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Abstract— Depending on the building architecture, usage, and 
energy consumption patterns, over US$ 60 billion was expended 
annually on electric lighting in commercial buildings. Therefore, 
the paper focuses on the development of energy-efficient 
buildings that minimize energy consumption through integrated 
energy-efficient design processes. This can serve as a practical 
guide to design buildings that can lower the energy requirements 
and a strategy to reduce energy consumption. In this study, 
predictive analytics were used to examine how blinds, 
daylighting, and geyser temperature settings can reduce 
electricity consumption and pricing patterns. A panel of expert 
judges was used to validate the 5-point Likert scale residential 
electricity load management questionnaire used to gather survey 
data for the statistical analysis in a Windhoek suburb, Namibia. 
The main goal of this study was to investigate how blinds, day-
lighting, and geyser temperature settings can be used to save 
energy, reduce electricity consumption, and costs for sustainable 
growth and development. The results from this investigation 
indicate a perfect Gaussian histogram of 15 electricity price 
jumps confirming 15 four-way stepwise interaction effects. 
Optimal 0.5 Quetelet curve index offers average citizen energy 
efficiency awareness, education, and behavior modification for 
affordable electricity. Females generally set hotter geyser 
temperatures and are higher energy consumers. Blinds reduce 
electricity consumption by 50% in summer, 25% in winter, and 
day-lighting by 25%. These were the least cost and optimal 
solutions to the rising electricity consumption and pricing 
patterns problem. Adopting the findings or the outcomes of this 
paper could provide more optimal and sustainable energy 
consumption thereby reducing pressure on the power grid.  

Index Terms—Cost-saving, electricity consumption, energy-
saving, loss, waste minimization.  
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I. INTRODUCTION

LECTRICITY supply shortages forced the Southern 
Africa Development Community (SADC) utilities to 
implement the demand-side programs [1-2] with load 

shedding negatively impacted some countries socio-economic 
development [3]. The Namibian power utility was able to 
guarantee power till August of 2016 with the occurrence of 
load shedding. Currently, Namibia generates 40% of its power 
locally and the remaining 60% from Zambia and Zimbabwe 
[4]. Namibia’s electricity demand doubled in 2012 because of 
investment in the mining sector, and Eskom supplies over 
80% of electricity at significantly increased prices [5]. Liquid 
fuel constitutes over 63% of total net energy consumption [6] 
while mining expansion leads to flat load curves [7]. 
     Namibia’s electricity price and industrial tariffs are high 
while South Africa rates are 20 to 25% lower [8]. Reference 
[9] indicates electricity price increases were to modernize
aging infrastructure. The majority of the poor, unemployed,
and rural dwelling Namibians [10] cannot afford high
electricity prices. Namibia has a harsh weather, dry
environment, and acute water shortage problems. The Van
Eck dry-cooling power station in Windhoek was built to
reduce the water used for cooling [11]. Also, the cooling water
needed for the UK’s thermal electricity generation fleet is
equivalent to that used to cool the Van Eck power plant [12].
     Load management (LM) is used to effectively optimize and 
successfully operate any power utility. Load growth, 
increasing generation capacity constraints, rising electricity 
imports, and electricity demand beyond supply capacity in 
Namibia and Southern African Development Community 
(SADC), necessitated new generation capacities or LM to 
supply the shortfall [11]. High energy intensity caused rising 
electricity tariffs in Namibia [13]. Cost reflective electricity 
tariffs were anticipated in 2011/2012, and a high supply 
dependence on South Africa hampers the Namibian electricity 
supply sector [14]. 
     Blinds systems that comprise curtains, shutters, and shade 
over windows and doors could reduce inlet heat by 50.0% in 
summer and 25.0% in heat outlets in winter [11]. Day-lighting 
is the regulated admission of natural light to reduce electric 
lighting and save energy. Day-lighting controls provide 
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commercial benefits in the United States (US) because around 
75.0% of electricity is consumed in buildings nationwide. 
Platinum-level rated tubular skylights use 25.0% less energy 
than conventional lighting fixtures, which incorporates day-
lighting to achieve uniform light distribution while limiting 
electric lighting. Furthermore, day-lighting provides a 24.0% 
energy reduction in Los Angeles schools and reduces by a 
third total building energy costs [15]. 
    Total electric energy consumed in commercial buildings is 
between 35.0% and 50.0%, while between 10.0% and 20.0% 
of energy used for cooling buildings can be saved by 
employing day-lighting. Thus, optimization of day-lighting 
stratagems can reduce total energy costs by a third [16]. 
Depending on building architecture, usage, and energy 
consumption patterns, day-lighting could reduce electric 
lighting between 20.0% and 80.0% [17]. Employing day-
lighting at utility peak demand hours can reduce demand 
charges. Turning off and dimming lights when not needed [1], 
saves between 10.0% and 20.0% of energy used for cooling a 
building. This also increases employees’ productivity and 
improves the health of building occupants [18]. 
    Further, above US$60 billion was expended annually for 
electric lighting that constitutes over 37.0% average 
commercial buildings’ total energy consumption [19]. Also, 
over 64 billion square feet of commercial buildings floor space 
was lit by fluorescent systems in which between 30.0% and 
50.0% of the spaces can access daylight either by skylights or 
through windows. Thus, millions of electric lighting fixtures 
could be turned off for some periods of the day for energy-
savings advantages [20].  
The objective of the study was to determine how blinds, day-
lighting, and geyser temperature settings can be used to save 
energy, reduce electricity consumption, and costs for 
sustainable growth and development. 

