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Abstract—The ever-increasing electricity consumption 
patterns worldwide and the very many drivers of load growth 
have placed heavy burdens on new and existing power supply 
infrastructures, globally. The measurement of standards of living 
based on the quantity and quality of electricity consumed has 
further exacerbated power systems transmission network 
problems. Software validation of optimal bidirectional composite 
conductor designs, which carry very high currents at high 
temperatures, vertically and horizontally in tandem, attempt to 
provide solutions to the above problems. Composites comprising 
a conductor and insulating material strips in which the density 
approaches the minimum conducting area and satisfies Laplace’s 
equation was considered. The variational problem was 
homogenized and polyconvexified using Lagrange multipliers 
and Green’s identity, while the Hessian was used to relax the 
minimized characteristic function for convexification. The results 
indicate materials and costs optimization. Both the horizontal 
and vertical currents were equal, without hotspots or irregular 
power transfer problems in the composite conductor matrix. The 
vertical and horizontal gradients along the composite were equal 
and optimal, and their respective directions of highest change 
were uniform along their lines of equal energy. The conductor 
materials occupied about two-thirds area of composite. The high-
temperature low-sag cable is light in weight, strong, and 
bendable. Its larger diameter reduces corona effects, which 
makes it useful for voltages beyond 300 kV and can minimize the 
incidence of power blackouts, globally.             

Index Terms— Balanced loading, cables, composites, Green’s 
identity, Hessian, Lagrangian. 

 

I. INTRODUCTION

HE optimal bidirectional composite conductor used the 
series-parallel combination that is subject to competition 

for the design. The problem was made continuous to measure 
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the currents across a unit square of conducting area A, in 
which the area of insulating material without current flowing 
through it, is 1-A. A unit voltage difference between the left- 
and right-hand sides of the square or from the top to bottom; 
enables measurement of the currents [1].  
    The problem was to design a single conductor that carries 
currents flowing in both directions up and across the unit 
square surface, which are measured, separately. A voltage 
difference between the x-axis produces a horizontal current, 
while the voltage between the y-axis of the conductor 
produces a vertical current. 
     The present bidirectional composite conductor design 
problem was to software validate the constrained solutions to 
the already developed computable convex functions [2] 
algorithm, applied to the minimum conductor area A [1], 
having the desired conductor characteristics [3]. 
    The continuous problem was relaxed to a variational 
problem having reasonable solutions and the same minimum. 
The bidirectional current-carrying composites were obtained 
from the original materials by homogenization, which changes 
the original nonconvex problem into a new and more readily 
solved problem. 
    Further, the one-current conductor case is naturally convex, 
because there is no competition and it is the smallest current 
that can flow in one direction only. Similarly, the two-current 
case is polyconvex and can be solved [1]. 
    Adopting extremely thin strips for the design, and in the 
limit; the density and direction of the strips determine the 
conducting area A. The foregoing harmonizes with the 
macroscopic properties of the composites themselves. The 
Physics of relaxation of variational problems leads to 
homogenization and convexification, which yield optimal 
solutions with simple reasoning [1],[2],[3],[4]. The addition of 
a constant or linear function to a convex function does not 
affect convexity, and a convex function is below its 
interpolation [2],[3],[4],[5]. Further, convex functions are 
nonsmooth [6] optimization algorithms for obtaining high-
quality results in applications like the optimal bidirectional 
composite conductor design using the minimum area criterion.  
    A completely mixed composite of conductor and insulator 
strips is obtained using conductances of the minimum area in 
the limit [1],[7]. Reference [8] used isotropic composites to 
deduce optimal design employing conducting rings around 
smaller insulated disks.  In contrast, ellipses were used to 
obtain the optimal design for anisotropic composites. 
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References [8] and [9] have also proved that no other design 
could be better. 
    Our contributions to the optimal bidirectional composite 
conductor design problem include materials and costs 
optimization, eigenvalues solution of inequality of the 
describing differential equations, proof of convergence of the 
expected numerical values of the vertical and horizontal 
currents, and computer software validation of the design. Also, 
deducing and confirming the actual conductor materials 
requirements per unit area of the design and production of 
composites that simultaneously carry horizontal and vertical 
currents along their respective paths and vice versa.     
     The paper is organized into Introduction, Materials and 
methods, Simulation and validation, Results and discussion, 
Applications of conductor composites, and Conclusion. 

II. MATERIALS AND METHODS 
    The materials required for this study are thorough mixtures 
of conductor and insulating material strips interwoven to 
obtain a mat pattern. The optimal cross-sectional area 
minimization of the composite was used to enable the 
conductor designed to carry maximum vertical and horizontal 
currents, simultaneously and along their respective paths. The 
0-1, nonlinear variational problem was convexified using the 
Lagrange multipliers and Green’s function identity.      
    Lagrange multipliers provide optimal solutions to 
constrained nonlinear problems, subject to specialized 
boundary conditions. The variational problems were 
convexified and homogenized using multilinearizations 
because convex functions provide one minimum point for 
convexity. The sum of convex functions is convex. Adding a 
constant or linear function to a convex function does not affect 
convexity, and a convex function is below its interpolation 
[2],[3],[4],[5]. 
    Further, convex functions are nonsmooth optimization 
algorithms [6] that provide simple and elegant results in 
applications like the optimal bidirectional composite 
conductor software validation design problem, under 
investigation in this paper. 
     Python algorithm design and simulation were used to 
maximize and minimize the constrained composite conductor 
parameters to obtain an optimal bidirectional composite 
conductor, which carries maximum vertical and horizontal 
currents, at the same time. Also, the smallest cross-sectional 
area possible was used in the analyses. The sub-sections that 
follow have been organized into Problem formulation, Mat 
design, Variational problem, Bidirectional optimal conductor 
problem, and Convergence tests for vertical and horizontal 
currents. The python open-source computer codes used for the 
study are in Appendix A.  
     
2.1. Problem Formulation 
    How do we obtain a software validation of bidirectional 
horizontal current 𝐶𝐶	 < 1 and a vertical current 𝐷𝐷	 < 	1, using 
the least conducting area 𝐴𝐴 of the composite conductor, in 

which the vertical currents can follow the horizontal paths and 
vice versa? 
    solution to the minimum area (𝐴𝐴) problem is obtained in the 
limit, from a composite material containing suitable 
conductors and insulators as their microstructure, when they 
are thoroughly mixed. Also, the constrained composite 
conductor conductances are, 𝐶𝐶	and 𝐷𝐷, respectively [1],[7]. 
Consequently, the design problem was to obtain the least 
composite area, that can carry the highest horizontal and 
vertical currents simultaneously (Fig. 1), and have the required 
conductor attributes [3],[5]. 
    In isotropic composites (𝐶𝐶	 = 	𝐷𝐷), [1] indicates [8] obtained 
the optimal design using conducting rings around smaller 
insulated disks.  For anisotropic composites (𝐶𝐶	 ≠ 	𝐷𝐷), ellipses 
were used to obtain the optimal design. Since [8] and [9] have 
proved that no other design could be better; we shall then use 
this result without proof in the paper. 
 
2.2. Mat Design 
    Adopting the Mat pattern makes it easy and possible for the 
vertical currents to flow through the horizontal strips as their 
conducting paths and vice versa [1]. When the density of the 
vertical strip is 𝐺𝐺 and the height of those strips is 1	– 	𝐶𝐶, the 
vertical resistance of the composite becomes (1	 − 	𝐶𝐶)/𝐺𝐺 
[3],[5]. 
    Since the composite is in series with a conducting resistance 
strip 𝐶𝐶 (to the vertical flow), the effective conductor properties 
become [1]: 
Vertical resistance = 𝐶𝐶 + (1 − 𝐶𝐶) 𝐺𝐺⁄  
Horizontal resistance = 	1/𝐶𝐶   
Conducting area 𝐴𝐴	 = 	𝐶𝐶	 + 	𝐺𝐺	(1	– 	𝐶𝐶)                                                                                                                          
    The desired vertical resistance value 1 𝐷𝐷⁄ , produces a 
current 𝐷𝐷 with unit voltage drop [5]. Hence [1], 
𝐶𝐶 + ("#$)

&
= "

'
 or 𝐺𝐺 = '#$'

"#$'
                                                  (1a) 

Consequently, the total conducting area becomes 
 

𝐴𝐴 = 𝐶𝐶 + 1'#$'
"#$'

2 [1 − 𝐶𝐶] = $('#)$'
"#$'

                      (1b) 
 

    Equation (1b) above is the optimal area of the composite 
conductor. Coincidentally, and for small currents, the optimal 
area is near 𝐶𝐶 + 𝐷𝐷. Furthermore, the economics of the 
interleaving composite matrix ensures that both the horizontal 
and vertical current modes can use each other’s conducting 
paths because these conducting paths are fine, compact 
together, and rather indistinguishable [10]. 
 
2.3. Variational Problem 
    Suppose 𝑄𝑄 is the open unit square of the composite, having 
a unit voltage between 𝑥𝑥 = 0 and 𝑥𝑥 = 1, and a current flows. 
The vector has zero divergences because there are no sources 
or sinks inside the square. The vector describes a current 
function: 𝑢𝑢(𝑥𝑥, 𝑦𝑦) by (𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕,−𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕). 
    For any 𝑢𝑢, this vector has divergence [11]: 

< *
!+

*,*-
− *!+

*-*,
= = 0                                                   (2)  
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The above divergence equation (2) gives both the magnitude 
|∇𝑢𝑢| and direction of the current at each point. For the 
insulated region, the magnitude |∇𝑢𝑢| = 0 and the current 
function is constant. Hence, 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 = 0⁄  is the normal 
derivative from both sides of the boundary. At the lower 
boundary of the square, 𝑢𝑢	 = 	0 and the upper boundary of the 
square 𝑢𝑢	 = 	𝐶𝐶, so that current 𝐶𝐶 can flow from left to right 
[1],[5].  
    The increase in 𝑢𝑢(𝑂𝑂) − 𝑢𝑢(𝑃𝑃) is the current function that 
flows from 𝑂𝑂 to 𝑃𝑃 [12],[13]. Since the conducting material has 
a unit-specific resistance, the heat loss, 𝐼𝐼)𝑅𝑅 in a single resistor, 
is [1],[11]:  

∬|∇𝑢𝑢|)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶 × 1	 (current ×	voltage)            (3) 
The current is obtained in the smallest possible conducting 
area 𝐴𝐴 when it is flowing, because ∇𝑢𝑢 ≠ 0.  
    Then, the optimal bidirectional composite conductor 
problem becomes: 
Minimize the area in which ∇𝑢𝑢 ≠ 0, subject to: 

∬|∇𝑢𝑢|)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶, 𝑢𝑢(𝑥𝑥, 0) = 0; 𝑢𝑢(𝑥𝑥, 1) = 𝐶𝐶.        (4) 
The above one-dimensional problem in equation (4) is solved 
using a horizontal conducting strip of height 𝐶𝐶 [1]. The current 
function is 𝑢𝑢	 = 	𝑦𝑦 for 𝑦𝑦	 ≤ 	𝐶𝐶; and 𝑢𝑢	 = 	𝐶𝐶 for 𝑦𝑦	 ≥ 	𝐶𝐶 
[12],[13]. Therefore, |∇𝑢𝑢| = 1 inside the strip and |∇𝑢𝑢| = 0, 
elsewhere. Thus, meeting the above constraints ensures that 
the conductor strip area 𝐶𝐶 has the least value. 
    The constraint ∬|∇𝑢𝑢|)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶 indicates that the actual 
current minimises the above integral and satisfies Laplace’s 
equation in the conducting area [12],[13]. 
    Physically, the heat loss relationship is replaced by Green’s 
identity to ease transformation, simplicity in representation, 
and solution to the problem [1],[7].  

