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voltage feeders
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Abstract—Transformation in the South African power
sector and new load patterns necessitated a review of load
models used for financial, technical and tariff analysis. This
pilot study took advantage of available data of customer
measurements on medium Voltage (MV) feeders in Eskom’s
database. Load models with distinct profiles for typical days
were developed for non-overlapping customer classes using
a set of coherent parameters derived from MYV
chronological load profiles and the k-means algorithm. The
results suggested that two profiles can be used to for
summer and two profiles can be used for winter instead of
using 365 hourly profiles for simulations. The results also
reveal that load classification can be improved when the
parameters are directed towards specific objectives, and
also when the k-means algorithm is supervised using
exogenous (external) parameters of loads. A comparison of
the results to the economic activity class suggests that there
are sub-clusters identifiable within the economic classes.
The proposed process is practical, implementable with
available data and suitable for various studies on MV
networks.

Index Terms — Classification, clustering, load models, load
profiles, medium voltage, measurement, tariffs, technical analysis.

I. INTRODUCTION

LOAD models are used to represent the energy usage patterns
of customers in power systems studies [1], [2]. The
proliferation of energy efficiency systems and distributed
generation (DG) based on renewable energy changed the load
patterns on many feeders and increased uncertainty in
modelling distribution networks [3], [4]. Weather, location and
economic factors also affect load profiles [5], [6].

Technical applications of load models for customers in
distribution networks include the calculation of voltage drops
[7], the technical losses in the distribution system [8], demand
forecasting [9], and DG integration planning [10] [11].

In South Africa, load models inform customer classification
and demand, which are essential inputs to Eskom’s
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geographical based load forecasting (GLF) tool [12]. The GLF
is characterized by three main components: load position
forecast (location), active and apparent power (kW or kVA), the
anticipated period, and load class.

Probabilistic load models are used in network design in South
Africa, particularly in low voltage (LV) feeder voltage
calculations and were pivotal in the development of the
Herman-Beta (HB) transform [13], [14]. The extended HB
transform in medium voltage (MV) feeders [15] accommodates
loads and DG with non-unity power factor, although few
models of MV loads are available.

Worldwide, the role of load models in tariff analysis,
forecasting and design is recognized [3], [9], [11], [16]. Tariffs
also affect load profiles, network operations and planning
[3],[17]. The drivers of load models for tariff analysis and
design include load demand representation, cost of service and
tariff objectives [18] [19].

Load models are part of the cost of supply models used in
most utilities to provide energy forecasts per customer classes,
and for setting time of use (TOU) intervals for TOU tariffs [16].
However often these load models are not formalized.

The connection of DG to the distribution systems has
economic implications. The aspects of the distribution
economics likely to be impacted by DG connections include the
initial network investments, network upgrades, distribution
operation and maintenance (O&M) costs, installation of voltage
control schemes and protection devices, and changes in the
network planning environment [20]. Cost-reflective models are
needed to reduce consumers cross-subsidizing prosumers [20].
Cross-subsidization is unavoidable though, as it is inherent in
aggregated distribution tariffs, and the use of volumetric tariffs
to recover most of the costs from customers [16].

TOU tariffs, with generation standby charges and fixed
charges, remove some unintended tariffs cross-subsidies. Fell
et al [21] suggested that DG technologies such as combined
heat and power (CHP), and renewables with stationary or
electric vehicle (EV) storage, can be effective for peak shaving
and providing energy when needed, and managing congestions
and other constraints. These could reduce utility costs and
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tariffs. However, such tariffs may discourage investment in
renewable DG, and lead to societal loss linked to the benefits of
cleaner energies [22]. Many consumers do not favour TOU
tariffs, imposed load response, peak reduction by direct load
control, and load curtailment that take away their control [22].

Old load models were derived from estimates of the load
parameters according to customer classes and profiles [23],
[24]. These models need to be updated, given the changes in
load patterns and a growing need to represent their stochastic
nature [20], [23].

Clustering algorithms are used widely for data partitioning
and customer classification, with the k-means clustering
algorithm being preferred [25], [26]. The k-means clustering
algorithm allocates objects (feeders or customers’ data points)
iteratively to the different clusters, based on the average
Euclidean distance [23], [27-29].

Xu [30] defined load models as analytical, mathematical
representations of loads based on equivalent-circuits, physical
components, or otherwise, which represent the changes in real
and reactive power demands as a function of variations in power
system parameters (e.g., voltage, frequency etc.).

Load models can be deterministic or probabilistic [31-34].
Deterministic models are based on assumptions about direct
links between chosen drivers and expected values whereas
probabilistic models make use of stochastic methods to
simulate inputs and outputs [33].

