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Abstract—Transformation in the South African power 

sector and new load patterns necessitated a review of load 
models used for financial, technical and tariff analysis. This 
pilot study took advantage of available data of customer 
measurements on medium Voltage (MV) feeders in Eskom’s 
database. Load models with distinct profiles for typical days 
were developed for non-overlapping customer classes using 
a set of coherent parameters derived from MV 
chronological load profiles and the k-means algorithm. The 
results suggested that two profiles can be used to for 
summer and two profiles can be used for winter instead of 
using 365 hourly profiles for simulations. The results also 
reveal that load classification can be improved when the 
parameters are directed towards specific objectives, and 
also when the k-means algorithm is supervised using 
exogenous (external) parameters of loads. A comparison of 
the results to the economic activity class suggests that there 
are sub-clusters identifiable within the economic classes. 
The proposed process is practical, implementable with 
available data and suitable for various studies on MV 
networks. 
 

Index Terms – Classification, clustering, load models, load 
profiles, medium voltage, measurement, tariffs, technical analysis. 

I. INTRODUCTION 
OAD models are used to represent the energy usage patterns 
of customers in power systems studies [1], [2]. The 

proliferation of energy efficiency systems and distributed 
generation (DG) based on renewable energy changed the load 
patterns on many feeders and increased uncertainty in 
modelling distribution networks [3], [4]. Weather, location and 
economic factors also affect load profiles [5], [6].  

Technical applications of load models for customers in 
distribution networks include the calculation of voltage drops 
[7], the technical losses in the distribution system [8], demand 
forecasting [9], and DG integration planning [10] [11].  

In South Africa, load models inform customer classification 
and demand, which are essential inputs to Eskom’s 
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geographical based load forecasting (GLF) tool [12]. The GLF 
is characterized by three main components: load position 
forecast (location), active and apparent power (kW or kVA), the 
anticipated period, and load class.  

Probabilistic load models are used in network design in South 
Africa, particularly in low voltage (LV) feeder voltage 
calculations and were pivotal in the development of the 
Herman-Beta (HB) transform [13], [14]. The extended HB 
transform in medium voltage (MV) feeders [15] accommodates 
loads and DG with non-unity power factor, although few 
models of MV loads are available.  

Worldwide, the role of load models in tariff analysis, 
forecasting and design is recognized [3], [9], [11], [16]. Tariffs 
also affect load profiles, network operations and planning 
[3],[17]. The drivers of load models for tariff analysis and 
design include load demand representation, cost of service and 
tariff objectives [18] [19].  

Load models are part of the cost of supply models used in 
most utilities to provide energy forecasts per customer classes, 
and for setting time of use (TOU) intervals for TOU tariffs [16]. 
However often these load models are not formalized. 

The connection of DG to the distribution systems has 
economic implications. The aspects of the distribution 
economics likely to be impacted by DG connections include the 
initial network investments, network upgrades, distribution 
operation and maintenance (O&M) costs, installation of voltage 
control schemes and protection devices, and changes in the 
network planning environment [20]. Cost-reflective models are 
needed to reduce consumers cross-subsidizing prosumers [20]. 
Cross-subsidization is unavoidable though, as it is inherent in 
aggregated distribution tariffs, and the use of volumetric tariffs 
to recover most of the costs from customers [16]. 

TOU tariffs, with generation standby charges and fixed 
charges, remove some unintended tariffs cross-subsidies. Fell 
et al [21] suggested that DG technologies such as combined 
heat and power (CHP), and renewables with stationary or 
electric vehicle (EV) storage, can be effective for peak shaving 
and providing energy when needed, and managing congestions 
and other constraints. These could reduce utility costs and 
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tariffs. However, such tariffs may discourage investment in 
renewable DG, and lead to societal loss linked to the benefits of 
cleaner energies [22]. Many consumers do not favour TOU 
tariffs, imposed load response, peak reduction by direct load 
control, and load curtailment that take away their control [22].  

Old load models were derived from estimates of the load 
parameters according to customer classes and profiles [23], 
[24]. These models need to be updated, given the changes in 
load patterns and a growing need to represent their stochastic 
nature [20], [23].  

Clustering algorithms are used widely for data partitioning 
and customer classification, with the k-means clustering 
algorithm being preferred [25], [26]. The k-means clustering 
algorithm allocates objects (feeders or customers’ data points) 
iteratively to the different clusters, based on the average 
Euclidean distance [23], [27-29]. 

Xu [30] defined load models as analytical, mathematical 
representations of loads based on equivalent-circuits, physical 
components, or otherwise, which represent the changes in real 
and reactive power demands as a function of variations in power 
system parameters (e.g., voltage, frequency etc.).  

Load models can be deterministic or probabilistic [31-34]. 
Deterministic models are based on assumptions about direct 
links between chosen drivers and expected values whereas 
probabilistic models make use of stochastic methods to 
simulate inputs and outputs [33].  

Load models developed for specific applications are 
influenced by characteristic parameters. Internal parameters are 
inherent in the load data. External parameters include those 
estimated using a different data set, policy or contractual rules 
[23], [33]. The load models are developed by following three 
steps [26], [23]: (1) identifying the customer usage behaviour; 
(2) classifying feeders or customers according to their usage 
behaviours; and (3) allocation of representative profiles to the 
classes.  

Customer usage behaviours can be represented by a twenty-
four (24) hour chronological vector, a time-series of a load 
profile for a defined period, contractual parameters, 
measurement-based or calculated parameters [23], [26], [32], 
[35-36]. The parameters used in load modelling include the 
active power and reactive power measurements, and non-
measured parameters such as economic activity, system voltage 
and geographical location [37], dividing load curves into fixed 
time intervals and calculating demands levels for each interval 
[38]. Other parameter identification approaches include 
dividing daily profiles into segments based on some interval-
linked criteria [39], the principal component analysis (PCA) of 
daily load profile, and load factors and loss factors [40]. There 
is continued research related to the parameters to distinguish 
and classify customers. However, there is no consensus on 
generally applicable parameters [27], [34], [41]. 