∬|∇𝑢𝑢|)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∬𝑢𝑢K−𝑢𝑢,, − 𝑢𝑢--L + ∫𝑢𝑢 *+
*.
𝑑𝑑𝑑𝑑     (5) 

On the right side of equation (5) above, the only nonzero 
integral term is 𝑢𝑢(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕) along the top of the square, where 
𝑢𝑢	 = 	𝐶𝐶 and ∫𝑢𝑢(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )𝑑𝑑𝑑𝑑 = voltage drop ≡ 1. Therefore: 

∬|∇𝑢𝑢|)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶                                                  (6) 
    The above unidirectional conductor problem is simple to 
solve and realize, and it is not convex. Consequently, the 
minimization of the area is the minimization of 
∬1{∇+12}𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶, where 14  is a characteristic function 
(Fig. 1) [1],[11],[12],[13]. The step function equals unity in 
the set 𝐾𝐾, wherever ∇𝑢𝑢 ≠ 0, and zero outside the set 𝐾𝐾, 
wherever ∇𝑢𝑢 = 0. 
    Naturally, the Lagrange multiplier ( ) constraints 
minimise the 0 − 1 nonconvex integral problem whenever we 
can make ∇𝑢𝑢 = 0, as often as, practicable.  
    Therefore, the Lagrange multiplier functional is [1],[13]: 

𝐿𝐿(𝑢𝑢, 𝜆𝜆) = ∬S1{∇+12} + 𝜆𝜆|∇𝑢𝑢|)T𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜆𝜆𝜆𝜆            (7) 
Fortunately, the integrand in equation (7) above has the 
Hessian functionals: 𝐻𝐻 = 1 + 𝜆𝜆|∇𝑢𝑢|) or 𝐻𝐻 = 0, that is 
relaxed, to realize acceptable solutions. 
    Moreover, for an unknown scalar, the relaxation is the same 
as its convexification [1],[2],[3],[4].  
    We use convex functions because there is one minimum 
point in the convex interval [14],[15]. Convexity unifies a 

wide range of phenomena [2],[3],[16], like the optimal 
bidirectional composite conductor software design validation 
problem under investigation in this paper.  
    Furthermore, every convex combination of points is in its 
epigraph. Therefore, a function is convex iff its epigraph is a 
convex set [2],[17],[18]. Hence, a convex function on a 
convex set 𝐴𝐴 is converted to a convex function on 𝑅𝑅. [17]. 
Similarly, a differentiable function 𝑓𝑓 on a convex domain is 
convex, and the divergence of a convex function 𝑓𝑓, ∇𝑓𝑓(𝑥𝑥) =
0, indicates that the 𝑥𝑥 is a global minimum. Also, if 𝑓𝑓 is 
differentiable twice on a convex domain 𝐴𝐴, it is convex iff the 
Hessian matrix 𝐻𝐻(𝑥𝑥) is positive semi-definite for all 𝑥𝑥 ∈ 𝐴𝐴 
[2].  
    We replace 𝐻𝐻 by the greatest convex function satisfying 
𝐻𝐻5 ≤ 𝐻𝐻 without changing the minimum integral value (Fig. 
2). Thus, the minimizing function 𝑢𝑢∗ is significantly changed, 
but the original 𝐿𝐿 may not exist. In the one-conductor 
problem, 𝐻𝐻5 grows linearly from its virtual bifurcation point 

having  up to where 𝜆𝜆|∇𝑢𝑢|) = 1 and 𝐻𝐻5 is tangent to 𝐻𝐻. 

But, before that point, the convexified functional is 
[1],[2],[3],[4]: 𝐿𝐿5(𝑢𝑢, 𝜆𝜆) = ∬𝐻𝐻5𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜆𝜆𝜆𝜆 =
∬2𝜆𝜆" )⁄ |∇𝑢𝑢|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜆𝜆𝜆𝜆      (8)
    Minimizing 𝑢𝑢∗, grows from zero at 𝑦𝑦 = 0 to 𝐶𝐶 at 𝑦𝑦 = 1, 
and it is linear because 𝑢𝑢∗ = 𝑦𝑦𝑦𝑦. Hence, |∇𝑢𝑢∗ = 𝐶𝐶| and the 
Lagrange functional is [1],[2],[3],[4]: 

𝐿𝐿5(𝑢𝑢∗, 𝜆𝜆) = 2𝜆𝜆" )⁄ 𝐶𝐶 − 𝜆𝜆𝜆𝜆                                        (9) 
The maximum over 𝜆𝜆 occurs wherever 𝜆𝜆∗ = 1, and gives the 
least area subject to the constraint: Optimal area = 𝐶𝐶. 
    But, 𝜆𝜆∗|∇𝑢𝑢∗|) = 𝐶𝐶) < 1. Consequently, the least conductor 
area appears where 𝐻𝐻5, is lower than 𝐻𝐻. This homogenisation 
condition ensures that the composite conductor mat structure 
swings between 𝐻𝐻 = 0, and 𝐻𝐻 = 1 + 𝜆𝜆|∇𝑢𝑢|). This is so 
because the average of 𝐻𝐻 is 𝐻𝐻5 [1]. Although the 
unidirectional conductor problem uses relaxation, the least 
area 𝐶𝐶 is obtained without relaxation. However, the proof 
indicates that the least area used convexification, where 𝜆𝜆 = 1 
and for any 𝑢𝑢: 
Area =  
∬S1{∇+12} + |∇𝑢𝑢|)T𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐶𝐶 ≥ ∬2|∇𝑢𝑢|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐶𝐶 ≥ 𝐶𝐶  (10) 

2.4. Bidirectional Optimal Conductor Problem 
     The bidirectional variational conductor problem requires 
two current functions 𝑢𝑢(𝑥𝑥, 𝑦𝑦) and (𝑥𝑥, 𝑦𝑦). The simple 
convexification procedure is not applicable, because the 
unknown vector quantity has magnitude and direction [13]. 
The mat design is divided into two regions 𝑅𝑅" and 𝑅𝑅) (Fig. 3). 
Using Green’s identity, which is horizontally and vertically, 
simple, we divided the boundaries 𝐶𝐶 and 𝐷𝐷 of 𝑅𝑅 into 𝐶𝐶" ∪ 𝐷𝐷" 
for boundary 𝑅𝑅" and 𝐶𝐶) ∪ 𝐷𝐷) boundary 𝑅𝑅) [7]. The increase 
𝑢𝑢(𝑂𝑂) − 𝑢𝑢(𝑃𝑃) is the current function [7],[8], that provides the 
flow from 𝑂𝑂 to 𝑃𝑃 (Fig. 3). 
     Additionally, the first part is constrained by 𝑢𝑢(𝑥𝑥, 0) = 0 
and 𝑢𝑢(𝑥𝑥, 1) = 𝐶𝐶, while ∬|∇𝑢𝑢|)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐶𝐶, as in the 
unidirectional conductor case [1]. Similarly, the second part 𝑤𝑤 
shows that a vertical current 𝐷𝐷 flows through the mat 

l

uÑ
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composite when a unit voltage is applied between the highest 
and lowest portions of the unit square [1],[3]. 
    Also, wherever the horizontal and vertical currents are 
respectively zero, ∇𝑢𝑢 = 0 and, ∇𝑤𝑤 = 0, there is no need for 
conducting materials at such locations. Therefore, the 
bidirectional composite conductor problem occupies the set 𝐾𝐾 
values in the minimised area [1],[4],[7]: 

𝐾𝐾 = {∇𝑢𝑢 ≠ 0} ∪ {∇𝑤𝑤 ≠ 0}                                   (11) 
Minimize area (𝐾𝐾) = ∬14𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
Subject to: ∬|∇𝑢𝑢|)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝐶𝐶, ∬|∇𝑤𝑤|)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝐷𝐷,  
𝑢𝑢(𝑥𝑥, 0) = 0, 𝑢𝑢(𝑥𝑥, 1) = 𝐶𝐶, 𝑤𝑤(0, 𝑦𝑦) = 0, 𝑤𝑤(1, 𝑦𝑦) = 𝐷𝐷.  
It was shown that the strips/mat design had minimal area: 𝐴𝐴 =
$('#)$'
"#$'

. 
But, the 0 − 1 bidirectional composite conductor problem is 
not convex and is converted by the Lagrange multipliers λ and 
𝜇𝜇, into the unrelaxed functional: 𝐿𝐿(𝑢𝑢,𝑤𝑤, 𝜆𝜆, 𝜇𝜇) = 
∬[18 + 𝜆𝜆|∇𝑢𝑢|) + 𝜇𝜇|∇𝑤𝑤|)]𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝜆𝜆𝜆𝜆 − 𝜇𝜇𝜇𝜇                      (12) 
Equation (12) is convexified because the least value, 𝐿𝐿5 is 
small, since it is below 𝐿𝐿. The pseudoconvexification 𝐿𝐿9 is the 
greatest functional below 𝐿𝐿, which shows the relaxation is 
small and partly continuous. Therefore, the minimizing 
functions 𝑢𝑢∗, 𝑤𝑤∗ are feeble oscillation boundaries for 𝐿𝐿 
[1],[3],[4],[7].  
    Pseudoconvexity is laborious to test, but polyconvexity 
exists and can be tested. The relaxation [1],[3],[4],[7], 𝐿𝐿9 =
∬𝐻𝐻9(∇𝑢𝑢, ∇𝑤𝑤)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, is polyconvex because 𝐻𝐻9 is a convex 
function of |∇𝑢𝑢| and |∇𝑤𝑤|, while the Jacobian determinant is 
           𝐽𝐽 = |∇𝑢𝑢∇𝑤𝑤|                                                               (13) 
    The Jacobian is not a convex 0 − 1 characteristic function 
of 18. It is made polyconvex by relaxation, homogenisation, 
and multilinearisations to form a family of upper envelopes of 
linear functions in 𝐽𝐽, |∇𝑢𝑢|, and |∇𝑤𝑤|. Convex functions are 
envelopes of linear functions of |∇𝑢𝑢| and |∇𝑤𝑤|, but, a 
polyconvex function may not be convex. The unrelaxed 
integrand [1],[2],[3],[4],[7]: 

𝐻𝐻 = _ 0
1 + |∇𝑢̀𝑢|) + |∇𝑤𝑤a|)  b𝐼𝐼𝐼𝐼	∇𝑢̀𝑢 = ∇𝑤𝑤a

𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (14) 

