
Vol.113 (2) June 2022SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS88

 Abstract—Golden code is a space-time block coding 
(STBC) scheme that has spatial multiplexing gain over the 
Alamouti STBC which is widely used in modern wireless 
communication standards. Golden code has not been widely 
adopted in modern wireless standards because of its 
inherent high detection complexity. However, detection 
algorithms like the sphere-decoding with sorted detection 
subsets (SD-SDS) have been developed to lower this 
detection complexity. Literature indicates that the SD-SDS 
algorithm has lower detection complexity relative to the 
traditional sphere-decoding (SD) algorithm, for all signal-
to-noise ratio (SNR) values. The SD-SDS algorithm exhibits 
low detection complexity at high SNR; however, at low SNR 
the detection complexity is higher. We propose a deep 
neural network (DNN) aided SD-SDS algorithm (SD-SDS-
DNN) that will lower the Golden code's SD-SDS low SNR 
detection complexity, whilst maintaining the bit-error-rate 
(BER) performance. The proposed SD-SDS-DNN is shown 
to achieve a 75% reduction in detection complexity relative 
to SD-SDS at low SNR values for 16-QAM, whilst 
maintaining the BER performance. For 64-QAM, the SD-
SDS-DNN achieves 99% reduction in detection complexity 
relative to the SD-SDS at low SNR, whilst maintaining the 
BER performance. The SD-SDS-DNN has also shown to 
achieve low detection complexity comparable to that of the 
Alamouti linear maximum likelihood (ML) detector for a 
spectral efficiency of 8 bits/s/Hz. For a spectral efficiency of 
12 bits/s/Hz, the SD-SDS-DNN achieves a detection 
complexity that is 90% lower than the Alamouti linear ML 
detector. 
 

Index Terms— Alamouti, deep learning, Golden code, space-
time coding, sphere-decoding. 

I. INTRODUCTION 
ITH the ever-increasing demand for higher data 
transmission rates and link reliability for wireless radio 

access networks (RAN), because of increasing real-time and 
mission-critical applications, it becomes necessary to research 
and develop wireless schemes that can provide high spectral 
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efficiency, good link reliability, and low detection complexity. 
Multiple-input multiple-output (MIMO) wireless techniques 
can deliver on these requirements through space-diversity and 
spatial multiplexing. Space-time block coding (STBC) schemes 
such as Alamouti [1], uncoded space-time labeling diversity 
(USTLD) [2], and Golden code [3] provide time-diversity over  
and above space diversity. These schemes further improve 
wireless link reliability over MIMO wireless channels. Of the 
three STBC schemes, Golden code is the only full-rate, full-
diversity wireless scheme, whilst the USTLD and Alamouti are 
half-rate and full-diversity schemes. This paper's coding rate is 
defined as the number of M-QAM symbols transmitted per 
transmit antenna per transmission timeslot. The advantage of 
the Golden code is that it offers full spatial-multiplexing gain 
relative to the Alamouti and USTLD STBC schemes. However, 
Alamouti STBC has the advantage of having much lower linear 
detection complexity relative to the Golden code STBC scheme 
under block-fading wireless channels. The Alamouti optimal 
linear decoder has order 𝜗𝜗(𝑀𝑀�) detection complexity, in block-
fading channels [1], relative to the Golden code optimal 
detector with 𝜗𝜗(𝑀𝑀�) detection complexity. The variable 𝑀𝑀 is 
defined as the M-QAM signal modulation order. The USTLD 
STBC has a coding gain advantage over the Alamouti STBC 
whilst achieving the same rate and diversity order [2]. However, 
USTLD STBC has a detection complexity of order 𝜗𝜗(𝑀𝑀�) since 
it uses joint maximum likelihood (ML) detection to decode the 
two transmitted symbols [2]. This USTLD STBC decoding 
complexity is higher than the Alamouti STBC linear detection 
complexity in block-fading channels. The Alamouti STBC 
linear decoder is shown to under-perform in terms of bit-error-
rate (BER) in fast-fading channels [4] due to inter-symbol 
interference (ISI). The optimal detector for the Alamouti STBC 
scheme, in fast-fading channels, is shown in [4] to be the joint 
ML detector with order 𝜗𝜗(𝑀𝑀�) detection complexity. 

Golden code STBC is a promising wireless scheme which is 
already incorporated into the WiMAX IEEE 802.16e standard 
[5]. Golden code offers spatial multiplexing gain relative to the 
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Alamouti STBC scheme, at the expense of higher detection 
complexity. In modern wireless communication systems, the 
following standards incorporate the Alamouti STBC scheme 
namely, the long-term evolution (LTE) 3GPP standard [6], 
wireless fidelity (Wi-Fi) IEEE 802.11n [7] and IEEE 802.11ah 
low power Wi-Fi [8]. This makes research into the reduction of 
the Golden code detection complexity interesting and relevant 
to modern wireless communication systems. The practical 
application of Golden code is limited due to its high detection 
complexity despite its advantages of spatial multiplexity gain 
over the Alamouti and USTLD STBC schemes. Thus, to extract 
the benefits of Golden code in a practical use case, researchers 
have embarked on developing various detection schemes to 
lower the Golden code's detection complexity. Therefore, this 
paper particularly concentrates on the Golden code STBC due 
to its disadvantage of being a high detection complexity 
scheme. The high detection complexity has a negative 
implication of increasing telecommunications operator base-
station processing power consumption, including that of the 
end-users. High complexity detection schemes may also 
increase end-to-end link latency if powerful detection 
processors are not used. An increase in link latency has 
detrimental effects on real-time low latency applications. Our 
research aims to reduce this detection complexity. 

In literature, [9] develops an efficient ML detection scheme 
that can reduce the Golden code's detection complexity to 
approximately 𝜗𝜗(𝑀𝑀�.�). Using dimensionality reduction of the 
search tree in sphere-decoding (SD), [10] manages to reduce the 
detection complexity to approximately 𝜗𝜗(𝑀𝑀�.�). However, 
[10]'s side effect is that the BER performance suffers a 1dB 
SNR loss compared to optimal ML detection. The fast-
essentially maximum likelihood (FML) detection is developed 
in [11] with a detection complexity of 𝜗𝜗(𝑀𝑀�). FML proves to 
be computationally intensive at higher modulation orders. In 
literature, a near-optimal detection algorithm called SD, with 
detection complexity of 𝜗𝜗(𝑀𝑀�), is modified in [12] by 
minimizing the search depth, to reduce detection complexity, 
using the Schnorr-Euchner strategy. It is known from literature 
that SD detection complexity relies on the signal modulation 
order and the search depth [13]. The authors in [14] further 
optimize the FML and SD algorithms by reducing the signal 
cardinality by creating detection subsets. This can further 
reduce the detection complexity whilst maintaining the BER 
performance close to that achieved by FML and SD. In [15], the 
authors propose SD-SDS, which has low detection complexity 
for Golden code at high SNR with an increasingly high 
detection complexity as the SNR approaches 0dB. However, it 
has detection complexity which is at least 1 order lower than 
the sphere-decoding detection subset algorithm (SD-DS) 
developed in [14]. 

Part of the challenge in [15] is that the SD initial radius is 
fixed per average SNR, thus at lower average SNR values, the 

initial radius is larger which causes a selection of many signal 
candidates under good instantaneous SNR conditions. This 
creates a high detection complexity at lower SNR values and 
suggests that we may need an SD initial radius calculated using 
the instantaneous channel conditions instead of average channel 
conditions. In [16], the authors develop a deep learning-based 
initial radius predictor that predicts an initial radius based on 
instantaneous channel conditions. This approach lowers the 
detection complexity of MIMO SD detection whilst 
maintaining the BER performance. Another interesting MIMO 
SD technique is developed by [17]. The initial radius of SD is 
selected and fed into a deep neural network that predicts the 
number of lattice points inside the hypersphere. If the predicted 
number of lattice points is high, then the initial radius is 
adjusted downwards and re-fed into the deep neural network. 
This is done iteratively until the number of predicted lattice 
points is low, at which point SD is performed with this lower 
initial radius that is predicted to yield a small number of lattice 
points inside the hypersphere. This technique yields lower 
detection complexity for SD. However, in our experiments, we 
found that [16] yields better performance than [17]. In [18], the 
authors propose a deep learning (DL)-aided SD for large MIMO 
detection. Because SD detection for large MIMO has a 
prohibitive computational complexity, the DL-aided SD 
generates a highly reliable initial candidate to accelerate the SD 
search for the transmitted symbols. The DL-aided SD is 
beneficial both from an offline training phase and online 
application relative to the DL-aided SD in literature. In [19], a 
neural network is proposed that predicts the minimum path 
metrics of subtrees of a SD and these predicted minimum path 
metrics are used for early termination in the SD search for 
candidates. The scheme shows significant computational 
complexity reduction relative to the conventional SD scheme 
for large MIMO, whilst exhibiting a BER performance close to 
the optimal detector. 