Classes of customers with similar, regular usage patterns, 
support cost-reflective tariffs. When customers in a common 
class have significantly different consumption patterns, the 
pricing signal is weakened, and tariffs may not fairly reflect 
those costs [42]. The study proposes a classification process 
that uses MV feeder and customer data to develop: 

 A common typical day model to be used to classify the 
complete annual profile, thus reducing the amount of 
datapoints required for studies. 

 Improved customer classification model based on a set of 
coherent load parameters and the k-means clustering 
algorithm, supervised using exogenous parameters. 

The model results are compared to the customers classes that 
are derived from economic activity, that are generally used by 
utilities for load modelling and simulations. The model is 
practical and implementable and leads to improvement in the 
classification of customer based on their load profiles. 

Section II presents the development methodology of the load 
models. The results of the pilot study are reported in section III 
and validated in section IV, and conclusions are drawn in 
section V. 

II. LOAD MODELS DEVELOPMENT 
Fig 1 depicts the context of the parameter selection and load 

modelling for technical, financial and tariff analysis.  
The process of developing the load models begins with 

preparing the inputs for defining and extracting the parameters. 
Clustering algorithms are applied based on the extracted 
parameter to classify loads and allocate representative profiles 
to the different classes. The load models can then be used as 
inputs to various application algorithms to achieve the 
technical, financial and tariff objectives as depicted in Fig 1. 

 

Fig 1:  Load model context diagram for technical, financial and tariff analysis. 

A.  Data Selection and pre-processing 
The first step in developing the load models is to select and 

process the measurement data.  
 

1)  The data selection 
The selection of data includes filtering to ensure that there 

are no personalized information or errors. The data contained 
variables such as economic class, Standard Industrial 
Classification (SIC), and location, which were retained as these 
were expected to be relevant. 

 
2) Data sampling  

A customer’s measurements, based on 30 minutes intervals, 
contains a minimum of 17520 data points. To process customer 
data for all customers in the databases of large distribution 
companies such as Eskom and the South African municipalities 
would be computationally expensive. Stratified sampling, a 
class of probability sampling methods, was used to reduce the 
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data processing burden. Stratified random sampling is preferred 
because it can be generalised, the data variability can be 
explained, and there is no unexplained bias in the samples [43]. 
Data is divided into sub-groups (strata) sharing common 
characteristics and each stratum representing different sections 
of the target population is sampled separately [43], [44].  

A summarised procedure for applying stratified sampling is 
as follows: 

 Filter data for MV feeders only (6.6kV or 11kV to 33kV) 
 Select the stratum (activity class e.g. agriculture, 

industrial, etc) 
  For each stratum 

- Calculate the total power consumption as the sum of all 
loads within the stratum (Activity class) 

- Calculate the proportion of each member (SIC) of the 
stratum 

- Multiply this proportion with the required sample size 
 Go to the next stratum 
 Indicate how many samples per SIC. 
After drawing the sample, the data were normalized. 
 

3)  Normalization:  
The interest is in extracting the shape parameters of the load 

profiles. The sample contains different types and sizes of loads. 
Data normalization is used to eliminate the impact of large 
values by normalising all values to the same scale. A commonly 
used normalization techniques is the min-max normalisation, 
see eq. (1), [47] was used. The normalised data point is (Pj) of 
the data Pi  is 

P� = �� - ����
(����-����)

      (1) 

where  
 (𝑃𝑃���) is the minimum value of power over a defined 

period, and 
 (𝑃𝑃���) is the maximum (peak) power over the period. 
This normalization procedure has the advantage of providing 

a dataset free from the effects of outliers and missing data. The 
normalised data are the inputs to the clustering process. 

B. Load parameters identification 
In South Africa, two seasons are pre-defined for studies and 

tariffing, that is, the winter (high demand) and summer (low 
demand) and these seasons are linked to the weather, which can 
be considered a parameter of external origin and hence an 
exogenous parameter since it cannot be controlled. The 
following propositions are made to differentiate between the 
exogenous parameters and the endogenous parameters.  

Proposition 1: Exogenous parameters are parameters that 
are linked to weather, location, and economic parameters. 
These are parameters that are not derived from the same data 
used for load model development and are specified a-priori. 
These parameters include seasonality, SIC, Living Standards 
Measure (LSM) at an elementary level of domestic loads, and 
time of use periods. 

Proposition 2: Endogenous parameters are parameters that 
are derived directly from the same data that is used for load 

model development. 
Fig 2 shows the process flow of deriving both the exogenous 

and endogenous parameters. These parameters lead to the 
formation of the load parameter models for the desired 
applications in technical, financial and tariff analysis. 

Ballanti & Ochoa [45] found that the classical constant ZIP 
load models either underestimated or overestimated the 
network power losses in both winter and summer seasons and 
concluded that time-varying load models should be used. This 
finding suggests that the TOU intervals and seasonality need to 
be considered.  

 
Fig 2:  Process flow diagram for deriving load model parameters. 

 
1) Exogenous parameters 

Exogenous parameters may provide predefined time 
intervals for which parameters have to be estimated. Profiles of 
the different customer classes are shown in Fig 3. These are 
typical profiles that form the basis of the TOU tariff structure 
used in Eskom. 

 

 
Fig 3: Area plot of cumulative average daily (24 hour) profiles of different 
classes for from hour 0 (12 AM) to hour 23 (11 PM). 
 
Using Fig. 3, the TOU framework is defined as follows: Peak 

between 7:00 and 9:00, and 18:00 to 20:00, Standard – from 
9:00 to 18:00 and the remainder of hours are Off-Peak, for 
weekdays. For seasonality, the predefined periods for high 
demand season is May to July, and the remainder is low demand 
season. Other exogenous parameters are the Weekdays, 
Saturdays and Sundays. Holidays are treated as Saturdays 
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2) Endogenous parameters 
In the literature review on LV networks, it was suggested that 

the active power is adequate for analysis and planning studies 
[13], [14]. However, this is not the case for MV network 
models, due to the significant presence of inductive loads. 
Therefore, power factor needs to be considered in MV feeder 
modelling [15].  