    Equations (14) above are vector transformations included in 
the Lagrange multipliers 𝜆𝜆 and 𝜇𝜇 into 𝑢̀𝑢 = 𝜆𝜆" )⁄ 𝑢𝑢 and 𝑤𝑤a =
𝜇𝜇" )⁄ 𝑤𝑤. The Lagrange multipliers are positive parameters and 
the inequality constraints satisfy the design objectives. This is 
so because the bidirectional composite conductor design 
presents a lower resistance to either of the currents. 
    Also, the bidirectional composite conductor design obeys 
∬|∇𝑢𝑢|) = 𝐶𝐶, and ∬|∇𝑤𝑤|) = 𝐷𝐷. 
The relaxation of 𝐻𝐻 is [1],[3]: 

𝐻𝐻9 = _2𝜎𝜎 − 2|𝐽𝐽|̅																		𝐼𝐼𝐼𝐼	𝜎𝜎 ≤ 1
1 + |∇𝑢̀𝑢|) + |∇𝑤𝑤a|)		𝐼𝐼𝐼𝐼	𝜎𝜎 ≥ 1

                                  (15)

where 𝜎𝜎 = (|∇𝑢̀𝑢|) + |∇𝑤𝑤a|) + 2|𝐽𝐽|̅))" )⁄  and 𝐽𝐽 ̅ = |∇𝑢̀𝑢∇𝑤𝑤a|. We 
shall show that 𝐻𝐻9 is polyconvex and 𝐻𝐻9 ≤ 𝐻𝐻. We know that 
no pseudoconvex functions are between 𝐻𝐻 and 𝐻𝐻9, provided 
that, the constraints are satisfied in the conducting area 𝐴𝐴′ =
$($#)$'
"#$'

. And, the area is not greater than 𝐴𝐴 [1]. 

   , the variational bidirectional composite conductor design 
problem is solved because 𝐻𝐻9 is polyconvex. Hence, 
[1],[2],[3]:   

Minimize ∬𝐻𝐻9𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 subject to: 

j 𝑢̀𝑢(𝑥𝑥, 0
) = 0;	𝑢̀𝑢(𝑥𝑥, 1) = 𝜆𝜆

"
!𝐶𝐶

𝑤𝑤a(0, 𝑦𝑦) = 0;	𝑤𝑤a(1, 𝑦𝑦) = 𝜇𝜇
"
!𝐷𝐷

 (16) 

The above constraints satisfy linear functions: 
𝑢̀𝑢 = 𝜆𝜆

"
!𝐶𝐶𝐶𝐶 and 𝑤𝑤a = 𝜇𝜇

"
!𝐷𝐷𝐷𝐷 

The Jacobian functions are constant, which is the necessary 
and sufficient condition for pseudoconvexity. This is so 
because they satisfy the boundary conditions by producing the 
lowest possible solutions [1],[2],[3]. 
     Additionally, the lowest value of ∬𝐻𝐻9𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, after 
integration of a constant over the unit square, is [1],[2],[3]: 

2𝜎𝜎 − 2|𝐽𝐽|̅ = 2 <𝜆𝜆𝐶𝐶) + 𝜇𝜇𝐷𝐷) + 2𝜆𝜆
"
!𝜇𝜇

"
!𝐶𝐶𝐶𝐶=

"
! − 2𝜆𝜆

"
!𝜇𝜇

"
!𝐶𝐶𝐶𝐶   

     = 2<𝜆𝜆
"
!𝐶𝐶 + 𝜇𝜇

"
!𝐷𝐷 − 𝜆𝜆

"
!𝜇𝜇

"
!𝐶𝐶𝐶𝐶=     (17) 

We realize that the final terms – 𝜆𝜆𝜆𝜆 − 𝜇𝜇𝜇𝜇 in equation (18) 
below are as in the Lagrangian of equation (12), and we are 
left with a maximization over 𝜆𝜆 and 𝜇𝜇. Therefore, 

𝐴𝐴: = max
;,=

min
+,>

𝐿𝐿9 = 

max
;,=

2 <𝜆𝜆
"
!𝐶𝐶 + 𝜇𝜇

"
!𝐷𝐷 − 𝜆𝜆

"
!𝜇𝜇

"
!𝐶𝐶𝐶𝐶= − 𝜆𝜆𝜆𝜆 − 𝜇𝜇𝜇𝜇   (18) 

Differentiating equation (18) above with respect to 𝜆𝜆 and 𝜇𝜇, 
and rearranging, the Lagrange multipliers become: 
        𝜆𝜆

"
! = "#'

"#$'
  and 𝜇𝜇

"
! = "#$

"#$'
    Substituting the above functionals into equation (18), we 
have 
𝐴𝐴: = $('#)$'

"#$'
               (19) 

which is equal to area  𝐴𝐴, and this minimum occurs at 𝜎𝜎 ≤ 1. 
    However, 𝜎𝜎 is equal to the density of the conducting 
material, and it is equal to  (𝜎𝜎 = 𝐴𝐴). This is so because the 
density is a constant value over the unit square [1],[3].  
    Consequently, the area of the bidirectional composite 
conductor design is not less than 𝐴𝐴:, because:    
(a) 𝐻𝐻9 ≤ 𝐻𝐻 since, 𝐿𝐿9 ≤ 𝐿𝐿 for each positive 𝜆𝜆 and 𝜇𝜇
(b) 𝐻𝐻9 is polyconvex, because its associated functional is least
The constrained minimum area 𝐴𝐴: is equal to area 𝐴𝐴, as the
mat design is approached.
    Hence, the proof of polyconvexity using the computable 
convex functions technique will show that multilinear 
functions, having 𝐻𝐻9 envelopes are below 𝐻𝐻. And, they 
produce the lowest possible solutions. Thus, the results come 
very simply and elegantly, as: 

𝑐𝑐(𝜏𝜏) = _2𝜏𝜏,									0 ≤ 𝜏𝜏 ≤ 1
1 + 𝜏𝜏), 	𝜏𝜏 ≥ 1 (20) 

We then consider the two functions as: 
𝐻𝐻±(∇𝑢𝑢, ∇𝑤𝑤, 𝐽𝐽) = 𝑐𝑐 <S|∇𝑢𝑢|) + |∇𝑤𝑤|) ±

2𝑑𝑑𝑑𝑑𝑑𝑑[∇𝑢𝑢∇𝑤𝑤]T½= ∓ 𝜇𝜇2𝐽𝐽                     (21) 
For either sign, the parameters in brackets are positive 
quadratic forms in ∇𝑢𝑢, ∇𝑤𝑤, and a sum of squares. The square 
root 𝜏𝜏, 𝑐𝑐(𝜏𝜏), and constituents of 𝑐𝑐K𝜏𝜏(∇𝑢𝑢, ∇𝑤𝑤)L are convex [2]. 
The linear Jacobian terms ∓𝜇𝜇2𝐽𝐽, make 𝐻𝐻± convex functions 
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have supplementary parameters. Since 𝐻𝐻9 is the larger of the 
two functions (𝐻𝐻∓), when 𝐽𝐽 is equal to 𝑑𝑑𝑑𝑑𝑑𝑑[∇𝑢𝑢∇𝑤𝑤], then 𝐻𝐻9 is 
polyconvex [1],[2],[3]. 
    We see that for 𝑐𝑐(𝜏𝜏) = 1 + 𝜏𝜏) and large 𝜏𝜏, the 𝐻𝐻± functions 
are: 1 + |∇𝑢𝑢|) + |∇𝑤𝑤|). Besides, for small 𝜏𝜏, the difference 
between 𝐻𝐻( and 𝐻𝐻# depends on: 

2(𝑚𝑚 + 𝑛𝑛)" )⁄ − 𝑛𝑛 ≥ 2(𝑚𝑚 − 𝑛𝑛)" )⁄ + 𝑛𝑛                  (22) 
Equation (22) exists when 𝑚𝑚 ≥ 𝑛𝑛 ≥ 0, and 𝑚𝑚+ 𝑛𝑛 ≤ 1. 
    Our interest in this paper is to provide optimal solutions to 
the bidirectional composite conductor design problem; 
conduct a software validation study and discuss some 
composite conductor applications. 
     Hence, 𝑚𝑚 = |∇𝑢𝑢|) + |∇𝑤𝑤|) and  𝑛𝑛 = 2|𝐽𝐽|                     (23) 
Therefore, the best solution occurs when ±𝑑𝑑𝑑𝑑𝑑𝑑[∇𝑢𝑢∇𝑤𝑤] is 
equal to the absolute value |𝐽𝐽|. Consequently, the parameter 𝜏𝜏 
is equal to ᵬ in defining 𝐻𝐻9, where max𝐻𝐻∓ is equal to 𝐻𝐻9. 
Solving equations (22) and (23) by applying the constraints, 
shows that: 𝑚𝑚 = 𝑛𝑛, and 𝑚𝑚+ 𝑛𝑛 = 1, and the optimization 
conditions become: 

𝑚𝑚 = 𝑛𝑛 = ½ 
Therefore,  
½ = |∇𝑢𝑢|) + |∇𝑤𝑤|) (24a) 
½ = 2|𝐽𝐽| = 2|∇𝑢𝑢∇𝑤𝑤| ⇒ ¼ = |∇𝑢𝑢∇𝑤𝑤|     (24b) 
Hence,  
∇𝑢𝑢 ≡ ∇𝑤𝑤 (25a) 
∇𝑢̀𝑢 = ∇𝑤𝑤a (25b) 
∇𝑢𝑢 = 𝐶𝐶 = ½ (25c) 
∇𝑤𝑤 = 𝐷𝐷 = ½             (25d) 
𝐶𝐶 = 𝐷𝐷 = ½ (25e) 
𝑚𝑚− 𝑛𝑛 = 0 and 𝑚𝑚+ 𝑛𝑛 = 1 (25f) 
𝐴𝐴 = 𝐴𝐴′ = $('#)$'

"#$'
= ½
¾
= ⅔ (25g) 

This (0,1)	convex set is an optimal solution to the computable 
convex functions design of a bidirectional composite 
conductor software validation problem.  
    Also, the half (½) is a local maximum for grad  (∇𝑢𝑢), and 
the other half (½) is also a local maximum for grad 𝑤𝑤 (∇𝑤𝑤). 
Furthermore, any local optimum is also a global optimum, 
provided the constraints define a convex region. This 
optimisation is so because it describes linear functional [18]. 
    Moreover, the gradient shows the direction of the greatest 
change along the line of equipotential or equal energy or of the 
value of 𝐹𝐹(𝑥𝑥, 𝑦𝑦) [19]. Also, the Jacobian (𝐽𝐽) tracks the 
distortion, whenever there is a change of coordinate system. It 
also mirrors the symmetry of the changes made in the 
coordinate system by substitution. It further measures the 
stretching, shrinking, or twisting of the substitution, which 
may result in a larger determinant of the representative matrix 
[20].       
    Although the gradient and Hessian analytically compare a 
derived gradient for correctness, the Hessian matrix computes 
the confidence interval values of parameters in maximum 
likelihood estimation. While the Hessian matrix as a 
minimizer should be positive definite, one of the eigenvalues 
of a semi-definite Hessian matrix will necessarily, be zero 
[21].     