Namibia was the test laboratory. The results, conclusions, 
and recommendations of the study could be applicable 
globally. This paper was organized into Introduction, 
Materials and Methods, Results and Discussion, and 
Conclusions. 

II. MATERIALS AND METHODS

A panel of expert judges was used to validate the 5-point 
Likert scale residential electricity load management 
questionnaire used to gather survey data for analysis in 
Windhoek City, Namibia. Over 300 self-report questionnaires 
were randomly distributed in Windhoek, Namibia. The 127 
returned questionnaires were analyzed using the statistical 
package for social sciences (SPSS) version 11.5.Also, the 127 
sample size sufficiency and adequacy criterion were proved by 
[21]. 

The Enter, and Stepwise regression analyses, residuals, 
analysis of variance (ANOVA), Durbin-Watson statistics, and 
other methods determined the correctness, model fit, 
autocorrelation, and overall quality model development [22-
23]. The study was limited to using blinds, day-lighting, and 
geyser temperature settings variables to reduce electricity 
consumption and pricing patterns employing interactional 

predictive statistics without considering actual electricity 
consumption measurements of households or other consumers.  

The analysis sub-section that applies more complex 
computational and rational tools to study four tables and eight 
graphs purely from statistical perspectives can be found in 
Appendix A. Also, the questionnaire is shown in Appendix B.  

2.1. Sample Size Determination 
The Cochran formula was used to obtain the sample size, as: 

          (1) 

           

where is  ( -score values), are probabilities or 
likely outcomes,  is error (0.05), and study sample size was 
approximately 385. Also, model diversity decreases with 
increasing sample size, and a local optimum occurs between 
300 and 350 samples [24].  

    TABLE I 
RESIDUAL STATISTICS 

Minimum Maximum Mean Std. Deviation N 

  Predicted Value -1.8139 5.0000 1.7641 1.36459 46 

  Residual -2.6168 4.8139 .2359 1.14898 46 

  Std. Predicted Value -3.977 3.185 -.216 1.434 46 

  Std. Residual . . . . 0 

Note: Dependent Variable: Uncontrolled electricity use makes NamPower 
increase electricity cost  

Fig.  1.Frequency Vs Regression of Standardized Residual Dependent 
variable: Blinds lessen   heat inlet by 50% in summer and 25% heat outlet in 
winter [1]. 

2.2. Residual Statistics 
Table 1 indicates the estimates of the disparity between 
observed and predicted values in regression analyses. The 
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leftover effects test skews, accuracy, and adequacy of 
statistical predictions in the data. The histogram of 
standardized residuals is shown in Fig. 1.   

TABLE II 
VARIABLES ENTERED/REMOVED [1] 

Model Variables Entered Variables 
Removed   Method 

1 Setting geyser 
temperature at medium . 

Stepwise (Criteria: Probability-
of-F-to-   enter , 
probability-of-F-to- remove 

). 

2 
Electricity 
consumption-don’t 
care 

. 

 Stepwise (Criteria: 
Probability-of-F- to-enter

, Probability-of-F-to- 
remove ). 

3 

Draw blinds over all 
windows in the 
evenings and open 
them during sunlight 
hours 

. 

Stepwise (Criteria: Probability-
of-F- to-enter , 
Probability-of-F-to- remove

). 

4 

Energy-efficient 
buildings and lighting 
conserve earth’s 
resources 

. 

 Stepwise (Criteria: 
Probability-of-F- to-enter 

, Probability-of-F-to-
remove ).  

Note: Dependent Variable: Uncontrolled electricity use makes NamPower 
increase electricity cost. 