Based on the literature review, we are motivated to lower the 
detection complexity of the Golden code SD-SDS decoder, at 
low SNR, for the traditional MIMO architecture. This reduction 
of low SNR Golden code detection complexity is important for 
low power wireless communications. The algorithms in [16-19] 
perform deep learning-aided complexity reduction in the 
conventional SD algorithm, for large MIMO (𝑖𝑖. 𝑒𝑒 𝑁𝑁� ≥ 8), 
except for the Golden code context with a small number of 
transmit antennas (𝑖𝑖. 𝑒𝑒 𝑁𝑁� = 2).  Therefore, no literature has 
performed complexity reduction of the Golden code specific 
SD-SDS detection algorithm. The reduction in detection 
complexity is performed to give Golden code an edge over the 
Alamouti STBC scheme which is already implemented in 
modern wireless communication standards. Golden code has 
greater spectral efficiency, for the same link reliability, relative 
to the Alamouti STBC but at the expense of higher detection 
complexity which prevents it from being incorporated into 
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broader wireless standards as an STBC scheme of choice.  By 
embarking on lowering the detection complexity of Golden 
code SD-SDS, at low SNR, our paper makes the following 
contributions: 
(i) The SD initial hypersphere radius computation is well 

discussed in [20-23]. However, the computation in 
literature is performed for a single timeslot whereas 
Golden code is a 2-timeslot STBC scheme. In this paper, 
we derive the 2-timeslot Golden code SD-SDS [15] fixed 
initial radius and show that this SD-SDS has an initial 
radius dependent only on a single timeslot, which makes 
the formulas discussed in [20-23] also relevant for our use 
case.  

(ii) We present a modified version of the low complexity deep 
learning-based algorithm in [16]. This modified algorithm 
lowers the SD-SDS detection complexity at low SNR. 
The reason for the modification is because the algorithm 
in [16] is developed for a single timeslot scheme, whereas 
Golden code is a 2-timeslot STBC system. This has the 
effect of changing the DNN input vector length and thus 
requires us to design and train a new DNN architecture 
for the radius prediction. The algorithm in [16] is also 
developed for a very high detection complexity large 
MIMO (𝑁𝑁� ≥ 10) SD environment whereas our scheme 
needs to work for a lower detection complexity traditional 
MIMO (𝑁𝑁� = 2) SD-SDS environment. Because of the 
lower complexity traditional MIMO SD-SDS 
environment, we only predict one radius at the output of 
the DNN unlike in [16]. To counter the error in prediction 
accuracy of a single radius prediction, we use the reverse 
of the approach in [17] to determine the subsequent radius 
predictions. This DNN algorithm is named as the SD-
SDS-Radius-DNN. 

(iii) SD based algorithms are generally more complex than the 
sub-optimal QR decomposition detector. However, under 
good instantaneous channel and noise conditions, the sub-
optimal QR decomposition detector produces M-QAM 
symbol estimates that are reliable. We, therefore, propose 
a novel DNN channel state predictor that uses the 
instantaneous channel conditions and received signal 
vectors to predict whether the low complexity sub-
optimal QR decomposition detector estimates are good 
enough to be used as the actual transmitted symbols 
without performing the more complex SD based search.  

(iv) We also propose a low complexity detection algorithm 
called the SD-SDS-DNN. The proposed SD-SDS-DNN 
algorithm combines the high SNR low complexity 
benefits of the SD-SDS detector from [15], the low SNR 
low complexity benefits of the SD-SDS-Radius-DNN 
detector, and the benefits of the proposed novel DNN 
channel state predictor that selects between the very low 

complexity QR decomposition detector output and search 
using the SD-SDS-Radius-DNN detector. 

(v) We perform the DNN architecture designs and training 
for the two DNNs in the paper and perform Monte-Carlo 
simulations of the BER and complexity analysis of the 
Golden code detection algorithms discussed in this paper. 

 
The remainder of this paper is organized as follows: Section 

II, the system model of the paper is presented. In Section III, we 
present the theoretical overview of SD-SDS. In Section IV, we 
deal with the derivation of the Golden code 2-timeslot SD initial 
radius. In Section V, we present the SD-SDS deep learning 
algorithms. In Section VI, we perform the complexity analysis 
of the Golden code detection algorithms relative to SD-SDS. 
Section VII presents the simulation results and discussion. 
Section VIII concludes the paper. 
 
Notation: Bold lowercase letters are used for vectors and bold 
uppercase for matrices. (. )� (. )�,|. |, ‖. ‖ and ‖. ‖� represent 
the Transpose, Hermitian, Absolute Value, Euclidean norm and 
Frobenius norm operations, respectively. The functions ℜ(. ) 
and ℑ(. ) are the real and imaginary components of a complex 
number, respectively. j is a complex number. The statistical 
average is represented by the expectation function 𝐸𝐸(. ). The 
function (∙)∗ is the complex conjugate of a complex number. 
The function 𝑣𝑣𝑣𝑣𝑣𝑣(∙) is a matrix vectorization function that 
stacks the column vectors of a matrix on top of each other to 
form a single column vector. 

II. GOLDEN CODE SYSTEM MODEL 
In this paper we consider a Golden code system that operates over 
an 𝑁𝑁� × 𝑁𝑁�  wireless MIMO channel where 𝑁𝑁� = 2 and 𝑁𝑁� ≥ 𝑁𝑁�  
for optimal operation according to [24]. The parameters 𝑁𝑁�  and 
𝑁𝑁�  are the number of transmit and receive antennas in the MIMO 
configuration, respectively. Golden code works by separating 
information bitstreams into 4 parallel streams. Each stream has 
bits packaged into log� 𝑀𝑀 bit length words and these words are 
used as symbol indices to select the complex M-QAM symbols 
from the M-QAM complex signal constellation Ω�. This 
generates 4 M-QAM complex symbols that are transmitted over 
a wireless channel by mapping pairs of the M-QAM complex 
symbols onto the Golden code super symbols. The mapping of 
M-QAM symbol pairs onto the Golden code super symbols is 
performed as follows: 
Let 𝑥𝑥��, 𝑥𝑥��, 𝑥𝑥�� and 𝑥𝑥�� be the transmitted Golden Code super 
symbols in which  𝑥𝑥�� = �

√�
(𝑥𝑥� + 𝑥𝑥�𝜃𝜃) and 𝑥𝑥�� = �

√�
(𝑥𝑥� +

𝑥𝑥�𝜃𝜃) and 𝑥𝑥�� = ��
√�

(𝑥𝑥� + 𝑥𝑥��̅�𝜃) and 𝑥𝑥�� = 𝑗𝑗 ��
√�

(𝑥𝑥� + 𝑥𝑥��̅�𝜃). The 

scalar parameters 𝛼𝛼, 𝛼𝛼�, 𝜃𝜃 and �̅�𝜃 are defined as follows: 𝛼𝛼 ≜ 1 +

𝑗𝑗 �̅�𝜃, 𝛼𝛼� ≜ 1 + 𝑗𝑗 𝜃𝜃, 𝜃𝜃 = ��√�
�

 and �̅�𝜃 = ��√�
�

. The complex M-
QAM symbols are 𝑥𝑥�, 𝑥𝑥�, 𝑥𝑥�, 𝑥𝑥� ∈ Ω�, where Ω� is an arbitrary 



Vol.113 (2) June 2022 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 91

square M-QAM signal constellation. The average M-QAM 
symbol power is set to 1, 𝐸𝐸 ��𝑥𝑥���� = 1, ∀𝑞𝑞 ∈ [1: 4]. These 

Golden code super symbols are transmitted over the air using 
the 𝑁𝑁�  transmit antennas with the transmit power per antenna 
fixed to  ��

��
  where γ� is the average SNR at each receive antenna.  

 
During wireless transmission, the Golden code transmission 

vector for timeslot 𝑖𝑖, 𝑖𝑖 ∈ [1: 2] is set to 𝒙𝒙� = [𝑥𝑥�� 𝑥𝑥��]�. The 
wireless MIMO channel matrix for timeslot 𝑖𝑖 is 𝑯𝑯� , where 𝑯𝑯� ∈
ℂ��×�� is a fast frequency-flat fading wireless channel which is 
fully known at the wireless receiver. As a result of the wireless 
channel being fast fading, this means the wireless channel 
changes its complex channel gains for every transmission 
timeslot. The wireless channel fading gain is assumed to be 
Rayleigh distributed to mimic multipath fading without line of 
sight (LOS). Each entry of the wireless channel matrix 𝑯𝑯�  
varies according to the independent and identically distributed 
(i.i.d) zero mean complex Gaussian distribution ℂ𝑁𝑁(0,1). The 
received wireless signal vector for timeslot 𝑖𝑖 is given by (1) 

 
                                     𝒚𝒚� = 𝑯𝑯�𝒙𝒙� + 𝒏𝒏�                                     (1) 
 

where 𝒚𝒚� ∈ ℂ��×� is the received signal vector for timeslot 𝑖𝑖 and 
𝒏𝒏� ∈ ℂ��×� is the noise vector for timeslot 𝑖𝑖. Each entry of the 
zero mean complex Gaussian noise vector, 𝒏𝒏� , is distributed 

according to ℂ𝑁𝑁 �0, ��
��

�. For this work, the detection algorithms 

used to detect the transmitted M-QAM symbols are the SD-
SDS-DNN, SD [14] and SD-SDS [15]. These detection 
algorithms are evaluated against each other based on BER 
performance and detection complexity. 