The literature indicated that utilities prefer customers with 
high load factors, with lower energy production costs and 
higher system utilization, over those with low load factors. The 
higher load factor means indicates less variation in the load 
profiles. It was found that the load factors and the nighttime 
demand levels are the most relevant parameters to describe the 
customers’ usage [46].  

Therefore, for technical and tariff analysis, it is important to 
know the demand levels, time and duration of the demand for 
each customer. The normalized parameters derived from the 
above principles are expressed as: 

 Load factor , LF = ����
����

         (2) 

 Power factor , PF = ����
����

         (3) 
 The average power (P) at peak (symbol - P_UF),  

P�� = ����,��

����
           (4) 

 The average power (P) at off-peak (symbol - O_UF), 
 P��� = ����,���

����
          (5) 

 The power (P) at standard hours (symbol - S_UF), 
 P��� = ����,���

����
           (6) 

Where, Pave: is the average half-hour active power demand 
in kW. Pmin(Pmax) is the minimum (maximum) half-hour power 
demand of the representative day. Pave,pk , Pave,opk , Pave,std: are 
the average half-hour power demand during daily peak ,off-
peak and standard periods and Save is the apparent power in 
kVA. 

 
3) Parameter estimation using PCA method 
The Principal Component Analysis (PCA) algorithm is able 

to reduce the vector dimensions of data while maintaining the 
desired variability that distinguishes the load curves [47]. Silipo 
[47] favoured the PCA technique, after reviewing a number of 
the dimension reduction techniques used in the data analytics 
landscape. The PCA algorithm used in this study is based on the 
covariance and the singular value decomposition (SVD) 
technique. The PCA algorithm transforms a given data set 𝑋𝑋� 
into an alternative data set, 𝑌𝑌�, with a smaller dimension, where 
variables p are parameters of a dataset x�

� ∈ X�. The procedure 
is as follows: 

1) Calculate the covariance matrix 
2) Determine the eigenvectors and eigenvalues 
3) Rearrange the eigenvectors and eigenvalues: Sort the 

columns of the eigenvector matrix and the eigenvalue 
matrix in order of decreasing eigenvalues.  

C. Classification process 
Fig 4 shows the process flow diagram followed in the 

classification of MV feeders. The flow diagram also depicts the 

modelling decisions including the selection of MV feeders or 
all feeders and the modelling goal. The goal could be to model 
typical days or the classification of feeders where there are 
multiple dimensions, and a decision is made to reduce them 
using PCA.  

When selecting the optimal number of clusters, the initial step 
is to assume a large number of clusters and use the adequacy 
measures to aid the selection of an optimal number. There is a 
decision block to assess if the optimal number has already been 
decided and if not, the clustering process is repeated. 

 

Fig 4: Flow chart of the steps of the proposed classification process. 
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1) Step 1: Segmentation of load curves 
In this step, the load curve is segmented based on TOU 

periods. The process begins by defining the load curve for a 
period H, as P = {P�, h = 1, … , H}. The load segment is P� ⊆
P for τ = T. , and T corresponds to the total number of hours. 
Since the tariffs are modelled for typical days, H is 24.  

The datasets belonging to different segments of data are 
identified by assigning Peak, Standard and Off-peak to the 
median of each of the segments. The data is separated into high 
demand (May to July) and low demand months (August to 
April). 

 
1) Step 2: Unsupervised clustering of load data  

The k-means clustering algorithm is used in grouping load 
profiles together using normalised parameters calculated using 
Eq. 1 in section II (A). The k-means framework as described in 
[27]-[29] and its application is summarised below:  

 Assume a set of M consumers to be classified and the 
load of consumer m = {1,...M} is denoted as P�

(�)  
and h={1 ,…H} denotes a time domain of the profile. 

 The dataset including the load patterns is denoted as 
X = {x(�),m = 1,...,M} is used to obtain a vector x. 

 The clustering procedure groups the M input vectors 
in K clusters C(�) ∈ X for k = {1,...,K}. The 
procedure uses average Euclidean distance, Eq (7): 
 

 D =  ��x� − x�� � + �y� − y�� �          (7) 

 

D. Cluster Adequacy measures 
Various adequacy measures can be used to determine the 

optimal number of clusters and assess their quality. The elbow 
method is popular for estimating the optimal number of 
clusters, but it does not always give clear results, especially 
when clusters are close to one another [48], so it is often used 
with other measures. Silhouettes scoring [49] is reported to give 
comparatively good performance, particularly for predicting the 
optimal number of clusters [50]. The Davis Bouldin index 
(DBI) [51] measures the internal cohesion of clusters. The 
silhouettes and DBI have been found to outperform other 
adequacy measures [48], [51]. A combination of these 
measures, and good visual judgement, can be effective for 
choosing the optimal number of clusters, with good internal 
cohesion and external (neighbouring cluster) isolation [52].  

 
1) Elbow method 

The Elbow method [48] plots the total of the within-cluster 
Sum of Square Errors SSEk as a function of the number of 
clusters. The elbow is a point where an increase in the number 
of clusters does no longer have a significant impact on the sum 
of square errors SSEk. The process is: 

 Compute clustering algorithm (e.g., k-means clustering) 
for different values of k, such as for 1 to 20 clusters. 

 For each k, calculate the within-cluster sum of square 
errors using Eq (8): 

 D� = ∑ ∑ �x�-x��
�(�)

�
(��-�)
�            (8) 

 Plot the curve of SSE using Eq (9): 
SSE� = ∑ D�

�
���                 (9) 

According to the number of clusters k. 
 The location of a bend (elbow) in the plot is generally 

considered as an indicator of the appropriate number of 
clusters. 