Load models developed for specific applications are
influenced by characteristic parameters. Internal parameters are
inherent in the load data. External parameters include those
estimated using a different data set, policy or contractual rules
[23], [33]. The load models are developed by following three
steps [26], [23]: (1) identifying the customer usage behaviour;
(2) classifying feeders or customers according to their usage
behaviours; and (3) allocation of representative profiles to the
classes.

Customer usage behaviours can be represented by a twenty-
four (24) hour chronological vector, a time-series of a load
profile for a defined period, contractual parameters,
measurement-based or calculated parameters [23], [26], [32],
[35-36]. The parameters used in load modelling include the
active power and reactive power measurements, and non-
measured parameters such as economic activity, system voltage
and geographical location [37], dividing load curves into fixed
time intervals and calculating demands levels for each interval
[38]. Other parameter identification approaches include
dividing daily profiles into segments based on some interval-
linked criteria [39], the principal component analysis (PCA) of
daily load profile, and load factors and loss factors [40]. There
is continued research related to the parameters to distinguish
and classify customers. However, there is no consensus on
generally applicable parameters [27], [34], [41].

Classes of customers with similar, regular usage patterns,
support cost-reflective tariffs. When customers in a common
class have significantly different consumption patterns, the
pricing signal is weakened, and tariffs may not fairly reflect
those costs [42]. The study proposes a classification process
that uses MV feeder and customer data to develop:
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e A common typical day model to be used to classify the
complete annual profile, thus reducing the amount of
datapoints required for studies.

e Improved customer classification model based on a set of
coherent load parameters and the k-means clustering
algorithm, supervised using exogenous parameters.

The model results are compared to the customers classes that
are derived from economic activity, that are generally used by
utilities for load modelling and simulations. The model is
practical and implementable and leads to improvement in the
classification of customer based on their load profiles.

Section II presents the development methodology of the load
models. The results of the pilot study are reported in section III
and validated in section IV, and conclusions are drawn in
section V.

II. LOAD MODELS DEVELOPMENT

Fig 1 depicts the context of the parameter selection and load
modelling for technical, financial and tariff analysis.

The process of developing the load models begins with
preparing the inputs for defining and extracting the parameters.
Clustering algorithms are applied based on the extracted
parameter to classify loads and allocate representative profiles
to the different classes. The load models can then be used as
inputs to various application algorithms to achieve the
technical, financial and tariff objectives as depicted in Fig 1.

Inputs

l Feeder data

Climate /
economic
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Application

Algorithms
Clustering Load flow ;
| calculations ./»,:. :

Load and/or
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studies
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quality
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Fig 1: Load model context diagram for technical, financial and tariff analysis.

A. Data Selection and pre-processing

The first step in developing the load models is to select and
process the measurement data.

1)  The data selection

The selection of data includes filtering to ensure that there
are no personalized information or errors. The data contained
variables such as economic class, Standard Industrial
Classification (SIC), and location, which were retained as these
were expected to be relevant.

2) Data sampling

A customer’s measurements, based on 30 minutes intervals,
contains a minimum of 17520 data points. To process customer
data for all customers in the databases of large distribution
companies such as Eskom and the South African municipalities
would be computationally expensive. Stratified sampling, a
class of probability sampling methods, was used to reduce the
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data processing burden. Stratified random sampling is preferred
because it can be generalised, the data variability can be
explained, and there is no unexplained bias in the samples [43].
Data is divided into sub-groups (strata) sharing common
characteristics and each stratum representing different sections
of the target population is sampled separately [43], [44].
A summarised procedure for applying stratified sampling is
as follows:
e  Filter data for MV feeders only (6.6kV or 11kV to 33kV)
e Select the stratum (activity class e.g. agriculture,
industrial, etc)
e  For each stratum
- Calculate the total power consumption as the sum of all
loads within the stratum (Activity class)
- Calculate the proportion of each member (SIC) of the
stratum
- Multiply this proportion with the required sample size
e Go to the next stratum
e Indicate how many samples per SIC.
After drawing the sample, the data were normalized.

3)  Normalization:

The interest is in extracting the shape parameters of the load
profiles. The sample contains different types and sizes of loads.
Data normalization is used to eliminate the impact of large
values by normalising all values to the same scale. A commonly
used normalization techniques is the min-max normalisation,
see eq. (1), [47] was used. The normalised data point is (Pj) of
the data P; is

Pji - Pmin

P = 1
] (Pmax-Pmin) ( )
where
e (Ppin) is the minimum value of power over a defined
period, and

e  (Ppax) is the maximum (peak) power over the period.

This normalization procedure has the advantage of providing
a dataset free from the effects of outliers and missing data. The
normalised data are the inputs to the clustering process.