     However, 𝐻𝐻9 is below 𝐻𝐻 simply because 2𝜏𝜏 is smaller than 
1 + 𝜏𝜏). The difference between the unit square and area 
occupied by insulator strips is the savings in the conductor 
area that was achieved by homogenization [1],[3],[22],[23]. 

2.5. Convergence Tests for Vertical and Horizontal Currents 
    Suppose each wire composite conductor matrix can 
accommodate two kinds of currents 𝐶𝐶 and 𝐷𝐷, where the total 
number of currents in each wire adds up to 𝑁𝑁. If the wire is in 
state 𝑒𝑒4, 𝑘𝑘 = 0,1,2, … ,𝑁𝑁 and consists absolutely 𝑘𝑘 currents of 
type 𝐶𝐶 and 𝑁𝑁 − 𝑘𝑘 currents of type 𝐷𝐷 [24]. The probability that 
a new wire is in the state 𝑒𝑒B is given by the hypergeometric 
distribution 

𝑝𝑝4B =
C)4B DC

)E#)4
E#B D

C)EE D
, 

 𝑘𝑘, 𝑙𝑙 = 0,1, … ,𝑚𝑚𝑚𝑚𝑚𝑚(0, 2𝑘𝑘 − 𝑁𝑁) ≤ 𝑙𝑙 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(2𝑘𝑘,𝑁𝑁)            (26) 
    Let 𝑒𝑒4 be the present state and probability of choosing the 
current type 𝐶𝐶 in the next stage be 𝑝𝑝 = 𝑘𝑘 𝑁𝑁⁄ . If the 𝑁𝑁 currents 
in the next stage are randomly chosen from 𝑁𝑁 Bernoulli 
measurements, the 𝐶𝐶-current probability is equal to 𝑝𝑝. The 
transition probability that the next stage current has moved to 
state 𝑒𝑒B (𝑙𝑙 currents of type 𝐶𝐶 and 𝑁𝑁 − 𝑙𝑙 currents of type 𝐷𝐷) 
from the state 𝑒𝑒4 is the binomial distribution 

𝑝𝑝4B = <𝑁𝑁𝑙𝑙 = <
4
E
=
B
<1 − 4

E
=
E#B

    𝑘𝑘, 𝑙𝑙 = 0,1, … ,𝑁𝑁 (27) 
    The limiting behavior of total current based on these models 
after many stages can be determined because models 𝑒𝑒2 and 
𝑒𝑒E contain currents of the same type and no exit from these 
states is possible [11],[13],[24]. Absorption probability 
transition matrices can be used to represent finite-chain 
Martingales. A martingale is a Markov chain when the 
expectation of probability distribution {𝑝𝑝4B} equals 𝑘𝑘: 
∑ 𝑙𝑙𝑝𝑝4B4 = 𝑘𝑘                                                                          (28) 
    Let 𝑒𝑒2, 𝑒𝑒", … , 𝑒𝑒E be the states in a martingale and the system 
is absorbed either into 𝑒𝑒2 or 𝑒𝑒E. If 𝑘𝑘 = 0 and 𝑘𝑘 = 𝑁𝑁 in 
equation (28), we have 𝑝𝑝22 = 𝑝𝑝EE = 1, because 𝑒𝑒2 and 𝑒𝑒E are 
absorbing states [24]. Assuming these two are all the 
persistent states in the sequence, then 𝑒𝑒", 𝑒𝑒), … , 𝑒𝑒E#" are 
transient states, and the arrangement is absorbed into either 𝑒𝑒2 
or 𝑒𝑒E. From equation (28), and by induction we have, 
∑ 𝑙𝑙𝑝𝑝4B

(.)E
4F2 = 𝑘𝑘                                                                     (29)

for all 𝑛𝑛. Actually, 𝑝𝑝4B
(.) → 0 for every transient state 𝑒𝑒B, 𝑙𝑙 =

1,2, … ,𝑁𝑁 − 1 and for 𝑘𝑘 > 0, equation (29) provides the only 
solution 
𝑝𝑝4E
(.) → 4

E
    (30) 

Because there are only two absorbing states, give 
𝑝𝑝4,2. → 1 − 4

E
               (31) 

If the current starts from 𝑒𝑒4, the probability of the final 
absorption into 𝑒𝑒2 and 𝑒𝑒E are 1 − 4

E
 and B

E
. If all current states

are equally likely to start with and then, finally be absorbed 
into 𝑒𝑒E, then: 
lim
.→H

∑ 𝑝𝑝4
(2)𝑝𝑝4,E

(.) = ∑ "
E("

4
E
= "

)
E
4F"

E
4F2                              (32) 

    Therefore, for a randomly selected initial distribution, final 
absorption into either 𝑒𝑒2 or 𝑒𝑒E are both equally likely events 
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for limited state martingale [24]. It follows that regardless of 
the actual process of the model, beginning from an initial state 
𝑒𝑒4 the final absorption probabilities into 𝑒𝑒2 (all 𝐶𝐶 currents) and 
𝑒𝑒E (all 𝐷𝐷 currents) are 1 − 𝑘𝑘 𝑁𝑁⁄  and 𝑘𝑘 𝑁𝑁⁄ , respectively. 
Consequently, currents 𝐶𝐶 = 𝐷𝐷 = "

)
, which corroborate

equation (25e). It follows that and by similar reasoning 
(substituting values into equation (19)) the optimal area 𝐴𝐴: 
tends to be two-thirds the unit area of the composite conductor 
design <𝐴𝐴 = 𝐴𝐴: → )

I
=, which is in perfect agreement with 

equation (25g). 

III. SIMULATION AND VALIDATION

    Simulation is the mimicking of one system by another. It is 
used in two ways: (a) when uncertainty is high because of 
sparse or limited data, (b) for experimentation in a low-cost, 
low-risk environment. Furthermore, simulation is conducted 
by researchers before the validation of their forecasts in the 
expensive real world. Although simulation applications are 
useful, they have advantages and disadvantages. 
    The advantages of simulation include: (a) Study the 
behavior of a system without building it, (b) Results are 
accurate in general compared to analytical models, (c) Helps 
to find unexpected phenomena and behavior of the system, (d) 
Easy to perform, using “what-if” analyses, (e) Forecasting 
under uncertainty, (f) Able to answer several questions, (g) 
Use low data requirements to model, (h) Low cost and (i) 
Innovative approaches can be applied [25],[26],[27]. 
    The disadvantages of simulation include (a) Expensive to 
build a simulation model, (b) Expensive to conduct 
simulation, (c) Sometimes, it is difficult to interpret the 
simulation results, (d) Good theories are needed, (e) No 
standardized approach, (f) Challenging to validate, (g) 
Potential scope encroaches into projects, and (h) Political 
entanglements [25],[26],[27].        
    Also, simulation is an elegant approach to analyzing 
problems with limited data. It is so because we do not need 
data to design or construct a simulation. However, validating a 
simulation demands several data sources for a reliable 
representation of the real world. Thus, the process of 
validation is a disadvantage to simulation because validating 
simulations is usually more laborious to design [25],[26],[27].   

3.1. Why Carry Out Bidirectional Composite Conductor 
Optimization Study? 
    We embarked on python software validation of the earlier 
work [3] in this study because [3],[28]: 
(a) Conductor optimization is necessary for electricity network
expansion planning
(b) To secure transmission lines infrastructure able to evacuate
rising electricity generation and consumption capacities
worldwide
(c) To support, enhance, and strengthen optimal power
systems operators’ response in emergencies
(d) To increase and maximize benefit-cost ratios, which
enhance reliability improvements, reduce operational costs

against initially high optimal bidirectional composite 
conductor investments 
(e) To adaptively strengthen the interdependence between
electricity conductor infrastructures and renewable energy
uncertainties
(f) To minimize total investment costs, transmission lines
losses, and optimally and efficiently engage, electricity
production units
(g) To satisfy future load growth having additional security
and operational constraints 
(h) To minimize transmission lines rights-of-way difficulties

3.2. Policy Problem Formulation 
    The policy is to address some recurrent questions and 
challenges of the electricity industry [29]: 

(a) To determine which and where optimal electricity
lines are built for minimum investment costs that
satisfy future energy requirements

(b) Transmission infrastructure directly and considerably
impact optimal operations of electricity networks

(c) To minimize electricity production costs of power
generation, which depend on fuel sources,
technology, and transmission infrastructure for the
supply

(d) Increasing future demand requires significant
investments in electricity generators and transmission
systems, which need additional capacities

(e) To develop and deploy more efficient and sustainable
electricity transmission systems

(f) To educate and encourage energy suppliers to
embrace new, efficient, and more sustainable
transmissions systems infrastructure

IV. RESULTS AND DISCUSSION

4.1. Results and Discussion of Mathematical Model Analysis 
    Table 1 in Appendix A indicates the results of the 
convexified variational bidirectional composite conductor 
software validation study. The study, software validated the 
composite conductor designs that carry high currents both 
horizontally and vertically. It used the minimum area without 
hotspots because of balanced loading. The density of 
conductor strips determines the vertical and horizontal 
resistances of the unit square. The divergence of the current 
functions of the variational problem evaluates the heat loss in 
the resistor. The minimized constrained currents satisfy 
Laplace’s equation and Green’s function identity. 
    Both the Lagrangian multipliers and the Hessian matrix 
convexified the scalar characteristic function. The convexified 
Hessian of the relaxed problem served as inputs to the 
software validation study. The python open-source computer 
codes of the results in Table 1 are shown in Appendix A.  
    The results in Table 1 show that a half (½) each was a local 
maximum for grad  (∇𝑢𝑢), and grad 𝑤𝑤 (∇𝑤𝑤). Further, any local 
optimum is also a global optimum, provided the constraints 
define a convex region. Also, these optimization results 
describe linear functional [18]. In addition, the gradient 
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indicates the direction of the greatest change along the lines of 
equipotential, or equal energy, or the value 𝐹𝐹(𝑥𝑥, 𝑦𝑦) [19]. The 
Jacobian (𝐽𝐽), which is a quarter (¼) tracks the distortion, 
whenever there is a change in the coordinate system. It mirrors 
the symmetry of the changes made in the coordinate system by 
substitution. It also measures the stretching, kinking, 
shrinking, or twisting of the new coordinate system leading to 
an alteration of the determinant of the representative matrix 
[20].       
    Additionally, the gradient (½) and Hessian [𝐻𝐻( =
1½;	𝐻𝐻# = ½] analytically compare the derived gradients for 
correctness. The Hessian matrix determines the confidence 
interval values on parameters in maximum likelihood 
estimation. Although the Hessian matrix as the minimizer 
should be positive definite, one of the eigenvalues of a semi-
definite Hessian matrix will necessarily be zero [21].   
     The above semi-definite Hessian matrix condition was 
satisfied in this study because the eigenvalues were 0 and 1 
(Convex functions). Additionally, the conductor materials 
occupied about two-thirds (⅔) of the unit square area 𝐴𝐴 of the 
designed optimal bidirectional composite conductor proposed 
in the study.     
     However, both the vertical and horizontal currents flowing 
in the designed bidirectional composite conductor were half 
(½) each. The equality of currents between the horizontal and 
vertical components of the composite conductor matrix 
resulted in balanced current loading that does not create 
hotspots nor localized heating.  
    Moreover, Fig. 1 shows the characteristic function of the 
unit square. It used the Lagrangian multipliers, Green’s 
function, homogenization, multilinearizations, polyconvexity, 
and Hessian matrices to achieve the minimization of 
conductor strips. Fig. 2 shows the representations of the 
convex function of the gradients and the convexified Hessian 
functionals used to achieve one minimum point in the interval 
of convexity, which was also a global optimum. It also 
supports the claim and objective of using the minimum 
conductor area to show that, the bidirectional composite 
conductor design was optimal. Fig. 3 shows the mat structure 
of the proposed optimal bidirectional composite conductor that 
was homogenous in the interleaving of insulator and 
conductor strips able to conduct high currents vertically and 
horizontally, in which the vertical currents can follow the 
horizontal paths and vice versa. Fig. 4 shows the methodology 
flowchart for the study. It also represents the step-by-step 
operations used to realize the body of work in the paper.  
    Furthermore, Table 2 shown in the Appendix indicates the 
contribution of the bidirectional composite conductor software 
validation design in this study. The next subsection 4.2 
discusses software validation.       