 
2) Silhouette statistic 

The silhouette statistic, measures how well all the objects x_i 
for i = 1, … n have been classified on average using Eq (10). 

 
s(k) = ∑ s�

�
���   , where           (10), 

where,  

s� = �
-�

���{��,��} ,      if A > 1

0,                      if A = 1
 

and (−1 ≤ s�≤ 1).  
Silhouette coefficients near 1 indicate that the sample is far 

away from the neighbouring clusters. A coefficient of 0 
indicates that the sample is on or very close to the decision 
boundary between two neighbouring clusters and the negative 
values indicate that those samples might have been assigned to 
the wrong cluster. To construct the silhouettes, the interest is 
only on the partition obtained (by the application of some 
clustering technique) and the collection of all proximities 
between objects.  

 
3) Davis Bouldin index 

The DBI is used to evaluate clusters based on internal 
cohesion. The measure does not depend on either the number of 
clusters analyzed or the method of the partitioning of the data 
and can be used to guide a cluster seeking algorithm [49]. To 
determine the DBI the distance measure should be determined. 
The similarity measure is calculated using Eq (11) as: 

 R�� =
�����

���
                 (11)  

where M��is the distance between vectors chosen as 
parameters of clusters i and j, and S� and S� are the dispersions 
of clusters i and j.  
The DBI measure of interest is the average from Eq (12): 

 R� = �
�

∑ R��
�
���                 (12).  

A lower measure R� is desirable as it indicates the compactness 
of the clusters. 

E. Determining the representative profiles 
A simple approach to determining the representative profiles 

is to allocate the average of the profiles in each cluster. 
Alternatively, the centroid of the cluster is used as a class 
representative profile. The average profile is: 

 P�
(�) = �

��
∑ P�

(�)�
� ,              (13) 

where h={1,…H} is the time domain. The derivation of the 
clusters is illustrated in the next section. 
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III. STUDY RESULTS  
A pilot study was conducted using the actual measurement 

data from the Eskom MV90 system and a national sample was 
created. The sample comprises 783 000 represented customers 
after applying stratified sampling and grouping customers per 
account from over 4 million records. These records cover about 
160 SIC sectors across the country. Table 1 shows the number 
of samples per customer class or sector. The Eskom MV feeder 
measurements data strata were defined according to category 
variables. In each customer class, several SICs further 
distinguish and categorize customers. A sampling technique, 
which ensured all members of the stratum had the same 
probability of being drawn, was used to draw samples. 

 
Table 1:  Summary of sample sizes per economic class showing the population 
and SICs represented. 

 
Fig 5 shows the power consumption, in kWh, supplied 

(kWh_EXP) for MV feeders categorized according to economic 
class. The large difference between average consumptions for 
different classes in the database may affect the classification 
models. The bulk/distributor feeders dominate all others in 
terms of the power demand, potentially distorting the results. 
Since the interest is on the shape parameters of the load profiles, 
the domination of one customer over the others may be 
eliminated by normalizing the data.  

 

 
Fig 5:  Average daily consumption of various economic classes prior to 
normalisation. 
 

A. Normalisation:  
The results of normalization was achieved using Eq.(1). A 

selection of the normalised profiles for the different classes are 
shown in Fig 6 below. All classes can be compared and 
analyzed from the same scale when using the normalised 
dataset. The profiles are normalized to values between 0 and 1. 

 

 
Fig 6:  Normalised daily averaged profiles per class with the effect of 
dominating classes removed. 
 

B. Typical day load model  
The objective of a typical day load model is to classify similar 
load profiles and associate them with the days of the week that 
they represent, so that the whole year can be modelled with a 
few typical day profiles. The common typical day models used 
by utilities are premised on each day of the week being 
distinguished by the activities that take place. The use of a 
clustering algorithm provides a less subjective and more 
scientific approach to classifying days and provide typical day 
profiles that share common parameter. 
  

1) Parameters for typical days 
In a typical day model, the interested is in twenty-four-hour 
profiles that differentiate the days, and not on specific 
parameters within the profiles. Therefore, each of the hours may 
be assumed as a parameter, and this results in 24 parameters. 
To represent these parameters in a scatter plot and project them 
in a 3-dimensional space, the PCA algorithm discussed in 
section II (B) was used. Three PCs achieved a representation of 
an average of 75% for a 24-hour profile. In Western Cape, the 
first three PCs account for 92% which is the highest of all 
provinces and in Mpumalanga three PCs account for only 60% 
variability. 
 

2) Classification of weekdays 
The clustering algorithm uses the PC in multiple iterations to 
determine the optimal number of clusters required to classify 
the load profiles. Following the process, in Section II and Fig 4 
above the first iteration assumed a fairly large number of 
clusters, and in this case, the initial number of clusters was set 
to 20 and was reduced after assessing the results of each 
iteration. The elbow diagram, the silhouettes scores and the 
results suggested that a maximum of 3 clusters would be 
optimal. 
 

3) Clustering results and validation 
Fig 7 shows the silhouettes score graph and the scatter plot of 
the parameters after the final iteration of clustering. The scatter 
plot is projected on a 3D graph. The intention of the plot is to 
show the results of 3 clusters in both the silhouettes and the 
scatter plots. The different clusters are represented by the 
colours. 

Cust_Class No of Premise_ID No of SIC
Agriculture 814 384               22              
Bulk / Distributors 1 160 011            10              
Commercial 2 158 357            65              
Industrial 692 160               49              
Mining 595 305               16              
Total 5 420 217            162           
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Fig 7: Silhouette and scatter plot of the final three cluster.  
 

The silhouette plot shows that the clusters are clearly separate 
from each other without overlap since all the scores are positive. 
However, when there were 4 or more clusters cluster 0 had 
negative scores, indicating the overlap with other clusters. Fig 
8 and Fig 9 depict the elbow and DBI plots. The elbow diagram 
indicated that the least square error is obtained with 3 or more 
clusters while the DBI suggests that lower numbers of clusters 
are preferred for cohesion. The shaded area is the saturation 
area and it is where the optimal number of clusters lie. The 
compromise choice is to use 3 clusters. 
 

 
Fig 8:  Elbow plots to estimate the number of clusters.  
 
 

 
Fig 9:  DBI plot. The diagrams shows that the score increases as the number of 
plots increase. A lower DBI score is desirable.  
 

