Illustrates the proposed baseline structure for deep feature extraction using pre-trained CNN model, with customized
final dense block(s), mixed multi-layer stacked pooling and a machine learning classifier (clf), Random Forest(RF), to obtain
a classification label. b) Illustrates the proposed customized final dense block(s) with final extracted features

This implies that high income residential category color is
normally distributed with less variation compared to both low-
income and high income categories. The reason behind this
is often linked to building regulations and naturally formed
oligopolistic house design contractors.

B. Modeling

Each model was trained with a configuration of batch 32,
and 16 epochs with weight decay of 5e-04 with a custom
early-stopping of patience 2, activated after 6 epochs. We
considered the best model on validation which is restored
after the custom early-stopping. The f1-score accuracy of
MobileNetV2, InceptionV3 and Resnet50 is 98%, 99%, 99%
respectively. Input shape used was 224x224 for MobileNetV2
and Resnet50, and 299x299 for inception. In the following
parts of this section we discuss in detail the classification
results of our three target models.

1) MobileNetV2: Below we present detailed classification
results of MobilenetV2, Table-I, and visualize the separability

and compactness of the embedding layer output per predicted
class using t-SNE, Figure-11.

Table I: MobileNetV2 classification results

precision recall f1-score Support
Commercial 1 0.94 0.97 20220
Industrial 0.99 1 0.99 7320
Residential high 0.99 0.96 0.98 23682
Residential mid 0.99 0.97 0.98 30420
Residential low 0.92 1 0.96 48750
Accuracy 0.98

The results in Table-I show that MobileNetV2 scores
98% f1-score accuracy on the five categories. Industrial,
Residential-high and Residential-low are the most well classi-
fied categories by the model.

2) InceptionV3: Below we present detailed classification
results of InceptionV3, Table-II, and visualize the separability
and compactness of the embedding layer output per predicted
class, Figure-12, the same way we did in the previous section.

Inception scores 99% f1-score accuracy on the five cate-
gories. Industrial, Residential-low Commercial, Residential-
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Figure 8: RGB color histogram for residential low income

Figure 9: RGB color histogram for residential middle income

mid, areas are the most well classified categories by the model.
Table-II.

3) ResNet50V2: Same as in the previous two sections,
detailed classification results of Resnet50V2 are presented in
this section, Table-III, with the visualization the separability
and compactness of the embedding layer output per predicted

Table II: InceptionV3 classification results

precision recall f1-score Support
Commercial 0.99 1 0.99 20220
Industrial 0.99 1 1 7320
Residential high 0.99 0.97 0.98 23682
Residential mid 0.99 0.99 0.99 30420
Residential low 1 1 1 48750
Accuracy 0.99

Figure 10: RGB color histogram for residential high income

Figure 11: t-SNE visualization of MobileNetV2 embedding
layer sample output, 80 images per category

Figure 12: t-SNE visualization of InceptionV3 embedding
layer sample output, 80 images per category

classes, Figure-13.
Table-III shows that Resnet50V2 outperforms the rest of

deep learning models at 99% f1-score, by keeping a high
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Table III: Resnet50V2 classification results

precision recall f1-score Support
Commercial 1 1 1 20220
Industrial 1 1 1 7320
Residential high 0.99 0.97 0.98 23682
Residential mid 0.99 1 0.99 30420
Residential low 0.99 1 1 48750
Accuracy 0.99

Figure 13: t-SNE visualization of ResNet50V2 embedding
layer sample output, 80 images per category

accuracy across all categories, especially for Commercial,
Industrial, Residential-low, and Residential-mid areas.

4) Benchmark Results: We compare our results against
various state-of-art models in image classification.

The results show that our approach outperforms state-of-art
models on RS classification of the five considered categories:
Commercial, Industrial, Low Residential Income, Middle Res-
idential Income, High Residential Income. Table-IV, Table-V,
Table-VI.

C. Application

Using the best model highlighted in the previous section,
we showcase that the pattern learnt from the dataset in this
research could be used from pixel to legend and map using
Viola-Jones [71] sliding window. Hence, demonstrating that
the model built could be applied for instant mapping or
improvement of current survey based maps in urban planning,
see Figure-14.

Figure-15 shows that you could use results obtained in
this research to localize and map the spatial distribution of
economic areas considered in this research with high accuracy.
However, detection results show that in gray areas such as
fields, pastures and roads, the model is likely to get them
wrong if they are at the edge of the image view. Hence center
view for the target area is recommended for better results. You
can see this scenario, top-right of Figure-15, where the model
wrongly classifies the field area present in the image as low
income while it’s not.

By combining localization, Figure-15 and mapping, Figure-
14 with coordinates, the results obtained in this research
could be used to monitor and enforce the implementation of
government proposed zoning plans.

D. Weakness

While, our target residential areas were mainly guided by
field survey results obtained from Uwayezu et al [69] as
highlighted in Figure-1, in some cases they were also guided
by human review, looking at easy access to main roads and
house compounds size etc. It is good to note that in some
cases this may not be accurate. Hence using more accurate
third party data such as world bank data, or country level
statistical data on income would yield more accurate data.

IV. CONCLUSION

Monitoring and assessing the distribution of economic areas
in East Africa such as low and high income neighborhoods, has
typically relied on the use of structured data and traditional
survey approaches for collecting information such as ques-
tionnaires, interviews and field visits. These types of surveys
are often slow, costly and prone to human error. By using
Deep Learning methods and satellite imagery, in this research
study we achieve 98% accuracy results with our best model
on the classification of five economic area categories. namely,
Commercial, Industrial, Residential High, Residential Middle,
and Residential Low. The best performing model in terms of
an accuracy of 99% was Resnet50V2. The results show that
given a specific land zone, one could assess with confidence
the spatial distribution of various economic areas in that zone.
This has applications in city infrastructure planning and policy
monitoring such as city infrastructure master plan enforce-
ment, city expansion monitoring and shanty towns formulation
localization and prevention. Classification results express that
the deep learning models used were able to learn different
patterns independently by observing the ranking accuracy per
category. Additional studies of how various architectures are
likely to work given different loss functions would be good
to explore. Besides, this research was done using daylight
satellite imagery, it would also be interesting to see how far
one can go on the same or similar research using night-light
satellite imagery. Assuming that, night light reflection and it’s
spatial distribution is likely to provide unique patterns across
various areas.
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