TABLE III 
MODEL SUMMARY [1] 

Model R R 
Square 

Adjust
ed R 
Square 

Std. 
Error of 

the 
Estimat

e 

Change 
Statistics Durbin-Watson 

R Square 
Change 

F 
Change 

df
1 df2

p-
value  

F 
Chan

ge 

1 .658(a) .433 .415 .72770 .433 23.707 1 31 .000 

2 .757(b) .573 .545 .64196 .140 9.833 1 30 .004 

3 .829I .687 .655 .55904 .114 10.560 1 29 .003 

4 .864(d) .747 .710 .51212 .059 6.557 1 28 .016 1.994 

Note 
a Predictors: (Constant), Setting geyser temperature at medium 

b Predictors: (Constant), Setting geyser temperature at medium, Electricity consumption-don’t 
care  

c Predictors: (Constant), Setting geyser temperature at medium, Electricity consumption-don’t 
care, Draw blinds over all windows in the evenings and open them during sunlight hours 

d Predictors: (Constant), Setting geyser temperature at medium, Electricity consumption-don’t 
care, Draw blinds over all windows in the evenings and open them during sunlight hours, 
Energy-efficient buildings and lighting conserve earth resources 

2.3. Stepwise Regression 
    Table 2 was used to present four overall best models. 
Logistic regression is a stepwise method for selecting the best 
variables at the lowest error rates. The sample size 

independent response variable is binary (0 and 1). The four-
factor method interprets 15 interdependent interaction effects 
using , where  is variables number [24]. 

2.4. Model Summary 
     Table 3 has one-variable and three composite-variable 
models. Standard error measures model precision using 
dependent variable units. The change measures 
advancement in upon adding the second evaluator.  
change predicts variables addition improvements while the p-
value of change is the alternative hypothesis acceptance 
probability. Statistical shifts exist between dependent and 
independent variables [25].  

2.5. Analysis of Variance 
    Table 4 is the ANOVA that confirms, validate, verify, and 
strengthens estimates in Tables 1-3. The sum of squares adds 
deviations of observations from their mean. The mean square 
is the variation in the model’s measurements. The model is 
perfect if the model line passes through all the observations 
[21].                      

Fig.  2. Expected cumulative probability Vs Observed Cumulative probability 
[1]. 

2.6. Normal Probability Plots        
Fig. 2was used to present the probability-probability plots of 
standardized residuals. The 0.05 statistical power [26] 
measures central tendency, point-fit, subtle deviations from 
normality, and the Gaussian determines the characteristic 
behavior of increasing electricity prices and consumption 
patterns. 

Table 4 was used to present the ANOVA and we determine 
values of and , for each composite model 1-4. 
Model 1: From equation (A.22), the sample square correlation 

was 0.4333, and the sample model correlation R1 was 

0.6583. The (1,32) distribution was below 
0.0001probability of observing the values over 23.707 and 
shows strong evidence against the null hypothesis. Thus, 

indicates 43.3% variability and 65.8% moderately strong 
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correlation for increasing the price and electricity consumption 
with hotter geyser temperature settings.    
    Model 2: From equation (A.22), the sample square 
correlation was 0.5732, and the sample model correlation 

was 0.7571. The  (2,30)distribution was below 0.0001 
probability of observing valuesover 20.148 and indicates 
strong evidence for the alternative hypothesis. Thus, 
indicates a 57.3% variability and 75.7% strong correlation for 
increasing the price and electricity consumption from 
combined hotter geyser temperature settings and electricity 
consumption-don’t care variables. Thus, model 2 is an 
improvement over the one variable model. 
    Model 3: From equation (A.22), the sample square 
correlation as 0.6871, and the sample model 

correlationR3was 0.8289. The  (3,29) distribution was 
below 0.0001probability of observing values over 21.232 and 
strong evidence against the null hypothesis. Thus, suggests 
a 68.7% variability and 82.9% strong correlation at increasing 
the price and electricity consumption from combined hotter 
geyser temperature settings, electricity consumption-don’t 
care, and day-lighting variables. There was an improvement 
over the model having two variables.   
    Model 4: From equation (A.22), the sample square 
correlation  was 0.7465, and the sample model 

correlation was 0.8640. The  (4,28) distribution was 
below 0.0001probability of observing values over 20.615 and 
strong evidence for the alternative hypothesis. Thus, 
indicates 74.6% variability and 86.4% very strong correlation 
between increasing the price and electricity consumption 
explained by hotter geyser temperature settings, electricity 
consumption-don’t care, day-lighting and, energy-efficient 
buildings and lighting conserve earth resources variables. 
Thus, model 4 was an improvement over all the other three 
models.    

III. RESULTS AND DISCUSSION

The results are tabulated in Tables 1-4 and Figures 1-8. 
Figure 9 is the methodology flowchart. Table 1 shows residual 
statistics and Table 2 indicates stepwise regression results. 
Table 3 is a model summary for statistics ranging from the 
coefficient of determination to DW statistic. Table 4 is 
ANOVA for developed models.    