III. GOLDEN CODE SD-SDS OVERVIEW 
The authors in [15] propose a low complexity detection algorithm 
called SD-SDS for a generalized Golden code full-rate and full-
diversity STBC scheme called multiple complex symbol Golden 
code (MCS-GC). MCS-GC involves transmitting 2 or more 
complex M-QAM symbols inside a Golden code super symbol 
over 2 or more timeslots. The transmission happens over an 
𝑁𝑁� × 𝑁𝑁�  wireless MIMO channel where 𝑁𝑁� = 2 and 𝑁𝑁� ≥ 𝑁𝑁� . 
The conventional Golden code system is represented as 2CS-GC 
in [15] since only 2 complex symbols are transmitted per Golden 
code super symbol over 2 timeslots. The 2CS-GC system model 
used by the SD-SDS detection algorithm does not take the form 
of the one presented in (1) in this paper. Instead of a transmission 
vector of Golden code super symbols as shown in (1), the system 
model uses a transmission vector of complex M-QAM symbols. 
The Golden code super symbols are just a linear combination of 
the complex M-QAM symbol pairs and thus the linear 
combination constants of the Golden code can be factored into 
the wireless channel matrix and have the transmission vector 

composed purely of M-QAM symbols. The channel matrix with 
the Golden code linear combination constants is a modified 
wireless channel matrix. The equivalence relation that relates the 
Golden code system model with a transmission vector of Golden 
code super symbols and the system model with a transmission 
vector of M-QAM complex symbols is shown in (2): 
 

                                𝑯𝑯�𝒙𝒙� = 𝑯𝑯� �
𝑥𝑥��
𝑥𝑥��

� = 𝑯𝑯� �𝒖𝒖                           (2)  

         
Where 𝒖𝒖 = [𝑥𝑥� 𝑥𝑥� 𝑥𝑥� 𝑥𝑥�]�,   𝑯𝑯�� =
�

√�
𝑯𝑯� � 𝛼𝛼 𝛼𝛼𝛼𝛼    0 0

0 0     𝛼𝛼 𝛼𝛼𝛼𝛼� and 𝑯𝑯� � = �
√�

𝑯𝑯� � 𝛼𝛼� 𝛼𝛼��̅�𝛼    0 0
0 0     𝑗𝑗𝛼𝛼� 𝑗𝑗𝛼𝛼��̅�𝛼�.  

Wireless channel matrix 𝑯𝑯� � ∈ ℂ��×���  is the modified wireless 
channel matrix, for timeslot 𝑖𝑖, that includes the Golden code 
super symbol linear combination constants based on the 
equivalence relations in (2). The received signal vectors in (1), 
over timeslot 𝑖𝑖, are combined using the methodology as shown in 
[15] to produce (3) 
 

                                        𝒚𝒚 = 𝑯𝑯� 𝒖𝒖 + 𝒏𝒏                                       (3) 
 

where 𝑯𝑯� = �𝑯𝑯�� 𝑯𝑯� ��
�

∈ ℂ���×���, 𝒚𝒚 = [𝒚𝒚� 𝒚𝒚�]� ∈
ℂ���×�,  and 𝒏𝒏 = [𝒏𝒏� 𝒏𝒏�]𝑻𝑻 ∈ ℂ���×�.  
 
To decode the transmitted M-QAM symbols 𝑥𝑥�, 𝑥𝑥�, 𝑥𝑥�, 𝑥𝑥�, SD-
SDS is used based on the system model presented in (3). QR 
factorization is first performed on the modified wireless 
channel matrix 𝑯𝑯�  such that we get (4) 
 

                                            𝑯𝑯� = 𝐐𝐐�𝐑𝐑�                                           (4) 

The matrix 𝐐𝐐� ∈ ℂ���×���  is a unitary matrix and matrix 𝐑𝐑� =
�𝑹𝑹�� 𝑹𝑹���� ∈ ℂ���×���  has an upper triangular matrix 𝑹𝑹�� ∈
 ℂ���×��� and also a zero matrix 𝑹𝑹�� ∈ ℝ(�������)×��� . The 
vector 𝐳𝐳 = 𝐐𝐐��𝒚𝒚 ∈ ℂ���×� is the modified received signal vector 
over 2-timeslots, which is given by (5) 
 

                                    𝐳𝐳 = 𝐑𝐑�𝐮𝐮 + 𝐐𝐐��𝒏𝒏                                      (5) 
 
The low complexity SD-SDS detection algorithm proposed in 
[15] is summarized as follows: 
 
SD-SDS Algorithm: 
Step 1: Determine the complex M-QAM symbol estimates using 
QR-decomposition. Estimate 𝑥𝑥��  where 𝑞𝑞 ∈ [1: 4].  
 

𝑥𝑥�� =
𝒛𝒛�

𝑹𝑹��,�
, 𝑞𝑞 = 4 

. 
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                                 𝑥𝑥�� =
𝒛𝒛��∑ 𝑹𝑹��,�∗���

�
�����

𝑹𝑹��,�
, ∀𝑞𝑞 ∈ [3: 1]         (6.1). 

where 𝒛𝒛� is the 𝑞𝑞�� scalar element stored in vector 𝒛𝒛 and 𝑹𝑹��,�  
is the scalar element stored in the 𝑞𝑞��  row and 𝑞𝑞��  column of the 
matrix 𝑹𝑹� .  
       
Step 2: Determine the Fixed SD-SDS initial radius 
 
From [15], the initial radius is calculated based on [20, Eqn (28)]. 
 
Step 3: Create the sorted detection subsets 
 
Using the M-QAM symbol estimates found in (6.1), sort in 
ascending order the M-QAM signal constellation for each 
estimated symbol based on the Euclidean distance squared 
metric in (6.2). The sorting is done in such a way that the 
complex symbols in the signal constellation are ordered in 
ascending order based on which complex symbol is closest to 
the estimated M-QAM symbols 
 

.               m�(i) = �x�� − u��
�
, ∀ i ∈ [1: M], u� ∈ Ω�      (6.2).  

         
This implies that for each estimated M-QAM symbol, x��, we 
need to find the associated M-QAM symbols, sorted in 
ascending order, of the 𝑀𝑀 − 1 nearest neighbors from the M-
QAM signal constellation. Furthermore, depending on the 
average SNR, a subset of the sorted M-QAM constellation 
symbol order is used for detection. The subset lengths (𝐿𝐿) are 
stated in [15, Table 2]. The sorting and 𝐿𝐿-dimensional subset 
determination is shown in (6.3): 
 

                        S� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �m�(i)� [1: L]                         (6.3) 
 
where S�, ∀𝑞𝑞 ∈ [1: 4], are the 𝐿𝐿-dimensional sorted subsets 
used in the detection of the optimal estimated transmitted 
symbols 𝑥𝑥�, 𝑥𝑥�, 𝑥𝑥�, and 𝑥𝑥�. 
 
Step 4: Perform SD-SDS to determine candidates in hypersphere 
 
The lattice point candidates which are being searched for, using 
SD-SDS, must lie inside the hypersphere stated in (6.4) as per 
[15] 
 
                                      �𝐳𝐳 − 𝐑𝐑�𝐮𝐮�

�
�

≤ r�                               (6.4) 
     
where 𝑠𝑠 is the fixed initial radius determined in Step 2. The SDS 
found in Step 3 are used to search for these lattice point 
candidates that satisfy (6.4).  

IV. GOLDEN CODE 2-TIMESLOT SD-SDS INITIAL 
RADIUS 

This section presents two approaches to calculate the SD-SDS 
initial radius for the 2-timeslot Golden code scheme. The first 
approach is the fixed initial radius that we will derive for the 2-
timeslot scheme and show that the single timeslot initial radius 
formula used by [15] is valid but was not justified in their paper. 
The fixed initial radius approach brings the disadvantage of 
finding many lattice points meeting the constraint stated in (6.4), 
under low average SNR conditions, in situations where the 
instantaneous SNR is high. This creates high detection 
complexity at lower average SNR values as it will be shown that 
at low average SNR values, the initial radius is large. The second 
approach involves a deep learning model that is used to predict 
the initial radius. The difference here is that the predicted initial 
radius depends on the instantaneous channel conditions instead 
of the average channel conditions. This means for each channel 
use, the initial radius is adapted to select a minimal number of 
lattice point candidates and thus reduce complexity. This idea is 
borrowed from [16] with a modification of the algorithm. Section 
IV-A presents the fixed initial radius derivation justifying using 
a single timeslot initial radius calculation for a 2-timeslot scheme. 
Section IV-B presents the adaptive initial radius deep neural 
network model. 