4) Analysis of typical day load modelling results 
Table 2 shows the results from allocating the days of the week 
to clusters for both the winter and summer seasons as 
represented by the letters w and s respectively. In the weekdays’ 
column, day, 1 is Monday. The percentages in the cluster 

columns 0, 1, 2 are the allocation proportions of the day-of-
week profiles. in each of the clusters.  
 
Table 2:  The typical weekdays associated with three clusters and their 
probabilities of occurrence. 

 
 

The results from table 2 show different load profiles for 
various typical days and that there is a seasonal impact. This 
means that instead of using 365 hourly profiles, two profiles can 
be used for summer and two profiles can be used for winter as 
follows: cluster 0 can be used to represent weekdays, cluster 0 
or 2 may be used for Saturday and Sundays could be modelled 
using cluster 1 in summer. For winter season, weekdays can be 
represented by cluster 2 profile, and Saturday and Sunday can 
be represented by cluster 0. The higher percentage associated 
with cluster 0 means that the day can be represented using the 
cluster 0 profile. Similarly, with other weekdays. 

The typical day clusters presented in Fig 10 indicate that the 
winter weekdays can be represented by cluster 2 load profile 
and cluster 0 profile will be suitable to represent the weekends. 
The plot also shows that clusters 1 and 2 in summer are almost 
equivalent with minor differences only.  The cluster 
representative load profiles were determined using Eq (13). 

However, the results suggest that Sundays can be associated 
with cluster 1 and all other days can be represented by cluster 
0. The results suggest that the loads in the databased can 
generally be represented using 4 load profiles as indicated in  

Fig 10. The winter weekdays can be represented using to 
clusters 0 and 2 while clusters 0 and 1 may be used for summer 
weekdays. The cluster zero for winter is represented by a yellow 
dash line and the blue line is for summer 
 

Seasons Weekdays 0 1 2
s 1 55% 21% 24%
s 2 56% 8% 36%
s 3 56% 8% 36%
s 4 51% 5% 44%
s 5 44% 13% 44%
s 6 65% 35% 0%
s 7 13% 87% 0%
w 1 21% 7% 71%
w 2 8% 0% 92%
w 3 8% 0% 92%
w 4 8% 0% 92%
w 5 15% 0% 85%
w 6 46% 23% 31%
w 7 62% 31% 8%

Cluster
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Fig 10:  Profiles for the typical day clusters for winter (w) and summer (s). 

 
C. Customer classification load model 

The load model for classifying customers also follows the 
process as described by the flow diagram in Fig 4 above.  

 
1) Parameter estimation 

The values of the parameters were calculated using equations 
(2) to (6). 
For example, in Table 3, the agricultural loads can be 
interpreted as having a load factor of 67%, an average power 
factor (PF) of 0.85 and normalised peak (P_UF), standard 
(S_UF) and off-peak (O_UF) parameters of 0.59, 0.61 and 0.51 
respectively. The process steps stated in II (C) were followed to 
determine the clusters.  
 
Table 3:  Per unit values for each parameter per economic activity class.  

 
The problem of solving multi-dimensional vectors arises 

because there are 5 parameters to project and use in the 
clustering algorithm. To use k-means clustering, the dimensions 
are reduced using PCA method. In this case, the reduction is 
from five parameters to 2 principal components (PCs). The PCs 
used accounted for 88.5% the variability of the load profiles.  

 
D. Cluster validation 

Cluster validity evaluation tools used to define the number of 
clusters and validating the results are Silhouettes, DBI and the 
elbow methods. Assuming a silhouette score threshold of 0.5, 
the number of clusters based on parameters LF requires three 
clusters, according to PF and P_UF there should be four, and 
using S_UF and O_UF, there should be five clusters. The elbow 
point analysis suggests a saturation area, determined visually, 
as being between 3 and 7 clusters, illustrated in Fig 11. The 
silhouette scores illustrated in Fig 12 and Table 4 suggest three 
to five clusters are preferred. The average DBI scores in Table 

4 point towards only two clusters, with scores peaking between 
four and seven clusters 

 

 
Fig 12:  The silhouette scores for different number of clusters.  
 
Table 4:  Silhouettes and average DBI scores for different choices of clusters  

 
E. Classification results 

The statistical summaries of the results for five clusters are 
shown in Table 5. The smallest standard deviation is desirable 

as it indicates how the data points represented are closer to 
the mean. The results indicate that the clusters differ based 
on the shapes of their distributions as indicated by the 
kurtosis and skewness coefficients. Clusters 0,3 and 4 are 
flatter whereas the others are peakier as indicated by the 
kurtosis. Cluster 2 is skewed to the right and the rest of the 
cluster are skewed to the left. 

 
Table 5:  Statistical summaries of the clusters to provides a quantitative 

analysis of the results.  

 
 

The results indicate that there are sub-classes within each 
economic class. The average profile of the economic class as 
the class representative profile may not represent adequately all 
customers in that class.  

The approach for allocating Profiles were allocated to the 
clusters as explained in Section II (E). The bulk\distributors 
class with its sub-classes are shown in Fig 13. The 
bulk\distributors class represents energy sold to municipalities 
and contains a mix of all classes including the residential class. 