4.2. Software Validation 
    Although the bidirectional optimal composite conductor 
design has been built around the minimization criteria for the 
conductor area, the ability to carry maximum currents both 
vertically and horizontally, at the same time, remains the 
major contributions and benefits of the study. While 

simulation is used to mimic a system by another because of 
the paucity of data, validation of design requires ample data 
for a reliable representation of the real world. Therefore, 
verification and validation of the results of differential 
equations become vital for simulation processes. Thus, 
verification determines if the result of the simulation 
approximates the precise solutions to the differential equations 
of the original model. In contrast, validation determines if the 
chosen model is an adequate representation of the real-world 
system for the simulation [25],[26],[27]. 
     Verification is divided into (a) solution verification, and (b) 
code verification. Hence, solution verification confirms that 
the output of the intended algorithm approximates the precise 
solutions to the differential equations of the original model. 
However, code verification confirms that the code as it is 
written performed the intended algorithm. More importantly, 
benchmarking solutions are premised on verifying solutions, 
which compare computed output with analytical solutions 
[25],[26]. 
    From the epistemology of simulation, the dichotomy 
between verification and validation is not so subtle. There are 
overlaps and sometimes, real difficulties arise in defining one 
without the other. A help emanates from [30] as quoted by 
[26], that: “Verification deals with mathematics and addresses 
the correctness of the numerical solutions to a given model. 
Validation, on the other hand, deals with physics and 
addresses the appropriateness of the model in reproducing 
experimental data. Verification can be thought of as solving 
the chosen equations correctly, while validation is choosing 
the correct equations in the first place.”               
   Further, simulation results show that any local optimum is 
also a global optimum in the region of convexity. Hence, both 
local maxima and global maxima occurred for the: (a) 
Horizontal currents, (b) Vertical currents, (c) Gradient of the 
vertical functional, (d) Gradient of the horizontal functional, 
and (e) The constraints.   Moreover, the gradient, which is the 
direction of the greatest increase maximizes the varying 
tradeoffs, while the Jacobian tracks the distortion, stretching, 
or kinking of the change in the coordinate system 
[2],[18],[19],[20]. The next section discusses composite 
conductors and their applications. 

V. APPLICATIONS OF COMPOSITE CONDUCTORS 

5.1. Earlier Composite Conductors 
    Earlier composite conductors were designed from two 
separate wires considering their physical and electrical 
properties. Aluminum conductors steel reinforced (ACSR), 
aluminum conductors aluminum alloy reinforced (ACAR), 
and all-aluminum-alloy conductors (AAAC) are long-span 
used in overhead transmission and distribution lines [31]. Air-
expanded ACSR is an increased hollow diameter conductor 
used to create air spaces for cooling and minimize corona 
effects. Its increased current-carrying capacity, better skin 
effects, and using lesser metal enable it to operate at higher 
temperatures above 300 kV [32]. Self-supporting ACSR limits 
aeolian vibrations to safe levels, ACSR/TW because of 
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smaller diameter and smooth surface experience lower wind 
loading. T2 conductors comprise two spiral windings from 
twisted standard ACSRs and significantly reduce wind-
induced galloping because ice cannot form along conductor 
length. Steel-supported aluminum conductors (SSAC) have 
high electrical conductivity at high temperatures and better 
sag-tension properties [32]. 

5.2. Power Blackouts 
    Electrical transmission and distribution lines outages mostly 
come from thermal sags, when the current passing through the 
conductor exceeds transmission capacity. Overheated wires 
elongate to cause sags, which potentially violate minimum 
ground clearances leading to arcing faults, short circuits, and 
cascading failures [3],[33]. Thermal sags caused the August 
14, 2003, US East Coast blackout, leaving over 50 million 
people without power [34]. The July/August 2012 India 
blackout that made over 710 million people of the Indian sub-
continent without power was due to sags [35]. A combination 
of weak monsoon, low hydropower generation, high 
temperatures, high humidity, and increasing electricity 
consumption to cool the heat and discomfort experienced, 
caused the monumental collapse of the Indian power system 
[36]. 
    On 2nd July 1996, a Western US power blackout occurred 
because of a short circuit in transmission lines from the 
Bridger coal-fired generator of Idaho Power affecting over 7.5 
million people. A disconnection of three 500 kV lines caused 
heavy power flow North-South. Consequent overload caused 
230/115 kV lines to disconnect leading to voltage declines, 
tripping power units, power oscillations, cascading 
separations, and power blackout [37]. North Eastern U.S. and 
Canada blackout of 14th August 2003 affecting over 50 million 
people occurred like those of 1996. A 500 kV line 
disconnected causing heavy power flow South-North. Another 
500 kV line sags into a tree and disconnects making 230/115 
kV lines to disconnect. Several 345 kV lines trip, voltage 
declines, power units trip, power oscillates causing voltage 
declines and cascading separations leading to blackout, later 
[37]. 
    Over 57 million people were affected in the Italy 2003 
power failure because 6 GW heavy power import to Italy 
caused one 380 kV line to sag into a tree and disconnect. 
Parallel 220/110 kV line sags into another tree because of 
overload to completely isolate Italy. Consequent voltage 
declines, power units trip, power oscillates, voltage further 
declines to cause cascading separations, and blackout [37]. 
However, using the proposed optimal bidirectional composite 
conductor designs validated in this study can drastically 
reduce thermal and cable sags in power systems networks, 
worldwide.     

5.3. High-Temperature Low-Sag Composite Conductors 
(HTLS) 
    HTLS conductors retain their shape integrity at higher 
temperatures, lower thermal expansivity coefficients (CTE), 
and higher ampacity (ampere capacity) for transmission. CTC 

Global hybrid carbon/glass fiber aluminum composite core 
conductors (ACCC), has low CTE, low sag, operational 
temperatures between 1800 and 2100C, can carry twice ACSR 
current and less sag [3],[33]. Between 2006 and September 
2012 over 14,806 km ACCC were installed in over 220 
projects worldwide. Also, ACCC re-conductored 345 kV 
2,680 km American Electric Power (Columbus, Ohio), 893 km 
power line in Texas, and 18 mm diameter ACCC conductors 
replaced 69 kV 32 km long, old copper conductors, in Nevada 
in 2009 [33]. Lightweight and fire resistance made felled 
conductors to be re-energized after replacing burnt H-frame. 
They have been installed in over 24 countries, including 
Russia [33].              
    3M’s aluminum conductor composite reinforced (ACCR) 
cable uses a metal-matrix composite core design. Its CTE is 
half that of steel. 3M doubled manufacturing capacity and 
supplied over 2,575 km ACCR conductors to 13 countries 
except for Australia and Antarctica. By 2013, 3M 
manufactured 135 to 828 mm2 product lines using alumina 
ceramic oxide (Al2O3) powder made into a gel. It is extruded 
through spinnerets to form embedded core fibers in high purity 
aluminum. Customer size/strength requirements enable 7 to 19 
core aluminum zirconium (Al-Zr) stranded wires as twisted 
cable to operate continuously at 2100C and peaks at 2400C 
[3],[33]. 
     EDP Escelsa (Brazil) in 2012 replaced its sagging power 
lines over the Rio Doce River in Linhares (918 m span) by 
ACCR and doubled the 138 kV line ampacity with a better 
line clearance, without requiring new rights-of-way permits 
and new construction efforts. Georgia’s power saved between 
US$ 15 and 20 million to upgrade 54.7 km 230 kV power 
transmission line using ACCR. It served Savannah power 10 
weeks in fall and 10 weeks in spring, at low demand periods 
during 2011 and 2012 [33]. Utah Power Utility cost-
effectively reconductored a section of its transmission lines 
with CTC cables and replaced only 7 instead of 150 support 
towers, if it used conventional ACSR to strengthen its 
transmission capacity. It could meet projected electricity 
demand for the next 15 years without building new 
transmission lines [3],[33].           

5.4. Power Line Analysis Tool (PLAT) 
Although many benefits derive from composite conductors, 

the equivalency of composite-for-steel-cored cable 
conversions in the power industry has faced acceptance 
difficulties. Reference [38] indicates despite the upfront cost 
of developing and commercializing composite conductors, the 
equivalency of composite-for-steel-cored cable is the most 
difficult aspect of their sale to customers long used to some 
other technology. To break that barrier, Composite 
Technology Corporation (CTC) designed Power Line Analysis 
Tool (PLAT) software to compare, contrast, and evaluate the 
electrical and physical performance characteristics of available 
cable products based on twelve linked screens. It helps 
engineers, project managers, and other professionals in the 
power industry to select cable sizes (diameters), power 
capacity, cable sags, seasonal weather performance features, 
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estimated installation costs, and computation of cost savings 
over the expected useful life of the cable [38].  