B. Load parameters identification

In South Africa, two seasons are pre-defined for studies and
tariffing, that is, the winter (high demand) and summer (low
demand) and these seasons are linked to the weather, which can
be considered a parameter of external origin and hence an
exogenous parameter since it cannot be controlled. The
following propositions are made to differentiate between the
exogenous parameters and the endogenous parameters.

Proposition 1: Exogenous parameters are parameters that
are linked to weather, location, and economic parameters.
These are parameters that are not derived from the same data
used for load model development and are specified a-priori.
These parameters include seasonality, SIC, Living Standards
Measure (LSM) at an elementary level of domestic loads, and
time of use periods.

Proposition 2: Endogenous parameters are parameters that
are derived directly from the same data that is used for load

model development.

Fig 2 shows the process flow of deriving both the exogenous
and endogenous parameters. These parameters lead to the
formation of the load parameter models for the desired
applications in technical, financial and tariff analysis.

Ballanti & Ochoa [45] found that the classical constant ZIP
load models either underestimated or overestimated the
network power losses in both winter and summer seasons and
concluded that time-varying load models should be used. This
finding suggests that the TOU intervals and seasonality need to
be considered.

« External descriptors,
policy and
contractual rules

Exogenous
parameters

* Linked to
customer usage Endogenous
behaviours or ‘ parameters
load patterns ‘ -
. » Coherent load
' Load model | ?;?ii‘;a,ﬁm eters
|| parameters | modelling
algorithms

Fig 2: Process flow diagram for deriving load model parameters.

1) Exogenous parameters

Exogenous parameters may provide predefined time
intervals for which parameters have to be estimated. Profiles of
the different customer classes are shown in Fig 3. These are
typical profiles that form the basis of the TOU tariff structure
used in Eskom.
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Fig 3: Area plot of cumulative average daily (24 hour) profiles of different
classes for from hour 0 (12 AM) to hour 23 (11 PM).

Using Fig. 3, the TOU framework is defined as follows: Peak
between 7:00 and 9:00, and 18:00 to 20:00, Standard — from
9:00 to 18:00 and the remainder of hours are Off-Peak, for
weekdays. For seasonality, the predefined periods for high
demand season is May to July, and the remainder is low demand
season. Other exogenous parameters are the Weekdays,
Saturdays and Sundays. Holidays are treated as Saturdays
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2) Endogenous parameters

In the literature review on LV networks, it was suggested that
the active power is adequate for analysis and planning studies
[13], [14]. However, this is not the case for MV network
models, due to the significant presence of inductive loads.
Therefore, power factor needs to be considered in MV feeder
modelling [15].

The literature indicated that utilities prefer customers with
high load factors, with lower energy production costs and
higher system utilization, over those with low load factors. The
higher load factor means indicates less variation in the load
profiles. It was found that the load factors and the nighttime
demand levels are the most relevant parameters to describe the
customers’ usage [46].

Therefore, for technical and tariff analysis, it is important to
know the demand levels, time and duration of the demand for
each customer. The normalized parameters derived from the
above principles are expressed as:

e Load factor, LF = Pave )
I'I;IaX
e Power factor , PF = 2= 3)
ave
e The average power (P) at peak (symbol - P_UF),
_ 1:'ave,pk
Ppk N Pave (4)
e The average power (P) at off-peak (symbol - O_UF),
_ Pave,opk
Popk === ®)
e The power (P) at standard hours (symbol - S_UF),
Pay
Pga = 5= (6)
ave

Where, P, is the average half-hour active power demand
in KW. Puin(Pmay) is the minimum (maximum) half-hour power
demand of the representative day. Pavepk, Paveopk , Pave s are
the average half-hour power demand during daily peak ,off-
peak and standard periods and Sav. is the apparent power in
kVA.

3) Parameter estimation using PCA method
The Principal Component Analysis (PCA) algorithm is able
to reduce the vector dimensions of data while maintaining the
desired variability that distinguishes the load curves [47]. Silipo
[47] favoured the PCA technique, after reviewing a number of
the dimension reduction techniques used in the data analytics
landscape. The PCA algorithm used in this study is based on the
covariance and the singular value decomposition (SVD)
technique. The PCA algorithm transforms a given data set XP
into an alternative data set, Y, with a smaller dimension, where
variables p are parameters of a dataset xP; € XP. The procedure
is as follows:
1) Calculate the covariance matrix
2) Determine the eigenvectors and eigenvalues
3) Rearrange the eigenvectors and eigenvalues: Sort the
columns of the eigenvector matrix and the eigenvalue
matrix in order of decreasing eigenvalues.

C. Classification process

Fig 4 shows the process flow diagram followed in the
classification of MV feeders. The flow diagram also depicts the
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modelling decisions including the selection of MV feeders or
all feeders and the modelling goal. The goal could be to model
typical days or the classification of feeders where there are
multiple dimensions, and a decision is made to reduce them
using PCA.