A. DERIVATION OF FIXED INITIAL RADIUS 
This section presents the proof of the 2-timeslot Golden code SD-
SDS fixed initial radius as dependent only on a single timeslot. 
Hence, the traditional single timeslot initial radius formulae can 
be used for the 2-timeslot SD-SDS. We simplify (6.4) using (5) 
to get the expression 
 

                                    �𝐐𝐐��𝒏𝒏�
�
�

≤ r�                                      (7.1) 
                 
But we know that 𝐐𝐐� is unitary which implies that 𝐐𝐐��𝐐𝐐� = 𝑰𝑰��� =
𝐐𝐐�𝐐𝐐�� where 𝑰𝑰��� ∈ ℝ���×���  is an identity matrix. This also 
implies that the matrix 𝐐𝐐�� is unitary. We know from linear 
algebra that a vector's Frobenius norm is invariant to the 
multiplication with a unitary matrix [25]. Therefore, we can 
simplify (7.1) to get (7.2) 
 

                                      �𝐐𝐐��𝒏𝒏�
�
�

= ‖𝒏𝒏‖�
� ≤ r�                    (7.2) 

           
Lemma 1: We know that the noise vectors 𝒏𝒏� and 𝒏𝒏� are 𝑁𝑁�-
dimensional and that each entry 𝑛𝑛� is distributed based on the 
zero-mean complex Gaussian distribution ℂ𝑁𝑁(0, 𝜎𝜎�). We also 
know that each noise vector entry is defined as a complex number 
as show in (7.3) 
 

                                   𝑛𝑛� = 𝑥𝑥� + 𝑗𝑗𝑗𝑗�                                   (7.3) 
 
where 𝑥𝑥�~𝑁𝑁 �0, �

�
𝜎𝜎�� and 𝑗𝑗�~ 𝑁𝑁 �0, �

�
𝜎𝜎��. Taking the square 

of a Frobenius norm of a 2𝑁𝑁�-dimensional noise vector 𝒏𝒏 yields 
the following in (7.4) 
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        ‖𝒏𝒏‖�
� = �|𝑛𝑛�|� = �(𝑥𝑥�

� + 𝑦𝑦�
� ) 

���

���

���

���

                        (7.4) 

 
Using the laws of linear combination of variances, we have (7.4) 
being re-written as (7.5) 
 

             ‖𝒏𝒏‖�
� =

𝜎𝜎�

2 ���𝑁𝑁(0,1)�
�

+ �𝑁𝑁(0,1)�
�

���

���

�         (7.5) 

But since our sphere decoding algorithm will only search for 
lattice points using the upper half of the 2𝑁𝑁�-dimensional 
received signal vector 𝒛𝒛, as per [15], the lower half only contains 
noise and no signal. Therefore, we only need to consider the 
upper half of the 2𝑁𝑁�-dimensional noise vector 𝒏𝒏. This means 
(7.6) becomes the relevant expression for our use case  
 

‖𝒏𝒏�‖�
� =

𝜎𝜎�

2
�� �𝑁𝑁(0,1)�� + �𝑁𝑁(0,1)��

��

���

� ~
𝜎𝜎�

2
(𝜑𝜑�)  (7.6) 

 
From Lemma 1 it follows that ‖𝐧𝐧�‖�

� is a random variable where 
(φ�)~χ�(2N�) is χ� distributed with 2N� degrees of freedom. 
The random variable (φ�)~Γ(shape = N�, scale = 2) is also 
Gamma distributed with a shape of N� and a scale of 2. In order 
to get the sphere decoder initial radius r we need to set �

�

�
(φ�) ≤

r�, thus (φ�) ≤ ���

�� . Therefore, we can set the probability that the 
Gamma distributed random variable φ� is always less than or 
equal to ���

�� . Prob�φ� ≤ ���

�� � = ε where ε → 1. In our case, we 
set ε = 0.995 for 16-QAM and 0.9999 for 64-QAM. This 
implies that Prob(φ� ≤ P�) = ε. So, we will find the 99.5% or 
99.99% percentile value P� for the Gamma distributed random 
variable φ�. Then we derive the sphere decoder initial radius as: 
 

                                         𝑟𝑟� =
σ�

2
P�                                       (7.7) 

         
But we know that σ� = ��

��
. This derivation proves that even 

though Golden code is a 2-timeslot scheme, the fixed initial 
radius is only dependent on the first timeslot, as shown in (7.6). 
Hence the single timeslot initial radius formulas in literature may 
be applied in SD-SDS. It also proves that as the average SNR 
γ� → 0 dB then r� approaches a large value based on (7.7) since 
r� ∝ �

��
. 

B.  ADAPTIVE INITIAL RADIUS 
In this section we present a Golden Code 2-timeslot deep neural 
network (DNN) SD-SDS radius predictor by extending the single 
timeslot DNN SD radius predictor found in [16] to a 2-timeslot 
DNN. Our DNN SD-SDS radius predictor has inputs from both 
timeslots 1 and 2. The inputs are stacked into a vector of size 
2𝑁𝑁�(𝑁𝑁� + 1) as shown in (8)  
 

               𝒗𝒗 = [(𝒚𝒚�)�, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑯𝑯�)�, (𝒚𝒚�)�, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑯𝑯�)�]            (8) 
 

The entries (𝒚𝒚�)�, 𝑖𝑖 ∈ [1: 2], 𝑙𝑙 ∈ [1: 𝑁𝑁𝑟𝑟] are the 𝑁𝑁�-dimensional 
received signal row vectors from (1). The entries 𝑣𝑣𝑣𝑣𝑣𝑣(𝑯𝑯�)�, 𝑖𝑖 ∈
[1: 2]  are the vectorized channel matrix entries from (1). We then 
convert the complex-valued vector in (8) into a real-valued 
matrix 𝚯𝚯 ∈ ℝ�×���(����) as shown in (9) from [26] 
 

                            𝚯𝚯 = �𝑅𝑅𝑣𝑣(𝒗𝒗) −𝐼𝐼𝐼𝐼(𝒗𝒗)
𝐼𝐼𝐼𝐼(𝒗𝒗) 𝑅𝑅𝑣𝑣(𝒗𝒗) �                            (9) 

              
Since this is supervised learning, the offline training of the DNN 
is done with an output label in the form of the distance squared 
of the lattice point closest to the upper half of the received signal 
vector z. This translates to the closest lattice radius to the upper 
half of the received signal vector z. The radius is found from the 
SD-SDS assisted ML detector output distances for each possible 
combination of the 4 M-QAM symbols. The radius or distance 
squared for the lattice point with the smallest distance from the 
received signal vector is computed in (10) [16] 
 

                                 𝑟𝑟�
� = �𝒛𝒛 − 𝑹𝑹�𝒖𝒖��

�
�                                   (10) 

          
where 𝒖𝒖� is the 𝑘𝑘�� smallest radius lattice point found inside the 
hyper-sphere of radius r�. The initial radius used for the SD-SDS 
is based on the derived fixed initial radius in (7.7) of this paper. 
The radii or distances for the candidate lattice points are sorted in 
ascending order as follows: 𝑟𝑟�

� < 𝑟𝑟�
� < 𝑟𝑟�

� < ⋯ < 𝑟𝑟� 
� [16], 

where 𝐾𝐾 is a large number of candidates, especially at lower SNR 
as shown in (7.7). The smallest radius is loaded into a 1-
dimensional vector r=[𝑟𝑟�

�] and is used as the output label data for 
the input training data generated using (8) and (9).  
 
We only select one radius as the output label because during 
training we realized that because SD-SDS is a lower complexity 
detection algorithm relative to SD, sometimes there is only one 
lattice point that lies within the hypersphere radius. The number 
of lattice points found inside the hypersphere fluctuates from one-
to-many candidates. To collect as many training data points as 
possible, we select all possible number of lattice points from 1 
point to the largest possible number. The input and output 
training data are normalized or scaled into the interval [0,1].  The 
scaling for the input feature data 𝑋𝑋 is carried out using the 
formula 𝑋𝑋 = � ������

���������
�  per input feature. 𝑋𝑋��� is the smallest 

feature value over all training SNR values and 𝑋𝑋���  is the highest 
feature value over all training SNR values.   
 
The DNN in Table I is trained from 30dB to 2dB SNR range from 
the highest SNR value to the lowest. The output label data  𝑌𝑌 is 
scaled using the formula 𝑌𝑌 = � ������

���������
�. 𝑌𝑌��� is the 

maximum radius value of the lattice points and 𝑌𝑌��� is the 
minimum radius value over the whole SNR training range. From 
experimentation, we observe that the output linear activation 
function used in [16] yields negative radiuses. This motivates us 
to use a bounded activation function such as the Sigmoid 
activation function since the radius values cannot be negative and 
further to that, the radius values do get quite large at low average 
SNR which negatively affects the training performance of the 
DNN. The training data is then used to train the neural network 
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in Table I to minimize the mean squared error loss function using 
the ADAM optimizer [27]. 
 

TABLE I 
DNN RADIUS PREDICTOR ARCHITECTURE 

Layer Parameter Description 
Flatten 1 × 2 × 4𝑁𝑁�(𝑁𝑁� + 1) input data 

dimension 
(Input-Layer) 
Dense+LeakyReLU 

8 neurons. LeakyReLU slope of 0.3 

BatchNormalization void 
Dropout Probability of 0.5 
(Hidden-Layer) 
Dense+LeakyReLU 

8 neurons. LeakyReLU slope of 0.3 

BatchNormalization void 
Dropout Probability of 0.5 
(Output-Layer) Dense+Sigmoid 1 neuron 

Batch Size=1829, Learning Rate=0.0076, Seed Value=16 and Maximum 
Epochs=4000 

 
We notice from observation that the DNN architecture is 
sensitive to the input Matrix or Vector shape or size. This implies 
that the DNN architecture in Table I is valid for a 2 × 4 MIMO 
configuration since our training is based on this MIMO 
configuration. The baseband modulation schemes used in 
training the DNN in Table I are the 4-QAM, 8-QAM, 16-QAM 
and 64-QAM data symbols. For any other MIMO configuration 
and modulation schemes, a new architecture will need to be 
selected and trained. During operation, the DNN in Table I will 
be used as an adaptive initial radius predictor based on the 
normalized instantaneous received signal vectors and wireless 
channel matrices from timeslot 1 and 2 as per (8) and (9). The 
predicted output radius from the DNN in Table I is de-normalized 
back to the initial radius's original scale. The formula used for de-
normalizing the predicted radius is 𝑟𝑟� = (𝑌𝑌��� − 𝑌𝑌���) ×
𝑟𝑟����

� + 𝑌𝑌��� where 𝑟𝑟����
�  is the normalized predicted radius in 

the range [0,1] and 𝑟𝑟� is the de-normalized predicted radius. 