Statistic Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
Mean 0.464              0.870634 0.192406 0.775775 0.876769
Median 0.469              0.865098 0.158259 0.814823 0.912783
Standard Deviation 0.140              0.081979 0.127621 0.161316 0.111083
Sample Variance 0.020              0.006721 0.016287 0.026023 0.01234
Kurtosis 0.035-              0.515446 0.809634 -0.58485 -0.21335
Skewness 0.089-              -0.61202 0.902717 -0.58837 -0.90251
Range 0.713              0.36555 0.526369 0.641273 0.427262
Minimum 0.116              0.63445 0.008009 0.358726 0.572738
Maximum 0.829              1 0.534378 0.999999 1

 No. of 
clusters 

 LF-
Pav_UF 

 PF-
Pav_UF 

 P_UF-
Pav_UF 

 S_UF-
Pav_UF 

 O_UF-
Pav_UF 

 LF-
Pav_UF 

 PF-
Pav_UF 

 P_UF-
Pav_UF 

 S_UF-
Pav_UF 

 O_UF-
Pav_UF 

           2    0.88    0.79    0.85    0.86    0.84    0.62    0.99 0.66   0.67   0.62   
           3    0.53    0.64    0.50    0.46    0.53    3.91    2.24    4.08    4.52    3.52 
           4    0.40    0.57    0.50    0.47    0.53    5.81    2.71    3.64    3.99    3.05 
           5    0.41    0.48    0.46    0.50    0.53    5.03    3.58    3.99    3.50    2.69 
           6    0.41    0.41    0.47    0.47    0.47    4.30    4.16    3.33 3.58   3.27   
           7    0.41    0.38    0.40    0.47    0.47    3.67    5.05 4.10   3.31   2.89   
           8    0.40    0.38    0.39    0.41    0.45    3.91    4.35 3.81   4.26   2.76   
           9    0.40    0.38    0.38    0.41    0.44    3.50    3.86 3.62   3.98   2.83   
        10    0.40    0.37    0.40    0.41    0.40    3.22    3.72 3.27   3.92   3.33   

Silhouette scores Average DBI scores
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The average profiles of the agricultural, commercial and 
industrial are shown Fig 14, Fig 15, Fig 16.  
 

 
Fig 13:  The clusters within the bulk\distributors class. 
 

The profiles indicate that there are differences in the usage 
patterns of some of the customers within the same classes and 
that can be linked different activities and energy efficiency 
measures mentioned in the introduction. 

 
In Fig 14 and Fig 15 below, clusters 1 and 3 may be linked 

daytime activities such as air-conditioning and the use of office 
equipment that begin in the morning and ends in the afternoons. 

 

 
Fig 14:  Commercial class profiles with different clusters within this class . 
 
The other profiles may be linked to the malls and shopping 

complexes, which tend to have mild activities during daytime 
and peak in the evening as lighting is increased and occupancy 
of the hotel rooms increase 
In Fig 15 most of the operations take place throughout the day 
with dips that could indicate a change in shifts 
 

 
Fig 15:  Industrial and mining classes profiles.  

IV. VALIDATING THE RESULTS 
The cluster validity tools used to define the number of 

clusters, such as the silhouettes, DBI and the elbow methods, 

were used to determine the number of clusters. The model 
would be valid if the identified parameter models can be 
implemented in practice to separate customer based on their 
load profiles into different clusters and ensuring that there is 
coherence in the parameter of the customer profiles within the 
same cluster.  

The model validation can be achieved by evaluating the 
performance of the clusters using statistical tools and 
comparing the load profiles from the different classes. 
Regression analysis and analysis of variance (ANOVA) were 
conducted to determine the validity of each cluster. The data 
was then arranged per customer class with each parameter being 
the independent variable, and the average consumption of the 
customer is assumed to be the dependent variable.  

The results of the regression analysis are presented in Fig 16. 
As indicated by the adjusted R-square, which is close to one, 
the results show that the class is well explained by the 
parameters. Using the widely used p-value threshold of 0.005, 
the variables whose p-values are greater than the threshold 
cluster 0 are parameters LF and PF. The bar plot on the top right 
of Fig 16 shows that the residuals were concentrated around 
0.007 and 0.011, which are sufficiently small to indicate the 
acceptable performance of the model. The results for all the 
clusters were evaluated similarly.  

 

 
Fig 16: Regression analysis results of cluster 0 with p-values for each 
parameter. 

 
Table 6 shows the results for all 5 clusters and the summary 

of the regression results. The table summarises the regression 
results of the different parameters as well as their significance 
(as indicated by the R-square and p-values) in the models of 
each of the clusters. There is a significantly stronger 
relationship between the parameters and the average demand of 
each cluster as indicated by the smaller p-values. This indicates 
that these clusters are valid based on the data used. 
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Table 6: Regression statistics for the different clusters. 

 

V. CONCLUSIONS 
A pilot study of customer clustering using a sample from 

Eskom’s MV customers database shows that a set of coherent 
load parameter models can be extracted. Unsupervised k-means 
clustering was not adequate for the classification of load 
profiles. However, classification is improved when the 
algorithm is supervised using exogenous (external) parameters 
Analysis of the economic classes suggest that there are sub-
clusters within the classes derived based on economic activity. 

The research indicates that one set of load models can be 
applied consistently to technical, financial and tariffs analysis, 
avoiding the discrepancies between studies based on different 
load models for each application. 

As expected, most clusters reflect distinct time-of-day load 
patterns and some show effects likely to arise from the TOU 
tariff periods. Therefore, if the tariffs or their associated time 
periods change, the cluster profiles may also change. 

 
REFERENCES 

[1] H. Renmu, M. Jin, D.J Hill, “Composite Load Modeling via Measurement 
Approach”. IEEE Trans. On Power Systems, vol. 21, no. 2 , pp. 663-672, 
May 2006. 

[2] B. Prusty, D. Jena, "A critical review on probabilistic load flow studies in 
uncertainty constrained power systems with photovoltaic generation and 
a new approach," Renewable and Sustainable Energy Reviews, Elsevier, 
vol. 69(C), pages 1286-1302, March 2017. 

[3] R. Granell, C. J. Axon and D. C. Wallom, "Clustering disaggregated load 
profiles using a Dirichlet process mixture model," Energy Conversion and 
Management 92, pp. 507-516, March 2015.  

[4] M.J. Chihota and C.T Gaunt, "Transform for Probabilistic Voltage 
Computation on Distribution Feeders with Distributed Generation," Cape 
Town, June 2018. 

[5] R. Herman, C.T. Gaunt, “A Practical Probabilistic Design Procedure for 
LV Residential Distribution Systems”, IEEE Trans. Power Delivery, vol  
23, pp. 2247-2254, April 2008. 

[6] E. C. Bobric, G. Cartina, G Grigoraş, “Clustering Techniques in Load 
Profile Analysis for Distribution Stations.”, Advances in Electrical and 
Computer Engineering vol 9 no. 1, pp. 63-66, Feb 2009. 