5.5. Linking Composite Conductors with Cabling 
    Conductor composites connect seamlessly with the 
physical, electrical, and mechanical characteristics for 
specialized applications. These include power systems 
transmission cables, subsea cables on off-shore platforms, 
standing to rig on yachts, cable stays on bridges, solar-
powered cars, and solar-powered aircrafts. These occur 
because of composite for metal replacement processes. These 
have also proved very useful and economical especially when 
viewed from structural and components integrity 
considerations [39].     
    Overheating and sag have plagued conventional ACSR 
cables. Replacing them with composite HTLS conductors 
provides: long-term durability, little or low maintenance, 
removes rights-of-way permit problems, corrosion resistance, 
higher ampacity, higher working temperatures, little or no 
tower replacements, fewer losses, longer spans, higher 
electrical loads, and significantly reduced installation cost. 
The global market for composite cored cables is over US$ 50 
billion annually to strengthen the existing power infrastructure 
[3],[39].  
    Further, ACCC is constructed using a pultrusion process in 
which carbon fibers are drawn unidirectionally along 00-axis 
to form, the cylindrically shaped core around E-glass oriented 
fibers at the exterior. They are wetted out with high-
temperature resistant epoxy resin to separate carbon from 
conductive aluminum overwrap that prevents metal solution 
and galvanic corrosion [3],[5],[39]. The process makes brittle 
carbon more malleable, enhances the flexibility and robustness 
of the composite ACCC core. This same carbon structure 
makes the tail section of the Boeing 777 jet [3] that is 
intricately linked to its efficient braking system.  Thus, the wet 
ACCC fiber bundle is cured at 2600C, and core conductor 
sizes range from 12.7 mm to over 69.85 mm. They carry 
between 300 and over 3500 amps per line in ampacity range 
and these high currents are suitably controlled at high tension 
of 18,597 kg [39].  
    While fiber availability, lack of standards, testing/inspection 
methodologies, customers continued adherence to ACSR 
cables, quality, and very high upfront costs are disadvantages 
of composite cables [39], price, weight reduction, processing 
renewable resources, production using low investment, 
thermal recycling possibility, good thermal and acoustic 
insulating properties are advantages of using natural fiber 
composites for technical applications [40]. However, lower 
impact strength, weather-dependent quality variability, 
hygroscopic swelling, limiting maximum processing 
temperature, poor fire resistance, harvest-dependent price 
fluctuations or on agricultural politics, thinning, knots, ties, 
voids, and imperfections in natural fibers are the major 
drawbacks [40]. 

5.6. Subsea Cables 
    Subsea composite cables used in offshore oil rigs for 
continuous movements from shallow waters to deep waters up 
to 2,000 miles (3,220 km) deep have low weight, high 
stiffness/strength-to-weight ratio to support high stiffness/low 
sag and low elongation properties. Further, offshore operators 
need to avoid paying the higher costs for carbon fiber with 
termination difficulties made Aker Kvaeman Subsea, Norway, 
and Conoco Philip (Houston, Texas) develop carbon-
composite cables used in steel for anchor tension leg platforms 
(TLPs). It is used in carbon-stiffened, hollow-umbilical cables, 
to carry electrical, fiber-optic sensing, and other service lines 
[39]. 

5.7. Bridge Cable Stays 
    Bridge cable stays are supports for deck or girder systems. 
They use a series of cables attached at regular intervals, strung 
diagonally to attachment points on one or more vertical 
supports. Bridge cable stays are durable in the longer term, 
corrosion-resistant, and low need for maintenance. These 
advantages offset the initially great upfront capital outlay [39].     

5.8. Yacht Rigging 
    The major objective for composite conductor use in Yacht 
rigging is weight reduction. For every 0.45 kg weight removed 
from the top of the mast, about 3.6 kg of ballast is removed 
from the yacht keel. Many tonnes of yacht structural strength 
requirements are reduced to minimize material costs, yacht 
becomes faster and more responsive without losing stability, 
thereby saving between 60 and 70 percent in weight compared 
to steel they replace, without compromising strength. The 
disadvantage of fiber elongation is eliminated by increased 
composite rigging cross-section [39]. 
    Element C6 carbon cables are bundles of 1 mm diameter 
rods with 227 kg tensile strength capable of customized 
performance requirements. They are 50% stronger than 
stainless steel at a fraction of its density. About 34 bundled 
rods have a breaking strength of 5,715 kg and a maximum 
stress capability of 2,551 MPa. They are encased in carbon or 
aramid brand protective jackets for better grip because cable 
tensions increase simultaneously with an increase in the 
compressive load of the terminus plug, which is distributed 
evenly along the full length of the rod bundle [39].        

5.9. Custom Composite Rigging Cable 
    Custom composite rigging (CCR) cable design assembles 
parallel nested hexagonal tension rods pultruded (pulling 
through) using 60 to 70% carbon volume fiber and epoxy resin 
binder. Complementary dual tapering along their lengths 
removes stress concentrations at load points. Stainless steel or 
titanium-coated shanks at end terminals prevent corrosion 
between metal and carbon [39].    

5.10. Petroleum Pipelines Anti-Corrosion Control Systems 
     New lease of life was given to internally corroded 
petroleum oil pipelines earmarked for closure using Anti-
Corrosion Protective Systems (APS) in 2013. In-Field-Liner 
(IFL) is an innovative composite liner system of the corrosion-
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resistant barrier, between highly corrosive hydrogen sulfide 
medium produced by sulphate-reducing bacteria (SRB) in 
crude oil that causes damage or rupture to steel pipeline 
structures [40]. In 2014, gas pipelines totaling 4 km were 
installed in four other PETRONAS Cargali locations in West 
Lutong fields of Sarawak in Malaysia. The service lives of 
pipelines were extended by beyond 30 years, and saving over 
50% of pipeline capital replacement costs [41].  
    The success of APS’s IFL technology for oil, gas, crude and 
multiphase mixtures, enabled the rehabilitation of over 10 
subsea pipelines running between platforms operating at 
temperatures up to 1100C. PETRONAS saved over US$ 100 
million using IFL technology [42]. In 2015, PETRONAS 
Malaysia awarded two multi-year contracts to APS (Dubai, 
UAE) worth US$ 150 million to rehabilitate much subsea 
crude oil gathering and high-pressure gas and condensate 
lines.     

5.11. Cured-In-Place Pipe (CIPP)  
    Alternative on-land rehabilitation and repair lining using 
cured-in-place pipe (CIPP) resulted in significant time and 
cost savings for sewer lines (on-and-offshore fields), 
petrochemical plants, drinking water, foul outflow, gas, and 
pressurized water distribution.  Although CIPP has great 
potential in the rehabilitation/repair composite market, IFL has 
future potential in the rehabilitation/repair market for 
undersea/underwater applications [41].            

5.12. Solar-Powered Car Design 
    Composite technology consistently made solar-powered 
composite car designs win racing competitions, consecutively. 
The redesigned 190 kg carbon composite car ran its fourth 
race in Australia for a total of 3,000 km from Darwin in the 
North to Adelaide in the South of Australia in October 2007. 
The race had no blaring engines, screeching tires, or smell of 
fuel, or smoke. Everything was quiet but powered by the 
strong Australian sun [44].  
    All Nuna1-3 designs were carbon composites instead of 
aluminum. Weight advantages, higher specific strength, and 
stiffness, led to better fatigue properties and significantly 
reduced parts. Nuna4 was a semimonocoque design. Its 
aircraft wing-like shape experienced only one-sixth drag of 
comparable automobile. Solar cells on top of the relatively flat 
horizontal surface produced enough energy to power the 
electric motor on the rim of the rear wheel, about 100 km/h 
[44].  
     The rear suspension system was infused with carbon fibre 
and Turane urethane resin cured at 800C. The thermal 
resistance of Turane resin was adjusted to withstand 
Australia’s ambient temperature between -200C and 600C. The 
urethane is stable dimensionally, but the composite begins to 
soften between 950C and 1500C. Air-sprung shock-absorbers 
design combines dampers and springs systems. The front 
wheels are aluminum while the rim of the rear wheel is 
composite strengthened with carbon and aramid fiber. 
However, C-profile stiffeners incorporated into the chassis and 

top shell of the driver’s seat provide needed strength, and to 
further reduce weight [44].  
    Although it is not clear if solar-powered cars can replace 
petroleum inland transportation systems, solar power is being 
sustainably and inexpensively used in residential heating and 
electricity supply [45] as in space exploration of using rovers 
for Mars exploration [44].  

5.13. Solar-Powered Aircraft Design 
    Solar Impulse 2 is the second generation of Si2 first solar-
powered aircraft. Solar Impulse sought North Thin Ply 
Technology (NTPT), Switzerland assistance to make very thin 
unidirectional carbon fiber spread because NTPT offered 
outstanding composite strength, homogeneity, and 
machinability for rigid commercial applications demanding 
high performance and low weight [46]. 
    In July 2010, Decision built Solar Impulse 1 (Si1), the first 
solar-powered aircraft that stayed a total of 26 hours in the air 
solely on solar power (even after dark). Si2 construction began 
in 2011 included an increased payload. Electrical circuitry was 
isolated to enable flight during light rain, and system 
redundancy to improve reliability. The cockpit was more 
spacious to enable the pilot to fully lay on their back during 
flights that could last for five days and five nights [46]. 
     Solar Impulse 1 flew all night in 2010. Solar Impulse 2 
flew halfway around the world in 2015. It journeyed from Abu 
Dhabi in the United Arab Emirates (UAE) on 9th March 2015 
to Oman, India, Myanmar, China, and Japan (eight stops). It 
flew nonstop for almost five days (117 hours 52 minutes) to 
arrive in Honolulu, Hawaii on July 3rd, 2015 at 5.55 am. The 
average speed was 47 km/h [47]. 
     Extremely thin composite Si2 main and rear wing spars, 
body, and tail were thin-ply (or spread-tow) tapes (prepregs), 
constructed using individual carbon fiber tow spreads, which 
separate the flattened fibers into a wider and much thinner 
unidirectional tape. However, Si2 was grounded in Hawaii 
from July 3rd, 2015 to 2016, because of battery problems and 
not from composites failure [47].   
      Si2 72 m wingspan is longer than the 60 m wingspan of 
Boeing 787 Dreamliner. The plane’s fibre architecture is 
strong, lightweight, can withstand spar box torque resistance, 
and satisfy bend stiffness requirements. The cockpit was a 
low-density rigid polyurethane foam of 180 𝜇𝜇m cross-section, 
about 40% below standard 300 𝜇𝜇m cell density (or mass) [47]. 
Cockpit windshield of Covestro’s transparent polycarbonate 
protected pilot and instruments, because the outside 
temperature could fall to -500C, and still able to maintain a 
planned temperature in the cockpit [47]. 
    However, the worth of Si1 and Si2 solar aircraft 
industrialization endeavors gained expertise, know-how, and 
developed network over the years in energy efficiency, 
ultralight materials, complex systems design, solar production, 
energy storage cycle, and electric motors. Solar-powered 
drones are developed and promoted by organizations like 
Google, Airbus, and Facebook, for internet access, disaster 
relief, environmental damage detection, and assessment [47]. 
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VI.      CONCLUSIONS 
    The convex set was used to obtain optimal solutions to the 
bidirectional composite conductor software validation 
problem, in this paper. Further, the local optimum was also the 
global optimum, for both the currents and gradients of the 
optimal bidirectional composite conductor design in the region 
of convexity. The materials and costs optimization was so 
because the gradient shows the direction of the greatest change 
along the line of equipotential or equal energy. The Jacobian 
tracks the distortion, mirrors the symmetry, and measures the 
stretching, shrinking, or twisting of the changes to the new 
coordinate system. Also, the Hessian, as a minimizer 
analytically compares a derived gradient for correctness and 
evaluates the confidence interval values of parameters for 
maximum likelihood estimation. 
    Composite conductors commonly comprise two different 
wires with separate characteristics. They minimize corona 
effects, increase current-carrying capacity at higher 
temperatures, limit aeolian vibrations to safe levels, lower 
wind loading, reduce wind-induced galloping, acquire high 
electrical conductivity, and better sag-tension properties at 
high temperatures.  
    Cable and thermal sags occur when currents passing 
through the conductors exceed transmission capacity. The 
overheated wires elongate and cause sags, which potentially 
violate minimum ground clearances. Further, cable and 
thermal sags were implicated in the major blackouts of 
catastrophic proportions worldwide and their occurrences 
could be significantly reduced if the bidirectional composite 
conductors designed and software validated in this study could 
be deployed in future power systems networks worldwide. 
     Also, the CTC Global hybrid carbon/glass fibre ACCC and 
3M’s ACCR have low CTE and low sag. Their operational 
temperature ranges between 1800 and 2600C and can carry 
twice as much current as ACSR of similar dimensions. They 
are also able to carry currents between 300 and over 3500 A 
per line in their ampacity range. 
     The subsea composite cables have low weight high 
stiffness/strength-to-weight ratio. They are used in deep off-
shore for high stiffness/lower sag and lower elongation 
properties. The carbon-stiffened, hollow-umbilical cables 
carry electrical, fiber-optic sensing, and other service lines.  
    Current technological developments in composite 
conductors have led to frontiers in energy efficiency, ultralight 
materials, complex systems design, solar production, energy 
storage cycle, and electric motors. Other benefits include 
optimization of production from existing assets, focus on 
innovation, cost-effective technology, delaying assets 
replacement, extending service life, better strength-to-weight 
ratios, lower thermal expansivity coefficients, higher moduli 
of elasticity (or stiffness), and lower electrical resistance.  
    Economically, longer spans between towers lead to a 
reduction in the number of towers, which carry the greater 
electrical load by close to 20% and significantly reduce 
installation costs.  
     However, the major drawbacks to composites conductor 
commercialization include fiber availability, lack of standards, 