V. GOLDEN CODE SD-SDS DEEP LEARNING 
ALGORITHMS 

This section is dedicated to exhibiting the algorithms developed 
to lower complexity in Golden code SD-SDS detection. Section 
V-A ventilates the SD-SDS-Radius-DNN algorithm that aims to 
lower the detection complexity of SD-SDS at mid-to-low SNR. 
This algorithm uses the adaptive initial radius DNN predictor, in 
Table I, to predict the SD-SDS initial radius based on the 
instantaneous channel conditions as per [16]. Section V-B 
exhibits the novel SD-SDS-DNN algorithm that executes the SD-
SDS-Radius-DNN algorithm under unfavorable instantaneous 
channel or noise conditions and the QR decomposition sub-
optimal detector is preferred in favorable instantaneous channel 
and noise conditions. The SD-SDS-DNN algorithm lowers the 
detection complexity of the SD-SDS at low SNR by preferably 
running the low complexity QR decomposition sub-optimal 
detector under favorable instantaneous channel and noise 
conditions. 
 

A. SD-SDS-Radius-DNN ALGORITHM 
SD-SDS-Radius-DNN algorithm: 

Input: 𝒚𝒚�, 𝒚𝒚�, 𝑯𝑯�, 𝑯𝑯�, 𝒛𝒛, 𝑹𝑹�, Ω�, �̅�𝛾 
Output: 𝚤𝚤�̂, 𝚤𝚤̂�, 𝚤𝚤̂�, 𝚤𝚤̂� 
1. 𝑆𝑆� = 𝑆𝑆𝑆𝑆𝑆𝑆�𝒛𝒛, 𝑹𝑹,� Ω�� ∀𝑞𝑞 ∈ [1: 4] 
2. 𝐼𝐼𝐼𝐼 γ� > 𝛾𝛾� 𝑇𝑇ℎ𝑒𝑒𝑒𝑒 

a. r�=��

�
P� 

b. 𝑐𝑐���� = 0 
3. 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒  

a. Stack 𝒚𝒚�, 𝒚𝒚�, 𝑯𝑯�, 𝑯𝑯� entries as shown in 
(8) and (9) to obtain 𝚯𝚯 

b. Feed 𝚯𝚯 to the trained DNN in Table I to 
get the radius squared prediction r� =
𝑆𝑆𝑁𝑁𝑁𝑁������(𝚯𝚯) 

c. 𝑐𝑐���� = 4 
4. 𝑐𝑐 = 0 
5. Implement sphere decoding with initial radius r� 
6. 𝐼𝐼𝐼𝐼 𝑆𝑆���𝒛𝒛, 𝑹𝑹�, 𝑆𝑆�, 𝑟𝑟�� ≠ 𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸 𝑂𝑂𝑂𝑂 𝑐𝑐 = 𝑐𝑐���� 𝑇𝑇ℎ𝑒𝑒𝑒𝑒 

a. GO TO Step 8 
7. 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒 

a. 𝑐𝑐 = 𝑐𝑐 + 1 
b. 𝑟𝑟� = 𝑟𝑟� ∗ 2 
c. GO TO Step 5 

8. 𝐼𝐼𝐼𝐼 𝑆𝑆���𝒛𝒛, 𝑹𝑹�, 𝑆𝑆�, 𝑟𝑟�� ≠ 𝑒𝑒𝑛𝑛𝐸𝐸𝐸𝐸 𝑇𝑇ℎ𝑒𝑒𝑒𝑒 
a. 𝚤𝚤�̂, 𝚤𝚤̂�, 𝚤𝚤�̂, 𝚤𝚤̂� = 𝑆𝑆���𝒛𝒛, 𝑹𝑹�, 𝑆𝑆�, 𝑟𝑟�� 

9. 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒 
a. 𝚤𝚤�̂, 𝚤𝚤̂�, 𝚤𝚤�̂, 𝚤𝚤̂� = 𝑆𝑆���(𝒚𝒚�, 𝒚𝒚�, 𝑯𝑯�, 𝑯𝑯�, γ�) 

10. 𝐸𝐸𝑒𝑒𝐸𝐸 

where 𝑆𝑆��(. ) is the SD algorithm as implemented in [15], 
𝑆𝑆���(. ) is the sub-optimal detector of M-QAM symbols when 
the SD algorithm finds no lattice points candidates. 𝛾𝛾� is the 
average SNR threshold below which the adaptive initial radius 
DNN algorithm is activated. 𝛾𝛾� is defined as 11 dB for 16-QAM 
and 19 dB for 64-QAM. The SD-SDS algorithm has low 
detection complexity at high SNR and higher detection 
complexity at lower SNR values as stated in [15]. The values 
11 dB and 19 dB are found via experimentation after observing 
that the SD-SDS-Radius-DNN algorithm effectively reduces 
complexity below a specific average SNR threshold. The 16-
QAM case was found to be effective from 11 dB downwards 
and for 64-QAM it was found to lower detection complexity 
from 19 dB downwards. In this paper, we are targeting the high 
detection complexity at lower SNR values for SD-SDS. 
Therefore, the thresholds basically determine when the adaptive 
initial radius predictor must take effect and reduce detection 
complexity. 𝑆𝑆𝑆𝑆𝑆𝑆(. ) is the sorted detection subset algorithm as 
detailed in Step 3 of Section III. 𝚤𝚤�̂, 𝚤𝚤̂�, 𝚤𝚤̂�, 𝚤𝚤�̂ are the decoded M-
QAM symbol indices. 
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The SD-SDS-Radius-DNN algorithm is a modified version of 
the algorithm in [16]. The SD-SDS-Radius-DNN algorithm is 
modified to suit the SD-SDS context of having only 1 predicted 
radius output. This means that if no lattice point candidates are 
found within the predicted radius of the hypersphere, we need 
a way to increase the hypersphere radius and perform the 
sphere-decoding again. We are inspired by the idea in [17] of 
iteratively dividing the hypersphere radius by 2 and feeding the 
updated radius to a DNN to predict the number of lattice points 
inside a hypersphere. In our case, we do the opposite; if we do 
not find lattice point candidates inside the hypersphere, we 
increase the radius by multiplying it by a factor of 2 until we 
reach a pre-determined iteration limit of 5 set as 𝑐𝑐���� = 4. The 
𝑐𝑐����  limit is set via a heuristic method by considering that a 
high iteration limit leads to higher detection complexity or 
latency. A lower iteration limit leads to sub-optimal BER 
performance as the sub-optimal detector will be relied on more 
often. The algorithm also has the DNN prediction of the initial 
radius only done below a certain average SNR threshold since 
SD-SDS has a high detection complexity at lower SNR values 
whilst at higher SNR values, it has low detection complexity. 
When the SD-SDS-Radius-DNN algorithm fails to find lattice 
point candidates inside the hypersphere of a pre-determined 
radius, the LMMSE estimator 𝒙𝒙�� = �𝑯𝑯�

�𝑯𝑯� +

𝜎𝜎�𝑰𝑰���
��

𝑯𝑯�
�𝒚𝒚� 𝑖𝑖 ∈ [1: 2] from [16] is used as a sub-optimal 

detector for Golden code symbol estimates. The vector 𝒙𝒙�� is the 
sub-optimally estimated transmitted Golden code symbol 
vector for timeslot 𝑖𝑖. The 4 square M-QAM symbols conveyed 
by these estimated Golden code symbols are then found using 
expression (11.1) to (11.2) which are adapted from [14] 
 

   𝑥𝑥����� =
√5

(𝜃𝜃 − �̅�𝜃)
�𝜃𝜃

𝒙𝒙��[𝑘𝑘 − 1]
𝛼𝛼�

− �̅�𝜃
𝒙𝒙��[𝑘𝑘 − 1]

𝛼𝛼
�       (11.1)  

                              

        𝑥𝑥��� =
√5

(𝜃𝜃 − �̅�𝜃)
�
𝒙𝒙��[𝑘𝑘 − 1]

𝛼𝛼
−

𝒙𝒙��[𝑘𝑘 − 1]
𝛼𝛼�

�              (11.2) 

 
where 𝑘𝑘 ∈ [1: 2].        
Therefore, we can search for the symbol indices that minimize 
the following Euclidean distances squared based on (12) for 
each estimated 𝑥𝑥�� square M-QAM symbol. 
 

 𝚤𝚤�̂ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 ��𝑥𝑥�� − 𝑢𝑢���� , ∀ 𝑖𝑖 ∈ [1: 𝑀𝑀], 𝑢𝑢� ∈ Ω�       (12) 

B. SD-SDS-DNN NOVEL ALGORITHM 
The SD-SDS-DNN algorithm uses the instantaneous channel 
conditions and received signal vectors to predict, using a DNN, 
whether the sub-optimal QR decomposition M-QAM symbol 
estimates, found in Step 1 of the SD-SDS algorithm in Section 
III, are good enough to be used as the actual transmitted 
symbols without performing the SD-SDS-Radius-DNN based 

search. The output of the DNN is a probability value in the 
range [0,1] that is used to determine whether the channel 
conditions and instantaneous noise values in the received signal 
vectors are good enough to directly output the transmitted M-
QAM symbols from the QR decomposition sub-optimal 
detector. If the probability is greater than a specific threshold, 
then the QR decomposition sub-optimal detector output is taken 
as the transmitted symbols. If it is less, then the more complex 
SD-SDS-Radius-DNN based search is performed.  
 