When selecting the optimal number of clusters, the initial step
is to assume a large number of clusters and use the adequacy
measures to aid the selection of an optimal number. There is a
decision block to assess if the optimal number has already been
decided and if not, the clustering process is repeated.

Customer load
profiles

Discard

Data preparation: Stratified
Sampling and Normalisation

Typical
days Arrange data: C((;nduct _data
X imension
Model hours in 1 :
colisans anid reduction (Use
PCA model)
Classificatior
Define the relevant
parameters
Extract the PCs for
YES clustering
Reduce

Select number of
clusters:Choose a
reasonably large
number initially

Perform clustering:
Use k-means
algorithm to cluster
data

Calculate cluster
adequacy indices:
Silhouette, SSE,and
DBI

Optimal N
clusters
decided?

Label feeder data according to
clusters

Fig 4: Flow chart of the steps of the proposed classification process.
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1) Step 1: Segmentation of load curves

In this step, the load curve is segmented based on TOU
periods. The process begins by defining the load curve for a
period H, as P = {P,,h = 1, ..., H}. The load segment is P, €
Pfort =T., and T corresponds to the total number of hours.
Since the tariffs are modelled for typical days, H is 24.

The datasets belonging to different segments of data are
identified by assigning Peak, Standard and Off-peak to the
median of each of the segments. The data is separated into high
demand (May to July) and low demand months (August to
April).

1) Step 2: Unsupervised clustering of load data

The k-means clustering algorithm is used in grouping load
profiles together using normalised parameters calculated using
Eq. 1 in section IT (A). The k-means framework as described in
[27]-[29] and its application is summarised below:

e Assume a set of M consumers to be classified and the
load of consumer m = {1,..M} is denoted as P}Em)
and h={1,...H} denotes a time domain of the profile.

e The dataset including the load patterns is denoted as
X = {x(M m=1,...,M} is used to obtain a vector x.

e  The clustering procedure groups the M input vectors
in K clusters C® €X for k = {I,.,K}. The
procedure uses average Euclidean distance, Eq (7):

D =\/(Xi—xj)2+(3’i—3’j)z (7)

D. Cluster Adequacy measures

Various adequacy measures can be used to determine the
optimal number of clusters and assess their quality. The elbow
method is popular for estimating the optimal number of
clusters, but it does not always give clear results, especially
when clusters are close to one another [48], so it is often used
with other measures. Silhouettes scoring [49] is reported to give
comparatively good performance, particularly for predicting the
optimal number of clusters [50]. The Davis Bouldin index
(DBI) [51] measures the internal cohesion of clusters. The
silhouettes and DBI have been found to outperform other
adequacy measures [48], [51]. A combination of these
measures, and good visual judgement, can be effective for
choosing the optimal number of clusters, with good internal
cohesion and external (neighbouring cluster) isolation [52].

1) Elbow method
The Elbow method [48] plots the total of the within-cluster
Sum of Square Errors SSE; as a function of the number of
clusters. The elbow is a point where an increase in the number
of clusters does no longer have a significant impact on the sum
of square errors SSEx. The process is:
e Compute clustering algorithm (e.g., k-means clustering)
for different values of &, such as for 1 to 20 clusters.
e For each k, calculate the within-cluster sum of square
errors using Eq (8):
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- 2
D, = 2"V ™ (x5-x;) ®)
e  Plot the curve of SSE using Eq (9):
SSEy = Y¥_1 Dy 9)

According to the number of clusters k.

e The location of a bend (elbow) in the plot is generally
considered as an indicator of the appropriate number of
clusters.

2) Silhouette statistic
The silhouette statistic, measures how well all the objects x_i
fori=1, ... n have been classified on average using Eq (10).

s(k) = XL s

where,

, where (10),

-a .
= {max{bi’ai}, ifA>1
0, ifA=1

and (-1 <s;<1).

Silhouette coefficients near 1 indicate that the sample is far
away from the neighbouring clusters. A coefficient of 0
indicates that the sample is on or very close to the decision
boundary between two neighbouring clusters and the negative
values indicate that those samples might have been assigned to
the wrong cluster. To construct the silhouettes, the interest is
only on the partition obtained (by the application of some
clustering technique) and the collection of all proximities
between objects.

3) Davis Bouldin index

The DBI is used to evaluate clusters based on internal
cohesion. The measure does not depend on either the number of
clusters analyzed or the method of the partitioning of the data
and can be used to guide a cluster seeking algorithm [49]. To
determine the DBI the distance measure should be determined.
The similarity measure is calculated using Eq (11) as:

Si+S;
Ry =2 (11)

where Mjjis the distance between vectors chosen as

parameters of clusters i and j, and S; and S; are the dispersions
of clusters i and ;.
The DBI measure of interest is the average from Eq (12):

1
R; = EZL Rjj (12).

A lower measure R; is desirable as it indicates the compactness
of the clusters.