testing/inspection methodologies, customers continued 
adherence to the traditional ACSR cables, quality, and very 
high upfront costs. 
    Furthermore, the demerits of natural fiber composites 
include low impact strength, weather dependent quality 
variability, hygroscopic swelling, limited maximum 
processing temperature, poor fire resistance, harvest 
dependent price fluctuations, or based purely on agricultural 
politics, thinning, knots, ties, voids, cracks, and other 
imperfections. 
    Above all, the optimal bidirectional composite conductor 
design software validation proposed in this study shows one of 
the most innovative ways of using results of differential 
equations to make maximum use of the conductor materials in 
the design of using very tiny strips, and the advantage of 
minimizing cross-sectional area, and possible total elimination 
of galvanic corrosion, and metal solution problems.   

 
Fig. 1. The characteristic function of the unit square is used for the 
minimization. 

 
Fig. 2.  Convexified function to obtain one minimum point in the interval of 
convexity. 

 
Fig. 3.  Mat patterned approach to a truly homogenized composite: O > P
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Fig. 4. Methodology flowchart. 

 

 

START 

Composite Conductor Improvements 
To make it easier for vertical currents to be 
able to use horizontal conducting strips and 
vice versa 

Determine vertical resistance from density of 
vertical strip and height of those strips 

Determine effective conductor properties: 
(a) Vertical Resistance
(b) Horizontal Resistance
(c) Conducting Area

Variational Problem 
(a) Apply a unit voltage over the open unit

square of composite
(b) Obtain the divergence of the vector stream

functions inside the unit square

(a) Obtain expressions for divergence of stream
functions and currents at each point

(b) The stream functions are constant in the
insulated region

Obtain expressions for heat loss in the resistor 

Minimize the area in which divergence of stream 
functions is not zero 

The constrained current minimum loss function 
satisfies the Laplace’s equation in the conducting 
area 

The heat loss relationship is replaced by Green’s 
function identity to ease transportation, simplify 
representation and provide admissible solutions 

Lagrange multiplier constraints are used to minimize area  
This is equal to the minimization of the characteristic 
function 

The Hessian is introduced to relax the Lagrange multiplier 
functional of the unknown scalar 
This relaxation of the scalar is equal to its convexification 

Convexification leads to one minimum point in the interval 
That minimum point is equal to the minimum of area 

Use computable convex functions to derive a range in which 
the Hessian solutions are valid (H+ and H-) 

(a) Compare H+ with H-
(b) Obtain associated inequalities
(c) Solve the inequalities simultaneously
(d) Determine horizontal and vertical currents
(e)Obtain gradients of horizontal and vertical stream functions
(f) Evaluate the Jacobian
(g) Determine the minimum conductor area in composite

(a) Obtain analytical solutions of model differential equation
as input data for software validation study

(b) Write computer code
(c) Compile computer code in python open-source software
(d) Examine if the computer code and results can software

verify and validate the analytical solutions to model
differential equations

STOP 
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APPENDIX A 

A.I. THE COMPILED PYTHON OPEN-SOURCE SOFTWARE 
PROGRAM 
 
# The solution to the two-way optimal composite conductor 
problem 
import math 
m=0.5 
n=0.5 
grad_u=0.5 
grad_w=0.5 
C=D=0.5 
Area=(C+D-2*C*D)/(1-C*D) 
Jacobian=0.5*n 
Lambda0=m-n 
Lambda1=m+n 
a=2*math.sqrt(m+n)-n 
b=2*math.sqrt(m-n)+n 
a>=b 
if m>=n:  
    if m>=0: 
        if n>=0:  
            (m+n)<=1 
print('Positive Hessian comparison H+ =',a,'Negative Hessian 
comparison H- =',b, 
      'The sum of squares of grad_u and grad_w =',m,'Twice the 
modulus Jacobian =',n, 
      'The current following along the horizontal paths =', C, 
      'The current following along the vertical paths =', D, 
      'The optimized area A =', Area, 
      'The Jacobian keeps track of the distortion from change in 
coordinate system =',Jacobian, 
      'The Lambda0 (m-n)is the first solution condition of 
convexity =',Lambda0, 
      'The second solution condition (m+n) for convexity 
=',Lambda1) 
 

TABLE I 
RESULTS OF PYTHON OPEN-SOURCE VALIDATION STUDY FOR THE 

BIDIRECTIONAL COMPOSITE CONDUCTOR DESIGN  
 
   Variable description                                                                Value obtained 
 
     Positive Hessian comparison 𝐻𝐻!                                                    1.50  
     Negative Hessian comparison 𝐻𝐻"                                                   0.50 
     The sum of squares of grad_𝑢𝑢 and grad_𝑤𝑤                                    0.50 
     Twice the modulus of Jacobian                                                       0.50  
     The current flowing along the horizontal paths                              0.50  
     The current flowing along the vertical paths                                  0.50  
     The optimized conductor area 𝐴𝐴                                                     0.66’  
     The Jacobian (tracks the distortion from a change in a  
     Coordinate system)                                                                         0.25  
     The Lambda0 (𝑚𝑚 − 𝑛𝑛) is the first solution condition of  
     convexity                                                                                         0.00  
     The second solution condition (𝑚𝑚 + 𝑛𝑛) for convexity                   1.00 

 
 

REFERENCES 
[1]  G. Strang and R. Kohn, “Optimal design of a two-way conductor,” in  
        Topics in Nonsmooth  Mechanics, J. J.  Moreau, P. D. Panagiotopoulus,  
        and G. Strang, Eds. Basel: Birkhauser Verlag, 1988, pp. 143-155.  
[2]  G. N. O. Asemota,” On a class of computable convex functions,” Can. J. 
       Pure Appl. Sc., vol. 3, no. 3, pp. 959-965, 2009. 
[3]  G. N. O. Asemota, “Optimal two-way conductor design using computable 
       convex functions approach,” Adv. Mat. Res., vol. 367, pp. 75-81, 2012,  
       10.4028/www.scientific.net/AMR.367.75.   
[4]  S. Takriti, “The unit commitment problem,” in Operational research in  
        Industry,T. A. Ciriani, S. Gliozzi, E. L. Johnson, and R. Tadei, Eds.  
        London, UK: MacMillan, pp. 299-322, 1999, 10.1057/9780230372924. 
[5]  G. N. O. Asemota, “Optimal two-way conductor design using computable 
       convex functions approach,” in Proc. 3rd ICERD, Benin City, Nigeria,  
       2010. 
 [6]  J. J. Moreau, “Bounded variation in time,” in Topics in Nonsmooth  
        Mechanics, J. J.  Moreau, P. D. Panagiotopoulus, and G. Strang, Eds.  
        Basel: Birkhauser Verlag, 1988.  
[7]  C. H. Edwards and D. E. Penney, Calculus. New Jersey, NJ, USA: 
       Prentice-Hall, 2002. 
[8]  Z. Hashin and S. Shtrikman , “A variational approach to the theory of the  
      elastic behavior of multiphase materials,” J. Mech. & Phys. Solids., vol.  
      11, no. 2, pp. 127-140, Mar.-Apr. 1963, 10.1016/0022-5096(63)90060-7.   
[9]  F. Murat and L. Tartar, Optimality conditions and homogenization:  
       nonlinear variational problems. (Isola de’Elba, 1983). London, UK: 
       Roman Publishing, pp. 1-8, 1985.   
[10] V. K. Mehta and R. Mehta, Principles of Power System. New Delhi,  
        India: S. Chand, 2007. 
[11] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis.  
        Massachusetts, MA, USA: Addison-Wesley, 1999.  
[12] M. S. Naidu and V. Kamaraju, High Voltage Engineering. 2nd ed. New 
        Delhi, India: Tata McGraw-Hill, 2007. 
[13] F. B. Hildebrand, Advanced Calculus for Applications. New Delhi, India: 
        Prentice-Hall, 1977. 