Let us define the proposed DNN which predicts the channel 
condition state probability based on the instantaneous channel 
conditions and noise statistics. We define the DNN as 
 
                                        𝑝𝑝 = Φ(𝝅𝝅, 𝝉𝝉)                                         (13) 
 
where 𝑝𝑝 ∈ [0,1] is the probability that the channel conditions 
are sufficient to use the QR decomposition sub-optimal detector 
estimated M-QAM symbols as the transmitted M-QAM 
symbols. The function Φ(∙) is the DNN channel condition state 
predictor which takes the input vector 𝝅𝝅 ≜ [𝒛𝒛��, 𝒛𝒛��, 𝒓𝒓��

�, 𝒓𝒓��
� ] ∈

ℝ�� which is a combination of the modified received signal 
vector in (5) and the upper triangular matrix 𝑹𝑹��. The entries of 
the vector 𝝅𝝅 are real valued as the DNN function approximator 

can only take real numbers. We define 𝒛𝒛�� ≜ �ℜ�𝒛𝒛[0:𝑁𝑁�)��
�
, 

𝒛𝒛�� ≜ �ℑ�𝒛𝒛[0:𝑁𝑁�)��
�
, 𝒓𝒓��

� ≜ 𝑣𝑣𝑣𝑣𝑐𝑐 �ℜ�𝑹𝑹����
�
 and 𝒓𝒓��

� ≜

𝑣𝑣𝑣𝑣𝑐𝑐 �ℑ�𝑹𝑹����
�

. The notation 𝒛𝒛[0:𝑁𝑁�) means that we take the 
first 𝑁𝑁�  elements of the vector 𝒛𝒛 since the last 𝑁𝑁�  elements are 
just noise without any signal. With regards to the upper 
triangular matrix 𝑹𝑹��, we only take the non-zero real valued 
elements of the matrix entries. The DNN input vector 𝝅𝝅 is a 28-
dimensional vector because the DNN architecture in Table II is 
trained for a fixed MIMO configuration of 𝑁𝑁� = 2 and 𝑁𝑁� = 4. 
For any other MIMO configuration the DNN architecture in 
Table II will change and will need to be re-trained. The vector 
𝝉𝝉 is a vector of all hyperparameters that need to be tuned during 
the training phase of the DNN.  
 
The DNN function approximator Φ(∙) has an architecture 
shown in Table II. 

TABLE II 
DNN CHANNEL CONDITION STATE PREDICTOR ARCHITECTURE 

Layer Parameter Description 
Input (28,) 28 dimensional input vector 𝝅𝝅 
(Input Layer) 
Dense+LeakyReLU 

𝑁𝑁�  neurons. LeakyReLU slope of 0.3 

BatchNormalization void 
Dropout Probability of 0.5 
(Hidden Layer) 
Dense+LeakyReLU 

𝑁𝑁�  neurons. LeakyReLU slope of 0.3 

BatchNormalization void 
Dropout Probability of 0.5 
(Output Layer) Dense+Sigmoid 1 neuron 

Batch Size=1800, Learning Rate=0.00009,                                                                  
Seed Value=16 and Maximum Epochs=2000 

 
where 𝑁𝑁� is the number of input layer neurons and 𝑁𝑁� is the 
number of hidden layer neurons. For the architecture in Table 
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II to be useful, we need to train the DNN architecture with 
appropriate training samples and test the DNN before deploying 
it. The next section attends to this. 
 

i. TRAINING AND TESTING PHASE 
The objective of this phase is to tune the weights and biases of 
the DNN function which are found in the vector 𝝉𝝉. The DNN 
function in Table II is trained using approximately 10 000 
samples of data over an average SNR range of [0,21] dB for 
16-QAM modulation and [10,28] dB for 64-QAM modulation. 
The DNN is trained from the highest average SNR value to the 
lowest average SNR value. The way the training data is 
collected is based on the following pseudocode: 
 
Training Pseudocode: 
###Start Comment ### 
### 𝑋𝑋 is the input sample array and 𝑌𝑌 is the output label sample 
array  
###end comment### 
 
Step 1: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑋𝑋 𝐼 [], 𝑌𝑌 𝐼 []𝐼  
Step 2: 𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 0, 𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 10000 
Step 3: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

a):𝐼𝐼𝐼𝐼𝐼𝐼𝐼�� 𝐼 𝐼𝐼�𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼�� 𝐼 𝐼𝐼�𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼�� 𝐼
𝐼𝐼�𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼�� 𝐼 𝐼𝐼�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

i) 𝑋𝑋[𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼] 𝐼 𝑋𝑋  
ii) 𝑌𝑌[𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼] 𝐼 1 

b) 𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼 
i) 𝑋𝑋[𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼] 𝐼 𝑋𝑋  
ii) 𝑌𝑌[𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼] 𝐼 0 

     𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼 𝐼𝐼𝑐𝑐𝑐𝑐𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐 1 
     𝐺𝐺𝐺𝐺𝐼𝐼𝐺𝐺𝐼𝑐𝑐𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐺 

Step 4: 𝐸𝐸𝐼𝐼𝐼𝐼𝐼𝐼 
     𝐺𝐺𝐺𝐺𝐼𝐼𝐺𝐺𝐼𝑐𝑐𝐼𝐼𝐼𝐼𝑐𝑐𝐼𝐺 
             
Step 5: 𝐸𝐸𝐼𝐼𝐼𝐼 
 
The idea is that when the instantaneous channel conditions are 
very good, then the condition in Step 3a) can be easily met and 
the training output label value is set to 1. When the 
instantaneous channel conditions are not favorable then the 
condition in 3a) is most likely not met and the output label value 
is set to 0. The reasoning is that when the instantaneous fading 
channel conditions are good and instantaneous noise power is 
low, the QR decomposition M-QAM symbol estimates 
𝐼𝐼��, ∀𝑞𝑞 𝑞 [1,4] will be a good enough estimate for the actual 
transmitted M-QAM symbols 𝐼𝐼�, ∀𝑞𝑞 𝑞 [1,4]𝐼 After collecting 
the input and output training data, since this is a supervised 
learning problem, we trained the DNN and realized that the 
validation accuracy of the DNN under test conditions was in 
excess of 99% for high and low SNR values. In the mid-SNR 
range, the validation accuracy went as low as 36%.  
 
Upon inspection of the training data, we realized that the 
collected training samples were skewed. The output label 
distribution was not evenly distributed between the 0 state and 
1 state for both high and low average SNR values. Fig. 1 and 2 

illuminate the distribution of the output label states for 16-QAM 
and 64-QAM, respectively. 

 
Fig. 1. 16-QAM skewed output label distribution for the training data 

 
Fig. 2. 64-QAM skewed output label distribution for the training data 
 
This explained why the DNN was underperforming in the mid-
SNR range whilst performing in the high and low SNR region. 
This is because the DNN became lazy to learn and decided to 
memorize the output state and retain the output predicted state 
on one state depending on whether it is the low SNR or high 
SNR region. In the high SNR region, the DNN will constantly 
output a predicted state of 1 because over 99% of the output 
labels have values of 1.  The objective is to maximize the 
validation accuracy and the DNN can achieve this by just 
outputting a predicted state of 1 for the high SNR case. The 
same logic applies for the low SNR case. 
 
To force the DNN to learn during training, we decided to 
perform over-sampling of the minority state/class and under-
sampling of the majority state/class for the full SNR range. The 
over-sampling is performed using the synthetic minority over-
sampling technique (SMOTE) [29] and the under-sampling is 
performed using randomized under-sampling of the majority 
class [29]. The SMOTE works by randomly selecting a 
minority class/state feature sample in the training data and then 
using the 𝐾𝐾-nearest neighbor (KNN) algorithm to select the 𝐾𝐾 
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nearest neighbors to that selected feature sample. It then 
randomly selects one nearest neighbor from the selected 𝐾𝐾 
neighbors and randomly creates a new synthetic feature sample 
point on the line joining the chosen nearest neighbor feature 
sample and the originally selected feature sample on the ℝ�� 
dimensional cartesian plane. The process is repeated until a 
desired sample size of the minority class is achieved. The 
under-sampling is performed by randomly selecting a feature 
sample in the majority class/state and then deleting it from the 
training samples. This is repeated until a desired ratio between 
the majority class and minority class is achieved. In our case, 
we performed this until the majority class was approximately 
60% of the training sample size and the minority class 40% for 
the full average SNR range for both 16-QAM and 64-QAM 
training data. 
 
We then went ahead to train the DNN architecture in Table II 
using this modified training data with 25% of the training 
samples being used for testing purposes and 75% for training. 
The input feature training data in array 𝑋𝑋 was scaled into the 
range [0,1] using the methodology explained in Section IV-B. 
The loss function selected for the optimization of the DNN 
hyperparameters was the binary cross entropy loss function 
with the validation accuracy used as the metric to measure 
performance. The ADAM optimizer [27] was used to perform 
the optimization of the DNN weights and biases in the vector 𝝉𝝉 
by comparing the output of the DNN to the target values in array 
𝑌𝑌. During the testing phase, the DNN is fed multiple test vectors 
𝝅𝝅 from the test samples and the output of the DNN predicts a 
probability value in the range [0,1]. Table III shows the 
probability thresholds 𝑝𝑝�  and number of neurons used in the 
architecture for the case of 16-QAM and 64-QAM. The 
probability thresholds are used to determine the channel 
condition state. If the predicted probability exceeds a given 
probability threshold 𝑝𝑝� , then the channel condition state is 1. If 
the predicted probability is less than or equal to the probability 
threshold 𝑝𝑝� , then the channel condition state is 0. 