E. Determining the representative profiles

A simple approach to determining the representative profiles
is to allocate the average of the profiles in each cluster.
Alternatively, the centroid of the cluster is used as a class
representative profile. The average profile is:

k 1
P = kR, (13)

where h={1,...H} is the time domain. The derivation of the
clusters is illustrated in the next section.
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III. STUDY RESULTS

A pilot study was conducted using the actual measurement
data from the Eskom MV90 system and a national sample was
created. The sample comprises 783 000 represented customers
after applying stratified sampling and grouping customers per
account from over 4 million records. These records cover about
160 SIC sectors across the country. Table 1 shows the number
of samples per customer class or sector. The Eskom MV feeder
measurements data strata were defined according to category
variables. In each customer class, several SICs further
distinguish and categorize customers. A sampling technique,
which ensured all members of the stratum had the same
probability of being drawn, was used to draw samples.

Table 1: Summary of sample sizes per economic class showing the population
and SICs represented.

Cust_Class No of Premise_ID|[No of SIC

Agriculture 814 384 22
Bulk / Distributors 1160011 10
Commercial 2158357 65
Industrial 692 160 49
Mining 595 305 16
Total 5420217 162

Fig 5 shows the power consumption, in kWh, supplied
(kWh_EXP) for MV feeders categorized according to economic
class. The large difference between average consumptions for
different classes in the database may affect the classification
models. The bulk/distributor feeders dominate all others in
terms of the power demand, potentially distorting the results.
Since the interest is on the shape parameters of the load profiles,
the domination of one customer over the others may be
eliminated by normalizing the data.

M Jan W Feb ® Mar = Apr B May ®Jun B Jul BAug B Sep B Oct BNov B Dec

250000

200000
150000
100000

o MEREERNwninn " '||||“| CTER T TTTT T RCTTI TTTT | | e
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Bulk /

Distributors

Agriculture Commercial  Industrial Mining

Fig 5: Average daily consumption of various economic classes prior to
normalisation.

A. Normalisation:

The results of normalization was achieved using Eq.(1). A
selection of the normalised profiles for the different classes are
shown in Fig 6 below. All classes can be compared and
analyzed from the same scale when using the normalised
dataset. The profiles are normalized to values between 0 and 1.
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Fig 6: Normalised daily averaged profiles per class with the effect of
dominating classes removed.

B. Typical day load model

The objective of a typical day load model is to classify similar
load profiles and associate them with the days of the week that
they represent, so that the whole year can be modelled with a
few typical day profiles. The common typical day models used
by utilities are premised on each day of the week being
distinguished by the activities that take place. The use of a
clustering algorithm provides a less subjective and more
scientific approach to classifying days and provide typical day
profiles that share common parameter.

1) Parameters for typical days

In a typical day model, the interested is in twenty-four-hour
profiles that differentiate the days, and not on specific
parameters within the profiles. Therefore, each of the hours may
be assumed as a parameter, and this results in 24 parameters.
To represent these parameters in a scatter plot and project them
in a 3-dimensional space, the PCA algorithm discussed in
section II (B) was used. Three PCs achieved a representation of
an average of 75% for a 24-hour profile. In Western Cape, the
first three PCs account for 92% which is the highest of all
provinces and in Mpumalanga three PCs account for only 60%
variability.

2) Classification of weekdays

The clustering algorithm uses the PC in multiple iterations to
determine the optimal number of clusters required to classify
the load profiles. Following the process, in Section II and Fig 4
above the first iteration assumed a fairly large number of
clusters, and in this case, the initial number of clusters was set
to 20 and was reduced after assessing the results of each
iteration. The elbow diagram, the silhouettes scores and the
results suggested that a maximum of 3 clusters would be
optimal.

3) Clustering results and validation
Fig 7 shows the silhouettes score graph and the scatter plot of
the parameters after the final iteration of clustering. The scatter
plot is projected on a 3D graph. The intention of the plot is to
show the results of 3 clusters in both the silhouettes and the
scatter plots. The different clusters are represented by the
colours.
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Fig 7: Silhouette and scatter plot of the final three cluster.

The silhouette plot shows that the clusters are clearly separate
from each other without overlap since all the scores are positive.
However, when there were 4 or more clusters cluster 0 had
negative scores, indicating the overlap with other clusters. Fig
8 and Fig 9 depict the elbow and DBI plots. The elbow diagram
indicated that the least square error is obtained with 3 or more
clusters while the DBI suggests that lower numbers of clusters
are preferred for cohesion. The shaded area is the saturation
area and it is where the optimal number of clusters lie. The
compromise choice is to use 3 clusters.
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Fig 8: Elbow plots to estimate the number of clusters.
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Fig 9: DBI plot. The diagrams shows that the score increases as the number of
plots increase. A lower DBI score is desirable.