[7] C.T. Gaunt, R. Herman, H. Kadada,”Design Parameters For LV Feeders 
to meet Regulatory Limits of Voltage Magnitude”,International 
Conference on Electricity Distribution (CIRED), Frankfurt, Feb 2011. 

[8] D. I. H. Sun, S. Abe, R. R. Shoultz, M. S. Chen, P. Eichenberger and D. 
Farris, "Calculation of Energy Losses in a Distribution System", IEEE 
Trans. Power Syst, vol. PAS-99, pp. 1347-1356, June 1980. 

[9] G. Kourtis, I. Hadjipaschalis and A. Poullikkas, "An overview Of Load 
Demand and Price Forecasting Methodologies", International Journal of 
Energy and Environment, vol. 2, no. 1, pp. 123-150, Jan 2011. 

[10] D. Singh, R. K. Misra and D. Singh, "Effect of Load Models in Distributed 
Generation Planning", IEEE Trans. Power Syst., vol. 22, no. 4, pp. 2204-
2212, Oct 2007.  

[11] J. H. Zhao, Z. Y. Dong, Z. Xu and K. P. Wong, "A Statistical Approach 
for Interval Forecasting of the Electricity Price," in IEEE Trans on Power 
Systems, vol. 23, no. 2, pp. 267-276, April 2008. 

[12] M. Soni, “Quantitative Assessment of Geographical Based Load Forecast 
Technique at Eskom Distribution: Forecast Error and Impact on 
Infrastructure Execution”, 8th South African regional conference, Cigre, 
2017. 

[13] C. Eid, E. Koliou, M. Valles, J. Reneses, R. Hakvoort, “Time-Based 
Pricing and Electricity Demand Response: Existing Barriers and Next 
Steps.”, Utilities Policy. 2016 Jun 1;40:15-25,2016 

[14] M.P. Ortega, J.I. Pérez-Arriaga, J.R. Abbad,J. González, “Distribution 
Network Tariffs: A closed question?”. Energy Policy. 1;36(5), pp 1712-
25, May 2008. 

[15] M. J. Chihota and C. T. Gaunt, "A Transform For Probabilistic Voltage 
Computation on Distribution Feeders with Distributed Generation", 2018 
Power Systems Computation Conference (PSCC), June 2018. 

[16] C. T. Gaunt, R. Herman, M. Dekenah, R. L. Sellick, S. W. Heunis, "Data 
Collection, Load Modelling and Probabilistic Analysis For LV Domestic 
Electrification." International Conference on Electricity Distribution 
(CIRED), Nice, June 1999.  

[17] I.A. Ferguson, and C.T. Gaunt, “LV Network Sizing in Electrification 
Projects-Replacing A Deterministic Method With a Statistical Method”. 
In 17th international conference on electricity distribution (CIRED) (No. 
68, pp. 1-6), 2003. 

[18] T. Cousins, “Using Time Of Use (Tou) Tariffs in Industrial, Commercial 
and Residential Applications”. TLC Engineering Solutions. 2009. 

[19] Energy, D. G. "Impact Assessment Study on Downstream Flexibility, 
Price Flexibility”, Demand Response and Smart Metering, (2016). 

[20] A. Picciariello, J. Reneses, P. Frias, L. Söder, “Distributed Generation and 
Distribution Pricing : why do we need new tariff design methodologies ?”, 
Electr Power Syst Res 119, pp. 370-376,  Feb 2015. 

[21] M.J. Fell, D. Shipworth, G.M. Huebner, C.A. Elwell.  Public 
Acceptability of Domestic Demand-Side Response in Great Britain: The 
Role of Automation and Direct Load Control. Energy Res Soc Sci, 9, pp. 
72-84, Sept 2015. 

[22] Jacobs, Sharon B. “The Energy Prosumer.” Ecology Law Quarterly, vol. 
43, no. 3, pp. 519–579., 2016. 

[23] M. ElNozahy, M. Salama and R. Seethapathy, "Probabilistic Load 
Modelling approach using Clustering Algorithms," Power and Energy 
Society General Meeting (PES), Vancouver, June 2013. 

[24] G. Chicco, R. Napoli, P. Postolache, M. Scutariu and C. Toader, "Electric 
Energy Customer Characterization for developing Dedicated Market 
Strategies", Proc. IEEE Porto PowerTech, Sept 2001. 

[25] W. Yang, X. Bao and R. Yu, "Modeling Price Elasticity of Electricity 
Demand using AIDS," in Innovative Smart Grid Technologies 
Conference (ISGT), IEEE PES, Washington DC, 2014.  

[26] G. Chicco, R. Napoli, P. Postolache, M. Scutariu and C. Toader, 
"Customer Characterization Options for Improving the Tariff Offer," 
IEEE Transactions On Power Systems, vol. 18, no. 1, pp. 381-387, Feb 
2003.  

[27] I. P. Panapakidis, M. C. Alexiadis and G. K. Papagiannis, "Electricity 
Customer Characterization Based on Different Representative Load 
Curves," pp. 1-8, May 2012.  

[28] J. A. Hartigan and M. A. Wong, "Algorithm AS 136 : A K-Means 
Clustering Algorithm," Applied Statistics 28, p. 100–108,  Jan1979.  

[29] C. Fraley and A. E. Raftery, "How Many Clusters? Which Clustering 
Method? Answers Via Model-Based Cluster Analysis, Technical Report 
No. 329, Jan 1998. 

[30] Y. Xu. “Probabilistic Estimation and Prediction of the Dynamic Response 
of the Demand at Bulk Supply Points”. Diss. University of Manchester, 
2015.  

[31] G. Tsekouras, P. Koulas, C. Tsirekis, E. Dialynas and N. Hatziargyriou, 
"A pattern recognition methodology for evaluation of load profiles and 
typical days of large electricity customers," Electric Power Systems 
Research 78, pp. 1494-1510, Sept 2008.  