 
TABLE III 

16-QAM AND 64-QAM DNN CHANNEL CONDITION STATE 
PREDICTOR PARAMETERS 

 16-QAM Parameters 64-QAM Parameters 
Probability 
Thresholds 

�̅�𝛾 ≤ 9 𝑑𝑑𝑑𝑑 �̅�𝛾 > 9 𝑑𝑑𝑑𝑑 �̅�𝛾 ≤ 16 𝑑𝑑𝑑𝑑 �̅�𝛾 > 16 𝑑𝑑𝑑𝑑 

𝑝𝑝� = 0.5 𝑝𝑝� = 0.9 𝑝𝑝� = 0.5 𝑝𝑝� = 0.9 
Number of 
Neurons 

𝑁𝑁� = 160 𝑁𝑁� = 160 𝑁𝑁� = 64 𝑁𝑁� = 64 

 
ii.SD-SDS-DNN ALGORITHM EXPLAINED 

The DNN function approximator in Table II is used to predict 
when the QR decomposition M-QAM symbol estimates can be 
used as appropriate estimates for the transmitted M-QAM 
symbols. The SD-SDS-DNN algorithm combines this DNN 
function approximator in Table II, the SD-SDS algorithm 
developed in [15] and the SD-SDS-Radius-DNN algorithm. 
The SD-SDS-DNN algorithm is presented as follows: 
 
 
 
 
 

 SD-SDS-DNN algorithm: 
Input: 𝒚𝒚�, 𝒚𝒚�, 𝑯𝑯�, 𝑯𝑯�, 𝒛𝒛, 𝑹𝑹�, 𝑹𝑹��, Ω�, �̅�𝛾 
Output: 𝚤𝚤�̂, 𝚤𝚤̂�, 𝚤𝚤̂�, 𝚤𝚤̂� 

 
1. 𝚤𝚤�̂, 𝚤𝚤̂�, 𝚤𝚤�̂, 𝚤𝚤̂� =getQRDecompositionSymbolEstima

tes() from Step 1 of SD-SDS algorithm in 
Section III 

2. 𝐼𝐼𝐼𝐼 �̅�𝛾 ≤ 𝜁𝜁� 𝑇𝑇ℎ𝑒𝑒𝑒𝑒 

a. 𝒛𝒛�� = �ℜ�𝒛𝒛[0:𝑁𝑁�)��
�
, 𝒛𝒛�� =

�ℑ�𝒛𝒛[0:𝑁𝑁�)��
�
, 𝒓𝒓��

� = 𝑣𝑣𝑒𝑒𝑣𝑣 �ℜ�𝑹𝑹����
�
 

and 𝒓𝒓��
� = 𝑣𝑣𝑒𝑒𝑣𝑣 �ℑ�𝑹𝑹����

�
 

b. 𝝅𝝅 = [𝒛𝒛��, 𝒛𝒛��, 𝒓𝒓��
�, 𝒓𝒓��

� ] 
c. 𝑝𝑝 = Φ(𝝅𝝅, 𝝉𝝉) 
d. 𝐼𝐼𝐼𝐼 𝑝𝑝 > p� 𝑇𝑇ℎ𝑒𝑒𝑒𝑒 

i. 𝐺𝐺𝐺𝐺𝑇𝑇𝐺𝐺 𝑆𝑆𝑆𝑆𝑒𝑒𝑝𝑝 4 
e. 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒 

i. 𝚤𝚤�̂, 𝚤𝚤̂�, 𝚤𝚤�̂, 𝚤𝚤̂� =run SD-SDS-
Radius-DNN Algorithm 

3. 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒 
a. 𝚤𝚤�̂, 𝚤𝚤̂�, 𝚤𝚤�̂, 𝚤𝚤̂� =run SD-SDS Algorithm 

4. 𝐸𝐸𝑒𝑒𝑑𝑑 

From the SD-SDS-DNN algorithm we can see that when the 
average SNR �̅�𝛾 exceeds the threshold 𝜁𝜁�  the SD-SDS algorithm 
from [15] is executed. This is because at high SNR values the 
detection complexity of the SD-SDS algorithm is very low. The 
objective of this paper is to reduce the detection complexity of 
the SD-SDS algorithm at low SNR values. At lower SNR 
values, �̅�𝛾 ≤ 𝜁𝜁�, the SD-SDS-DNN algorithm executes the DNN 
channel predictor in Table II that is used to select between the 
very low complexity sub-optimal QR decomposition detector 
and the execution of the low complexity near-optimal SD-SDS-
Radius-DNN detector. The average SNR thresholds for 16-
QAM and 64-QAM modulation are 𝜁𝜁� = 6 dB and 𝜁𝜁� = 19 dB, 
respectively. The thresholds p� and 𝜁𝜁�  are found using a 
heuristic method. 
 
From the SD-SDS-DNN algorithm we observe that when the 
predicted probability from the DNN exceeds the probability 
threshold p�, as shown in Table III, then the SD-SDS-Radius-
DNN algorithm does not get executed at all. The estimated 
transmitted M-QAM symbols come directly from the very low 
complexity QR decomposition sub-optimal detector. If the 
predicted probability is less than or equal to the probability 
threshold p�, then the SD-SDS-Radius-DNN algorithm gets 
executed as the QR decomposition sub-optimal detector output 
is deemed unreliable by the DNN predictor. 

VI. COMPLEXITY ANALYSIS OF PROPOSED ALGORITHMS 
In this section, we will deal with the detection complexity 
analysis of the three different Golden code detection algorithms 
discussed here and in literature. The detection complexity is 
defined in various ways using different metrics. We will extend 
the detection complexity metric of evaluating complexity using 
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the number of complex-valued operations [30] performed by a 
detection algorithm. Since some of the algorithms rely on deep 
neural networks, which only process real values, we will only 
consider complexity analysis of real-valued floating-point 
operations (FLOPS) [14]. The real-valued binary operators of 
interest are the multiplication, addition, subtraction, and 
division as per [14]. We also neglect the sub-optimal detector's 
detection complexity since it is only executed 0.5% of the time 
for 16-QAM and 0.01% for 64-QAM Monte-Carlo simulations. 
Its contribution to the average detection complexity is marginal. 
The DNN complexity analysis of the offline training and data 
collection is ignored because offline training is done only once 
[16]. We are only performing the DNN complexity analysis for 
the online decoding process. 
 
In [16], the detection complexity metric used is the decoding 
time and order of execution, whilst [17] uses the number of 
lattice points inside the hypersphere and the average processing 
time for the decoding process. Our complexity analysis is based 
on the number of floating-point operations; hence we cannot 
use any of the complexity results in [16] and [17] as a 
benchmark against our detection complexity. Our complexity 
analysis is relative between the Alamouti linear ML, Golden 
code SD, SD-SDS, and SD-SDS-DNN algorithms for the 2 × 4 
MIMO configuration. In [15], they use the number of Euclidean 
distance calculations as the metric for the complexity analysis 
of SD-SDS. This again is different from our metric and makes 
the results in [15] not comparable to ours. 
 
The detection complexity of the three Golden code detection 
algorithms, SD, SD-SDS, and SD-SDS-DNN is determined 
using simulations. The results are exhibited in Fig. 3 and 4. The 
detection complexity of the Alamouti STBC linear ML detector 
is also exhibited in Fig. 3 and 4. The Golden code detection 
algorithms are evaluated in a fast-fading wireless environment; 
however, it is interesting to see its performance against the 
Alamouti STBC in a block-fading wireless channel. The reason 
for this is that we aim to achieve lower detection complexity 
relative to the low complexity Alamouti linear ML detector 
which performs optimally in block-fading wireless channels 
[4]. The Alamouti STBC scheme’s modulation order is selected 
as 256-QAM so that the spectral efficiency of the scheme 
matches that of the 16-QAM Golden code STBC scheme which 
is 8 bits/s/Hz. The Alamouti STBC scheme’s modulation order 
is also selected as 4096-QAM so that the spectral efficiency of 
the scheme matches that of the 64-QAM Golden code STBC 
scheme which is 12 bits/s/Hz. This makes the comparison fair 
between the two schemes as we want to see the detection 
complexity of the two competing STBC schemes for the same 
achieved spectral efficiency. 
 
As can be seen in Fig. 3, the proposed SD-SDS-DNN algorithm 
outperforms the SD-SDS algorithm developed in [15] at low 
SNR. We observe that the detection complexity is identical 
between 6 dB and 18 dB because the SD-SDS algorithm is 
executed when the average SNR exceeds the 6 dB threshold as 
per the SD-SDS-DNN algorithm. This is because the SD-SDS 
algorithm exhibits low detection complexity at high SNR 
values. The low complexity SD-SDS-Radius-DNN algorithm, 
that runs within the SD-SDS-DNN algorithm, only has an 

opportunity to be executed when the average SNR is equal to or 
less than 6 dB. From 6 dB and below, the SD-SDS-DNN 
algorithm exhibits lower detection complexity relative to the 
SD-SDS algorithm. This is because the low complexity QR 
decomposition detector or the SD-SDS-Radius-DNN algorithm 
are being selected as M-QAM symbol detectors depending on 
instantaneous channel conditions and noise. In Table IV, we get 
the insight of the percentage distribution of how many times the 
predicted transmitted symbols were determined by the sub-
optimal QR decomposition method, SD-SDS decoder or the 
SD-SDS-Radius-DNN decoder, for 16-QAM modulation. 
 