4)  Analysis of typical day load modelling results
Table 2 shows the results from allocating the days of the week
to clusters for both the winter and summer seasons as
represented by the letters w and s respectively. In the weekdays’
column, day, 1 is Monday. The percentages in the cluster
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columns 0, 1, 2 are the allocation proportions of the day-of-
week profiles. in each of the clusters.

Table 2: The typical weekdays associated with three clusters and their
probabilities of occurrence.

Cluster
Seasons |Weekdays 0 1 2
S 1 55% 21% 24%
S 2 56% 8% 36%
S 3 56% 8% 36%
S 4 51% 5% 44%
3 5 44% 13% 44%
s 6 65% 35% 0%
S 7 13% 87% 0%
w 1 21% 7% 71%
w 2 8% 0% 92%
w 3 8% 0% 92%
w 4 8% 0% 92%
w 5 15% 0% 85%
w 6 46% 23% 31%
w 7 62% 31% 8%

The results from table 2 show different load profiles for
various typical days and that there is a seasonal impact. This
means that instead of using 365 hourly profiles, two profiles can
be used for summer and two profiles can be used for winter as
follows: cluster 0 can be used to represent weekdays, cluster 0
or 2 may be used for Saturday and Sundays could be modelled
using cluster 1 in summer. For winter season, weekdays can be
represented by cluster 2 profile, and Saturday and Sunday can
be represented by cluster 0. The higher percentage associated
with cluster 0 means that the day can be represented using the
cluster 0 profile. Similarly, with other weekdays.

The typical day clusters presented in Fig 10 indicate that the
winter weekdays can be represented by cluster 2 load profile
and cluster 0 profile will be suitable to represent the weekends.
The plot also shows that clusters 1 and 2 in summer are almost
equivalent with minor differences only.  The cluster
representative load profiles were determined using Eq (13).

However, the results suggest that Sundays can be associated
with cluster 1 and all other days can be represented by cluster
0. The results suggest that the loads in the databased can
generally be represented using 4 load profiles as indicated in

Fig 10. The winter weekdays can be represented using to
clusters 0 and 2 while clusters 0 and 1 may be used for summer
weekdays. The cluster zero for winter is represented by a yellow
dash line and the blue line is for summer



Vol.113 (2) June 2022

Profiles of relevant clusters

1.2

11

0.9

P.U

0.8

0.7

0.6

Fig 10: Profiles for the typical day clusters for winter (w) and summer (s).

C. Customer classification load model
The load model for classifying customers also follows the
process as described by the flow diagram in Fig 4 above.

1) Parameter estimation

The values of the parameters were calculated using equations
(2) to (6).
For example, in Table 3, the agricultural loads can be
interpreted as having a load factor of 67%, an average power
factor (PF) of 0.85 and normalised peak (P_UF), standard
(S_UF) and off-peak (O_UF) parameters of 0.59, 0.61 and 0.51
respectively. The process steps stated in 11 (C) were followed to
determine the clusters.

Table 3: Per unit values for each parameter per economic activity class.
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4 point towards only two clusters, with scores peaking between
four and seven clusters

1.00
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No of clusters

Fig 12: The silhouette scores for different number of clusters.

Table 4: Silhouettes and average DBI scores for different choices of clusters

Silhouette scores Average DBI scores

No.of |[LF- PF- P_UF- | S_UF- |O_UF- |LF- PF- P_UF- (S_UF- |O_UF-
clusters |Pav_UF |Pav_UF (Pav_UF [Pav_UF (Pav_UF |Pav_UF |Pav_UF |Pav_UF |Pav_UF (Pav_UF
2] 088] 079 0.85] 0.86 | 0.84 | 0.62 | 0.99 | 0.66 | 0.67 | 0.62

3/ 053] 064 050| 046 | 053 | 391 | 2.24 | 4.08 | 452 | 3.52

4] 040 | 057 | 0.50 | 047 | 0.53 | 581 | 2.71 [ 3.64| 3.99 [ 3.05

5| 041 ] 048] 046 | 0.50 | 0.53 | 5.03 | 3.58 | 3.99 | 3.50| 2.69

6| 041 ) 041 047 ] 047 | 047 | 430 | 416 | 333 | 3.58| 3.27

7| 041] 038 040 | 047 | 047 | 3.67 | 5.05| 4.10| 3.31| 2.89

8| 040 | 038 | 039 | 041 | 045| 391 | 435| 3.81| 426| 276

9| 040 | 038 | 038 | 041 | 044 | 3.50 | 3.86| 3.62| 3.98| 2.83

10| 040 | 037 | 040 | 041 | 040 | 3.22 | 3.72| 3.27| 3.92| 333

E. Classification results
The statistical summaries of the results for five clusters are
shown in Table 5. The smallest standard deviation is desirable

as it indicates how the data points represented are closer to

the mean. The results indicate that the clusters differ based

on the shapes of their distributions as indicated by the

kurtosis and skewness coefficients. Clusters 0,3 and 4 are

flatter whereas the others are peakier as indicated by the

kurtosis. Cluster 2 is skewed to the right and the rest of the

cluster are skewed to the left.