[32] K. Yamashita. "Modelling And Aggregation of Loads in Flexible Power 
Networks–scope and status of the work of CIGRE WG C4. 605." IFAC 
Proceedings Volumes 45.21 , pp 405-410, 2012. 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4
R Square 0.9963  0.9992  0.9941  0.9992 0.9983 
Adjusted R Square 0.9889  0.9985  0.9640  0.9941 0.9973 
Standard Error 0.0276  0.0154  0.0125  0.0146 0.0209 
P_UF p-value 0.0000  0.0000  0.0000  0.0000 0.0000 
S_UF p-value 0.0000  0.0000  0.0000  0.0000 0.0000 
O_UF p-value 0.0000  0.0000  0.0014  0.0000 0.0000 
LF p-value 0.0242  -         0.1573  0.0000 0.0242 
PF p-value 0.0084  0.6897  0.2262  0.0882 0.0084 
P_UF 0.2287  0.0552  0.2337  0.0581 0.1212 
S_UF 0.1619  0.1652  0.1106  0.0669 0.2450 
O_UF 0.0613  0.3556-  0.1067  0.1282- 0.0578 
LF 0.0981  1.0427  0.1101  0.8244 0.1228 
PF 0.0328  0.0023-  0.0329-  0.0115 0.0197 



Vol.113 (2) June 2022SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS74

[33] J.L Ramírez-Mendiola,, P. Grünewald, and Nick Eyre. "The Diversity of 
Residential Electricity Demand–A Comparative Analysis of Metered and 
Simulated Data." Energy and Buildings 151 121-131. Sept 2017: 

[34] A. Gbadamosi, "Dynamic Load Modelling in Real Time Digital 
Simulator.", 2017. 

[35] V. Figueiredo, F. Rodrigues, Z. Vale and J. B. Gouveia, "An Electric 
Energy Consumer Characterization Framework Based on Data Mining 
Techniques," in IEEE Trans. on Power Systems, vol. 20, no. 2, pp. 596-
602, May 2005, doi: 10.1109/TPWRS.2005.846234. 

[36] S. Rani. and S Geeta.. “Recent Techniques of Clustering of Time Series 
Data: A Survey.” International Journal of Computer Applications 52. pp 
1-9, Jan 2012. 

[37] K. L. Lo, Z. Zakaria and M. H. Sohod, "Determination Of Consumers' 
Load Profiles based on Two-Stage Fuzzy C-Means", Proc. 5th WSEAS 
Int. Conf. Power Systems and Electromagnetic Compatibility, pp. 212-
217, Aug 2005. 

[38] Lavin, A, and Klabjan, D. "Clustering Time-Series Energy Data From 
Smart Meters." Energy efficiency 8.4. pp 681-689, July 2015. 

[39] Fonseca, Jimeno A., Clayton Miller, and Arno Schlueter. "Unsupervised 
load shape clustering for urban building performance assessment." 
Energy Procedia 122, pp 229-234, 2017. 

[40] P. Ferraro, E. Crisostomi, M. Tucci & M. Raugi. “Comparison and 
Clustering Analysis of The Daily Electrical Load In Eight European 
Countries.” Electric Power Systems Research, 141, 114-123, Dec 2016. 

[41] Sharma, Desh Deepak, and S. N. Singh. "Electrical Load Profile Analysis 
and Peak Load Assessment using Clustering Technique." IEEE PES 
General Meeting| Conference & Exposition, June 2014. 

[42] Qiu, Wanrong, et al. "Clustering Approach and Characteristic Indices for 
Load Profiles of Customers Using Data From AMI." China International 
Conference on Electricity Distribution (CICED). IEEE, Aug 2016. 

[43] A. Acharya, A. Prakash, P. Saxena and A. Nigam, "Sampling: Why and 
How of it?," Indian journal of medical specialities, vol. 4, no. 2, pp. 330-
333, July 2013;.  

[44] . B. Kitchenham and S. Pfleeger, "Principles of Survey Research Part 5: 
Populations and Samples," Software Engineering Notes, vol. 27, no. 5, 
pp. 17-20, Sept 2002. 

[45] R.L. Thorndike,. “Who Belongs in The Family?”. Psychometrika 18, 
267–276 (1953). https://doi.org/10.1007/BF02289263.  

[46] P. Rousseeuw, "Sihouettes: A Graphical Aid to The Interpretation and 
Validation of Cluster Analysis.," Journal of Computational and Applied 
Mathematics , vol. 20, pp. 53-65, Nov 1987.  
 

[47] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J.M. Pérez and I. Perona. An 
Extensive Comparative Study of Cluster Validity Indices.” Pattern 
Recognition, 46(1), pp.243-256. Jan 2013.  

[48] D.L. Davies and D.W. Bouldin, "A Cluster Separation Measure", IEEE 
Trans. on Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp. 
224-227, April 1979. 

[49] K. Krzysztof, and P. Hurley. "Estimation of the Number of Clusters using 
Multiple Clustering Validity Indices." International workshop on multiple 
classifier systems. Springer, Berlin, Heidelberg, April 2010. 
 
 
 
 

Lolo Buys received Diploma in electrical engineering 
and a B.Tech. degree in electrical engineering from 
Tshwane University of Technology, a B.Sc. degree in 
computer science and information systems from 
University of South Africa, and M.Sc. degree in 
electrical engineering from University of Cape Town. 

He is currently employed by Eskom Holding Soc. 
in Johannesburg, South Africa since 2008, as a Senior 
Pricing Advisor responsible for the Transmission cost 
of supply studies and tariff development, load and 

tariff data analysis. 
 

C. Trevor Gaunt received the degree in electrical 
engineering from Natal University, the M.B.L. 
degree from South Africa, and the Ph.D. degree from 
University of Cape Town. He is currently an 
Emeritus Professor and a Senior Scholar with the 
Department of Electrical Engineering, University of 
Cape Town. He is also the Principal Investigator on 
research funded by the Open Philanthropy Project to 
investigate the mitigation of effects of 
geomagnetically induced currents that can introduce 

extreme distortion into power systems 

CONTENTS PAGE