TABLE IV 
ESTIMATED TRANSMITTED SYMBOLS DECODER EXECUTION 

PERCENTAGE DISTRIBUTION FOR 16-QAM 
SNR (dB) 0 3 6 9 12 15 18 
SD-SDS-Radius-DNN 
Decoder (%) 

31.4 31.6 36.7 0 0 0 0 

Sub-optimal QR 
Decomposition 
Decoder (%) 

68.6 68.4 63.3 0 0 0 0 

SD-SDS Decoder (%) 0 0 0 100 100 100 100 
 
It is clear from Table IV that the SD-SDS algorithm is solely 
used at high SNR for its low detection complexity. For 6 dB 
SNR and below, the QR decomposition sub-optimal detector is 
used in most cases to predict the transmitted symbols compared 
to the SD-SDS-Radius-DNN decoder. Hence the 75% reduction 
in detection complexity at low SNR relative to the SD-SDS 
decoder, as shown in Fig. 3, is due to the mix in the low 
complexity detection of the QR decomposition sub-optimal 
detector and the SD-SDS-Radius-DNN decoder. 

 
Fig. 3. Complexity analysis of 2 × 4 MIMO 16-QAM Golden Code detection 
algorithms versus 256-QAM Alamouti detection algorithm 
 
In Fig. 3, we also notice that the SD-SDS-DNN algorithm has 
a detection complexity that is 4 times greater than that of the 
Alamouti STBC linear ML detector, at low SNR. At high SNR, 
the SD-SDS-DNN algorithm has 90% lower detection 
complexity relative to the Alamouti STBC linear ML detector. 
This shows that Golden code has a future in practical MIMO 
applications since the detection complexity has been reduced 
such that it is comparable to that of the Alamouti linear ML 
detector. With regards to the traditional SD algorithm, it is 
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shown in Fig. 3 that its detection complexity is the highest 
amongst the STBC detection algorithms discussed in this paper. 
 
In Fig. 4, the proposed SD-SDS-DNN algorithm outperforms 
the SD-SDS algorithm developed in [15] at low SNR. We 
observe that the complexity is identical between 19 dB and 25 
dB because the SD-SDS algorithm is executed as a detector of 
choice above the 19 dB average SNR threshold as per the SD-
SDS-DNN algorithm. Below 19 dB, the instantaneous channel 
and noise conditions are used to select between the very low 
complexity sub-optimal QR decomposition detector and the 
low complexity SD-SDS-Radius-DNN detector.  When the 
instantaneous channel and noise conditions are very good, the 
DNN channel condition predictor in Table II selects the very 
low complexity QR decomposition detector as a detector of 
choice. When the instantaneous channel conditions are 
unfavorable, the more complex SD-SDS-Radius-DNN detector 
is executable as it produces reliable symbol estimates even 
when the instantaneous channel and noise conditions are 
unfavorable. 
 
In Table V, we exhibit the percentage distribution of how many 
times the predicted transmitted symbols were determined by the 
sub-optimal QR decomposition method, SD-SDS decoder or 
the SD-SDS-Radius-DNN decoder, for 64-QAM modulation.  

 
Fig. 4. Complexity analysis of 2 × 4 MIMO 64-QAM based Golden code 
detection algorithms versus 4096-QAM Alamouti detection algorithm 
 

TABLE V 
ESTIMATED TRANSMITTED SYMBOLS DECODER EXECUTION 

PERCENTAGE DISTRIBUTION FOR 64-QAM 
SNR (dB) 10 13 16 19 22 25 
SD-SDS-Radius-DNN 
Decoder (%) 

0.5 1.6 1.1 99.8 0 0 

Sub-optimal QR 
Decomposition Decoder 
(%) 

99.5 98.4 98.9 0.2 0 0 

SD-SDS Decoder (%) 0 0 0 0 100 100 
 
It is clear from Table V that the SD-SDS algorithm is solely 
used at high SNR for its low detection complexity. For 16 dB 
SNR and below, the QR decomposition sub-optimal detector is 
used at least 98% of the time to predict the transmitted symbols 

compared to the less than 2% utilization of the SD-SDS-Radius-
DNN decoder. Hence the 99% lower detection complexity, at 
low SNR, relative to the SD-SDS decoder, as shown in Fig. 4, 
is largely due to the low complexity detection of the QR 
decomposition sub-optimal detector. 
 
From Fig. 4, we observe that the proposed SD-SDS-DNN 
algorithm outperforms the Alamouti linear ML detector by 
exhibiting a detection complexity that is 90% lower for the 
greater part of the SNR range. We also observe that the 
traditional SD algorithm is the most computationally complex 
detection algorithm relative to the STBC detection algorithms 
discussed in this paper. 

VII. SIMULATION RESULTS AND DISCUSSIONS 
The Monte-Carlo wireless simulation environment was setup as 
a 2 × 4 MIMO, where 𝑁𝑁� = 2 and 𝑁𝑁� = 4, with a wireless 
channel with Rayleigh frequency-flat fast fading in which the 
channel gain changes per transmission timeslot. The wireless 
channel transmit-and-receive antennas are sufficiently spaced 
such that the wireless channels are de-correlated. The 
information symbol modulation order used in the simulation was 
16-QAM and 64-QAM. The average power constraint for the 16-
QAM and 64-QAM symbols was set to 1. The SD fixed initial 
radius probability was set to ε=0.995 for 16-QAM and ε=0.9999 
for 64-QAM. The Monte-Carlo simulation determined the BER 
performance of the three detection algorithms SD, SD-SDS and 
SD-SDS-DNN for 16-QAM and 64-QAM. We also simulated 
the BER performance of the 256-QAM Alamouti STBC scheme 
within a block-fading wireless channel. We chose the 256-QAM 
constellation for the Alamouti scheme so that the spectral 
efficiency of the Alamouti STBC and 16-QAM Golden code 
schemes were identical. This allowed us to compare the BER 
performance of Alamouti against that of the Golden code STBC. 
The 64-QAM Golden code STBC produced the same spectral 
efficiency as the 4096-QAM Alamouti scheme. 

 
Fig.  5. BER for 2 × 4 MIMO 16-QAM Golden Code Sphere Decoding Detection 
Algorithms versus 256-QAM Alamouti Detection 
 
If we look at Fig. 5, we see that the proposed SD-SDS-DNN 
algorithm achieves the same BER performance as SD and SD-
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SDS algorithms from literature for 16-QAM. This means that the 
detection algorithm achieves the objective of lowering the 
detection complexity of SD-SDS, at low SNR, without 
compromising the BER performance. The Golden code STBC 
scheme has an 8 dB signal power gain over the Alamouti STBC 
scheme at a BER of 10�� for a spectral efficiency of 8 bits/s/Hz. 
This implies that the Golden code STBC can achieve the same 
spectral efficiency as the Alamouti STBC scheme but at a much 
higher link reliability and comparable detection complexity with 
the linear ML detector as shown in Fig. 3. 
 
In Fig. 6, we see that the proposed SD-SDS-DNN algorithm 
achieves the same BER performance as SD and SD-SDS 
algorithms from literature for 64-QAM. This means that the 
detection algorithm achieves the objective of lowering the 
detection complexity of SD-SDS, at low SNR, without 
compromising the BER performance. The Golden code STBC 
scheme has a 13 dB signal power gain over the Alamouti STBC 
scheme at a BER of 10�� for a spectral efficiency of 12 bits/s/Hz. 
This implies that the Golden code STBC can achieve the same 
spectral efficiency as the Alamouti STBC scheme but at a much 
higher link reliability and 90% lower detection complexity 
relative to the linear ML detector as shown in Fig. 4. 

 
Fig. 6. BER simulation results for 2 × 4 MIMO 64-QAM Golden Code Sphere 
Decoding Detection Algorithms versus 4096-QAM Alamouti Detection 

VIII. CONCLUSION AND FUTURE WORK 
The SD-SDS-DNN algorithm was developed in our research to 
lower detection complexity of SD-SDS, at low SNR, whilst 
maintaining the BER performance. The SD-SDS-DNN 
algorithm is shown to reduce the detection complexity relative to 
SD-SDS by at least 75%, at low SNR, for 16-QAM. For 64-
QAM, the detection complexity of the SD-SDS-DNN algorithm 
is at least 99% lower than that of SD-SDS at low SNR. This is all 
achieved whilst maintaining the BER performance close to that 
of SD-SDS and SD from literature. The SD-SDS-DNN algorithm 
lowers the detection complexity of Golden code to the point that 
it approaches the detection complexity of the Alamouti STBC 
linear ML detector for a spectral efficiency of 8 bits/s/Hz. For a 
spectral efficiency of 12 bits/s/Hz, the SD-SDS-DNN detection 

complexity is 90% lower than the Alamouti linear ML detector 
detection complexity.  

In future research, the SD-SDS-DNN algorithm DNN channel 
condition predictor may be replaced with a low computational 
complexity random forest ensemble decision tree which may 
further reduce detection computational complexity in terms of 
number of FLOPS. Determination of the order of execution of 
the DNN detection algorithms in terms of inference time will 
be of value from a detection latency point of view. 
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