CLASS LF PF P_UF S_UF 0_UF

Agriculture 0.67 0.85 0.59 0.61 0.51
Bulk / Distributors 0.71 0.95 0.78 0.72 0.55
Commercial 0.69 0.90 0.64 0.66 0.53
Industrial 0.75 0.84 0.63 0.67 0.58
Intemnal 0.70 0.97 0.74 0.71 0.60
Mining 0.70 0.80 0.53 0.58 0.50
Grand Total 0.70 0.88 0.65 0.66 0.53

The problem of solving multi-dimensional vectors arises
because there are 5 parameters to project and use in the
clustering algorithm. To use k-means clustering, the dimensions
are reduced using PCA method. In this case, the reduction is
from five parameters to 2 principal components (PCs). The PCs
used accounted for 88.5% the variability of the load profiles.

D. Cluster validation

Cluster validity evaluation tools used to define the number of
clusters and validating the results are Silhouettes, DBI and the
elbow methods. Assuming a silhouette score threshold of 0.5,
the number of clusters based on parameters LF requires three
clusters, according to PF and P_UF there should be four, and
using S UF and O_UF, there should be five clusters. The elbow
point analysis suggests a saturation area, determined visually,
as being between 3 and 7 clusters, illustrated in Fig 11. The
silhouette scores illustrated in Fig 12 and Table 4 suggest three
to five clusters are preferred. The average DBI scores in Table

Table 5: Statistical summaries of the clusters to provides a quantitative
analysis of the results.

Statistic Cluster 0 Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4
Mean 0.464 | 0.870634| 0.192406| 0.775775| 0.876769
Median 0.469 | 0.865098| 0.158259| 0.814823| 0.912783
Standard Deviation 0.140 | 0.081979| 0.127621| 0.161316( 0.111083
Sample Variance 0.020 | 0.006721| 0.016287| 0.026023| 0.01234
Kurtosis - 0.035 | 0.515446| 0.809634| -0.58485| -0.21335
Skewness - 0.089 | -0.61202| 0.902717| -0.58837| -0.90251
Range 0.713 | 0.36555| 0.526369| 0.641273| 0.427262
Minimum 0.116 | 0.63445| 0.008009| 0.358726| 0.572738
Maximum 0.829 1{ 0.534378| 0.999999 1

The results indicate that there are sub-classes within each
economic class. The average profile of the economic class as
the class representative profile may not represent adequately all
customers in that class.

The approach for allocating Profiles were allocated to the
clusters as explained in Section II (E). The bulk\distributors
class with its sub-classes are shown in Fig 13. The
bulk\distributors class represents energy sold to municipalities
and contains a mix of all classes including the residential class.

n
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The average profiles of the agricultural, commercial and
industrial are shown Fig 14, Fig 15, Fig 16.

1
0.8
——Cluster O
0.6 ——Cluster 1
04 Cluster 2
Cluster 3
0.2 \ —Cluster 4
0 N

L 3 5 7 911 13151719 21 23

Fig 13: The clusters within the bulk\distributors class.

The profiles indicate that there are differences in the usage
patterns of some of the customers within the same classes and
that can be linked different activities and energy efficiency
measures mentioned in the introduction.

In Fig 14 and Fig 15 below, clusters 1 and 3 may be linked
daytime activities such as air-conditioning and the use of office
equipment that begin in the morning and ends in the afternoons.

1
0.8 /\ —Cluster 0
0.6 —Cluster 1
6 //‘/“\‘/ \ Cluster 2
\ Cluster 3

0.2
—Cluster 4

0

1357 911131517192123

Fig 14: Commercial class profiles with different clusters within this class .

The other profiles may be linked to the malls and shopping
complexes, which tend to have mild activities during daytime
and peak in the evening as lighting is increased and occupancy
of the hotel rooms increase
In Fig 15 most of the operations take place throughout the day
with dips that could indicate a change in shifts

1.2

1
0.8 ——Cluster 0
——Cluster 1

0.6
Cluster 2
0.4 Cluster 3
—Cluster 4

0.2

0

1 3 5 7

9 11 13 15 17 19 21 23

Fig 15: Industrial and mining classes profiles.