TABLE II 
CONTRIBUTIONS OF OPTIMAL BIDIRECTIONAL COMPOSITE CONDUCTOR 

SOFTWARE VALIDATION STUDY DESIGN 
Optimization of production 
Cost-effective technology 
Delaying asset replacement 
Extended service life 
Increase in strength/weight ratio 
Increase in current carrying capacity 
Ability to carry both horizontal and vertical currents simultaneously using 
the same conductor 
Ability to withstand high temperatures and high voltage stresses 
Less sag/lower coefficient of thermal expansivities (CTEs) 
Reduced overall installation costs 
Ability to withstand higher corona breakdown voltages 
Lower (about two-thirds) conductor materials requirements for 
commercialization or manufacture  
Time savings 
Lower maintenance frequency and costs 
Enhance machinability 
Higher power carrying capacity/capabilities 
Improved reliability 
Less corrosion/corrosion resistance 
Less weight/ultra-lightweight materials development  
Ability to limit aeolian vibrations to safe levels 
Better insulation capacity 
Design and validation of complex systems using advanced mathematics and 
computer science 
Higher moduli of elasticity or stiffness 
Sustainable and less expensive alternatives in the longer terms 
Less electrical resistance 
Fewer losses 
 
[3],[5],[31],[32],[33],[34],[35],[36],[37],[38],[39],[40],[41],[42],[43],[44], 
[45],[46],[47] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vol.113 (1) March 2022SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS50

[14] T. Moon, “Convexity and Jensen’s inequality,” 2000. Accessed on: Dec.  
        5, 2007 [Online]. Available:   
        http://www.neng.usu.edu/classes/ece/7860/lecture2/node5.html 
[15] L. Potter, “Convexity,” 2005. [Online]. Available: 
         http://cnx.org/content/m10328/latest/ 
[16] E. Fink and D. Wood, “Fundamentals of restricted-orientation 
        convexity,” 1996. Accessed on: Oct. 18, 2007 [Online]. Available: 
        citeseer.ist.psu.edu/38250.html 
[17] G. Lebanon, “Convex functions,” 2006. Accessed on: Dec. 5, 2007 
        [Online]. Available:  
        http://www.cc.gatech.edu/~lebanon/notes/convexFunctions.pdf 
[18] C. M. Bishop, Pattern Recognition and Machine Learning. Singapore:  
        Springer, 2008. 
[19] Betterexplained, “Vector calculus: Understanding the gradient- better 

Explained,” [Online]. Available:  
https//betterexplained.com/articles/vector-calculus-understanding-the-
gradient/  

[20] Whitman. “16 Vector calculus,” [Online]. Available:  
         https://www.whitman.edu/mathematics/multivariable_16_Vector_ 
         Calculus.pdf  
[21] P. A. Brodtkorb and J.  D’Errico. Numdifftools Documentation Release  
        0.9.20.post0.dev144+ ng9114a1a. 2018. [Online]. Available:  
        https://media.readthedocs.org/pdf/numdifftools/latest/numdifftools.pdf  
[22] S. Bimenyimana, G. N. O. Asemota, and P. J. Ihirwe, “Optimization  
        comparison of stand-alone and grid-tied solar PV systems in Rwanda,” 
        Open Access Lib. J., vol. 5, no.5, pp. 1-18, 2018a,  
        10.4236/oalib.1104603.  
[23] S. Bimenyimana, G. N. O. Asemota, P. J. Ihirwe, and L. Li, “Clustering  
         residential electricity consumption: a case Study,” in Proc. ACM Digital 
         Library, Tianjin, China, 2018b, pp. 121-128. ISBN: 978-1-4503-6541-3 
[24] A. Papoulis and S. U. Pillai, Probability, Random Variables and  
        Stochastic Processes. New Delhi, India: Tata McGraw-Hill, 2008. 
[25] X. Meng, “Simulation CSCI 6337: advantages and disadvantages,”  
         [Online]. Available:  

https://www.eg.bucknell.edu/~xmeng/Course/CS6337/Note/master/nod
e3.html  

[26] E. Winsberg, “Computer simulations in science. Stanford encyclopedia of 
        Philosophy,” 2015. [Online]. Available:    
        https://plato.stanford.edu/entries/simulations-science/   
[27] D. Duzevik. Advantages and disadvantages of simulation. 2017. 
         [Online]. Available:  

https://concentricmarket.com/blog/advantages-and-disadvantages-of-  
simulation/  

[28] Y. Hu, Z. Bie, T. Ding, and Y. Lin, “An NSGA-II based multi-objective  
         optimization for combined gas and electricity network expansion  
         planning,” Appl. Energy., vol. 167, pp. 280-293, 2016. 
[29] M. Jakubcionis and J. Carlsson, “Estimation of European Union 
        residential sector space cooling potential,” Energy Policy. Vol. 101, pp.  
        225-235, 2017. 
[30] S. Roy, “Recent advances in numerical methods for fluid dynamics and  
        heat transfer,” J. Fluid Eng., vol. 127, no. 4, pp. 629-630, 2005.  
[31] J. J. Burke and A. L. Clapp, “Power distribution,” in Standard Handbook  
        for Electrical Engineers, 14th ed.,  D. G. Fink and W. H. Beaty, Eds. 
        New York, NY, USA: McGraw-Hill, 2000, pp. 18-72-18-76. 
[32] C. B. Rawlins, J. Tanaka, D. J. Barta, C. A. Harper, T. W. Dakin, J.  
        Stubbins, and D. E. Lyon, “Properties of materials,” in Standard 
        Handbook for Electrical Engineers, 14th ed., D. G. Fink and W. H.  
        Beaty WH, Eds. New York, NY, UAS: McGraw-Hill Handbooks, 2000, 
        4-2-4-39. 
[33] D. Dawson, “Composite-cored conductors: Holding the line,” 2013. 
         [Online]. Available: 

https://www.compositesworld.com/articles/composite-cored-          
conductorsholding-the-line 

[34] J. R. Minkel, “The 2003 Northeast blackout-Five years later,” 2008. 
        [Online]. Available:  

https://www.scientificamerican.com/article/2003-blackout-five-years-
later/   

[35] H. Pidd, “India blackouts leave 700 million people without power,” 2012.  
        [Online]. Available: 

https://www.theguardian.com/world/2012/jul/31/india-blackout-
electricity-power-cuts 

[36] R. Bedi and R. Crilly, “World’s biggest ever blackout as India is brought  
        to a standstill,” The Telegraph. (July) 2012. [Online]. Available:  

https://www.telegraph.co.uk/news/worldnews/asia/india/9441940/Worl
ds-biggest-ever-blackout-as-India-is-brought-to-a-standstill.html 

[37] G. N. O. Asemota and F. B. Gahimano, “Symmetrical fault currents  
         determination at 70-110 kV primary of Electrogaz grid in Rwanda,”  
         Zambian Eng., vol. 41, no. 1, pp. 48-55, 2008.         
[38] D. Dawson, “Modeling software facilitates composite-for steel-cored  
         cable conversion,” 2006a. [Online]. Available:  

https://www.compositesworld.com/articles/modeling-software- 
facilitates-composite-for-steel-cored-cable-conversions 

[39] D. Dawson, “Composites connect with the world of cabling,” 2006b. 
        [Online]. Available: 

https://www.compositesworld.com/articles/composites-connect-with-
the-world-of-cabling 

[40] G. N. O. Asemota, “Critical angle estimation of light in plantain fibres,”  
        Can. J. Pure & Appl. Sc., vol. 5, no. 3, pp. 1693-1699, Oct. 2011.  
[41] D. Dawson, “Composites extend service of oil and gas pipelines,” 2015.  
         [Online]. Available: 

https://www.compositesworld.com/articles/composites-extend-service-
of-corrosion-prone-oil-and-gas-pipelines 

[42] J. Sloan, “Composite liner for subsea oil and gas nears readiness,” 2017. 
        [Online]. Available: 

https://www.compositesworld.com/news/composite-liner-for-subsea-
oil-and-gas-nears-readiness 

[43] Staff, “In-field-liner installations helps to extend service life for Petronas  
        subsea pipelines,” 2016. [Online]. Available: 

https://www.compositesworld.com/news/infield-liner-installations-
helps-to-extend-service-life-for-petronas-subsea-pipelines-     

[44] D. Dawson, “Focus on design: solar-powered composite car designed to 
        Win,” 2007. [Online] Available:  

https://www.compositesworld.com/articles/focus-on-design-solar- 
powered-composite-car-designed-to-win 

[45] S. Bimenyimana, G. N. O. Asemota, C. M. Kemunto, and L. Li, “Shading  
        effects in photovoltaic modules: simulation and experimental results,” in 
        Proc. 2017 2nd IEEE- ICPRE, Chengdu, China, 2017, pp. 904-909,  
        10.1109/ICPRE.2017.8390665  
[46] D. Dawson, “Spread-tow technology takes off,” 2014. [Online]. 
         Available:  

https://www.compositesworld.com/articles/spread-tow-technology- 
takes-off-   

[47] D. Dawson, “Solar impulse 2: pulse on the future,” 2016. [Online].  
         Available:  

https://www.compositesworld.com/articles/solar-impulse-2-pulse-on- 
the-future 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vol.113 (1) March 2022 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 51

CONTENTS PAGE

Godwin Norense Osarumwense 
Asemota (M’2004–SM’2013), 
became a Member (M) of IEEE in 
2004 and a Senior Member (SM) in 
2013.  He holds a B.S. in physics, 
post graduate diploma in electrical 
and electronics engineering, M.S. in 
electronic and electrical engineering, 
MBA in finance and banking, and 
Ph.D. in electrical engineering. He 

researches in electricity load management, power systems 
engineering, convex functions mathematics, plantains biology, 
finance and banking, renewable energy systems, power 
systems control, and optimization. 
     He taught high voltage engineering, power systems 
engineering, power plants engineering, and research 
methodology at the Kigali Institute of Science and Technology 
(Now College of Science and Technology, University of 
Rwanda, Kigali, Rwanda). He is currently at the African 
Centre of Excellence in Energy for Sustainable Development, 
University of Rwanda, Kigali, Rwanda and Morayo College, 
Nairobi, Kenya. 
    Dr. Asemota has published over seventy journal articles and 
conference papers, Electricity Use in Namibia, iUniverse, 
2013, and Application of Modern Load Flow Techniques to 
Electric Power Systems, Lambert, 2010.  

Professor Nelson Ijumba is 
the International Research and 
Innovation Programme 
Manager, based in the Africa 
Hub of Coventry University. 
He is Emeritus Professor of 
Electrical Engineering at the 
University of Rwanda, based in 
the African Centre of 
Excellence in Energy for 

Sustainable Development (ACEESD), and also an Honorary 

Professor of Electrical Engineering, at the University of 
KwaZulu Natal, South Africa. He has over 40 years of 
experience in teaching, research, consulting and academic 
leadership.   
    His research and consultancy services are in green energy, 
renewable energy resources exploitation, energy efficiency, 
electrical power systems, high voltage technology, innovation, 
higher education management and engineering education. Prof 
Ijumba is passionate about the impact of technologies on 
sustainable development and translation of research outputs 
into socially relevant innovative products. Professor Ijumba 
graduated from the University of Dar es Salaam (Tanzania), 
and obtained his Master’s and Doctoral degrees from the 
Universities of Salford and Strathclyde (United Kingdom), 
respectively. He is a Fellow of the Southern African 
Institution of Electrical Engineers, a Senior Member of the 
Institute of Electrical and Electronics Engineers, a Member of 
the Institution of Engineering and Technology. Professor 
Ijumba is a Member of the Academy of Sciences of South 
Africa and a Fellow of the South African Academy of 
Engineering.  
     He is a registered Professional Engineer with the 
Engineering Council of South Africa; the Engineering 
Registration Board of Tanzania and a Chartered Engineer of 
the United Kingdom Engineering Council. He has published 
widely in indexed journals and made numerous presentations 
at international and local conferences. 