IV. VALIDATING THE RESULTS

The cluster validity tools used to define the number of
clusters, such as the silhouettes, DBI and the elbow methods,

Vol.113 (2) June 2022

were used to determine the number of clusters. The model
would be valid if the identified parameter models can be
implemented in practice to separate customer based on their
load profiles into different clusters and ensuring that there is
coherence in the parameter of the customer profiles within the
same cluster.

The model validation can be achieved by evaluating the
performance of the clusters using statistical tools and
comparing the load profiles from the different classes.
Regression analysis and analysis of variance (ANOVA) were
conducted to determine the validity of each cluster. The data
was then arranged per customer class with each parameter being
the independent variable, and the average consumption of the
customer is assumed to be the dependent variable.

The results of the regression analysis are presented in Fig 16.
As indicated by the adjusted R-square, which is close to one,
the results show that the class is well explained by the
parameters. Using the widely used p-value threshold of 0.005,
the variables whose p-values are greater than the threshold
cluster 0 are parameters LF and PF. The bar plot on the top right
of Fig 16 shows that the residuals were concentrated around
0.007 and 0.011, which are sufficiently small to indicate the
acceptable performance of the model. The results for all the
clusters were evaluated similarly.

SUMMARY OUTPUT Residuals
50
Regression Statistics 40
Multiple R 0.998 gg
R Square 0.996 10 I .
Adjusted R Squar ~ 0.989 0o— — I L
Standard Error 0.028 353339383888838
Observations 143.000 3883238228889 8S9S
ANOVA
df SS MS F gnificance F
Regression 5.000 28.367 5.673 7422.381 0.000
Residual 138.000 0.105 0.001
Total 143.000 28.472
Coefficientsndard Ert_t Stat  P-value ower 95%pper 95wer 95.CUpper 95.0%
Intercept < #N/A  #N/A #N/A #N/A  HN/A HN/A #N/A
P_UF 0.229 0.037 6.194 0.000 0.156 0.302 0.156 0.302
S_UF 0.162 0.022 7.262 0.000 0.118 0.206 0.118 0.206
O_UF 0.061 0.014 4.312 0.000 0.033 0.089 0.033 0.089
LF 0.098 0.043 2.279 0.024 0.013 0.183 0.013 0.183
PF 0.033 0.012 2.672 0.008 0.009 0.057 0.009 0.057

Fig 16: Regression analysis results of cluster 0 with p-values for each
parameter.

Table 6 shows the results for all 5 clusters and the summary
of the regression results. The table summarises the regression
results of the different parameters as well as their significance
(as indicated by the R-square and p-values) in the models of
each of the clusters. There is a significantly stronger
relationship between the parameters and the average demand of
each cluster as indicated by the smaller p-values. This indicates
that these clusters are valid based on the data used.
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Table 6: Regression statistics for the different clusters.

Cluster 0 |Cluster 1 |Cluster 2 |Cluster 3|Cluster 4
R Square 0.9963 | 0.9992 | 0.9941 | 0.9992 | 0.9983
Adjusted R Square| 0.9889 | 0.9985 | 0.9640 | 0.9941 | 0.9973
Standard Error 0.0276 | 0.0154 | 0.0125 | 0.0146 | 0.0209
P_UF p-value 0.0000 [ 0.0000 | 0.0000 | 0.0000 | 0.0000
S_UF p-value 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
O_UF p-value 0.0000 [ 0.0000 | 0.0014 | 0.0000 | 0.0000
LF p-value 0.0242 - 0.1573 | 0.0000 | 0.0242
PF p-value 0.0084 | 0.6897 | 0.2262 | 0.0882 | 0.0084
P_UF 0.2287 | 0.0552 | 0.2337 | 0.0581 | 0.1212
S_UF 0.1619 | 0.1652 | 0.1106 | 0.0669 | 0.2450
O_UF 0.0613 |- 0.3556 | 0.1067 |-0.1282 | 0.0578
LF 0.0981 | 1.0427 | 0.1101 | 0.8244 | 0.1228
PF 0.0328 |- 0.0023 |- 0.0329 | 0.0115 | 0.0197

V. CONCLUSIONS

A pilot study of customer clustering using a sample from
Eskom’s MV customers database shows that a set of coherent
load parameter models can be extracted. Unsupervised k-means
clustering was not adequate for the classification of load
profiles. However, classification is improved when the
algorithm is supervised using exogenous (external) parameters
Analysis of the economic classes suggest that there are sub-
clusters within the classes derived based on economic activity.

The research indicates that one set of load models can be
applied consistently to technical, financial and tariffs analysis,
avoiding the discrepancies between studies based on different
load models for each application.

As expected, most clusters reflect distinct time-of-day load
patterns and some show effects likely to arise from the TOU
tariff periods. Therefore, if the tariffs or their associated time
periods change, the cluster profiles may also change.
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