3.1. Histogram of Standardized Residuals 
Fig. 1 is a histogram of standardized residuals assessing 

normality [27]. It cannot detect subtle deviations but tests for 
normality [28]. The X-axis is Observed Cumulative 
Probability percentiles in the residuals frequency distribution. 
The Y-axis is a Standardized Residual (Z-score) for 
computing the Cumulative Density from the Normal 
distribution. The normally distributed residuals are on the 
diagonal of the identity line. Results show 1.41 standard 
deviations, 0 mean, 0 median, 121 nonmissing samples, and 
61st point of 0 value were the mean and median of the perfect 

histogram.  

3.2. Normal Probability-Probability Plot 
Fig. 2 compares the empirical cumulative distribution function 
(ecdf) of the variable with the defined theoretical cumulative 
distribution function (tcdf). The proportion of the nonmissing 
ecdf observations below their heights [29] are sorted 
according to increasing order. They determine the deviations 
from normality in the distribution centre, whether Gaussian or 
not [28]. Linear data distribution point patterns on the P-P plot 
through the origin are proof that measurements are normally 
distributed [30]. Therefore, the unit slope in Fig. 2, in square 
format, is normally distributed [29]. 
 Errors in the Normal P-P plot follow Gaussian normal 
distributions for parameters [31]. Results in Fig. 2 are non-
uniform discrete staircase jump function discontinuities. They 
are random outcomes in the interval (0, 1) of time distances . 
It is a convex set with one minimum point [32-33]. 

Interchanging axes of , determine the graph of , the 
median of x is the smallest number m on the 61st term in Fig. 1 
(m is 0.5 percentile of ).Empirical interpretation of u 
percentile  is the Quetelet curve [34-35]. This optimization 
point was n line segments of lengths , separated vertically in 
order of increasing lengths. Thus, jump distribution functions 
occur at 15 points as a countable sequence in Fig. 2.  

3.3. Residual Statistics 
    Table 1 is residual statistics that test remaining variability 
and the disparity between observed dependent and predicted 
values in regression analysis. They show the predictions 
accuracy of models, assumptions, heteroscedasticity, and 
dispersion in data [36]. Residuals measure the risk premium 
for operating power systems that affect increasing electricity 
consumption and pricing patterns [30]. The p-value below 
0.0005 suggests perfect model development of statistical 
significance. 

3.4. Variables Entered/Removed Based on Stepwise 
Regression Analyses 
The stepwise method fits models automatically by selecting 
predictive variables using two significance levels for 
removal/addition of variable [37]. The probability for adding 
variables is lower than for removing variables based on t-
statistics [38].        
Table 2Stepwise criteria have: Probability-of-F-to-enter below 

and Probability-of-F-to-remove variables 

 exceeded 0.10. The model variables were removed in 

one step: set geyser temperature at medium, electricity 
consumption-don’t care, daylighting, and energy-efficient 
buildings and lighting conserve earth resources. 
Setting high geyser temperatures increases electricity 
consumption and drives electricity prices higher. Not drawing 
blinds over windows causes higher inlet heat in summer and 
larger heat outlets in winter. Both factors drive electricity 
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consumption and prices higher for space cooling/heating as 
shown by the steps/jumps in Fig. 2. 
Don’t care electricity consumption accentuates higher 
electricity consumption patterns, higher bills, creates hardship 
and a vicious spiral for the majority of the population living 
below the poverty trap [35,39]. 
However, stepwise analyses significantly strengthen the most 
economical overall model that contains important variables 
[40], having minimum predictors [24].   

3.5. Model Summary 
     measures the relationship between observed and 
predicted values of the criterion variable.  tests the criterion 
variable variance and predictors’ goodness-of-fit. Favorable 
model outcomes could be overestimated. Adjusted  is the 
most useful model success indicator [23].       
    Both and standard error ( ) measure goodness-of-fit and 
how the model best fits sample data.  measures the model 
precision of the absolute data points spread around the 
regression line.  is a rough estimate of 95% prediction 
interval extending between  standard errors of the fitted 
regression line [25]. 
The  values are relative measures of higher variance 
percentages, while larger  indicates closely fitted data 
points.  is valid for linear models [25], but independent 
variables collectively explain the variance of the dependent 
variable. measures the relationship strength between the 
model and the dependent variable on a 0-100% scale. It tests 
the data scatter points about the fitted regression line [41]. It 
also contains the precise number of independent variables in 
regression models [42].  change enhances  by adding a 
second evaluator. F-test determines the  change, while 
significant -change suggests that the added variables 
remarkably enhanced the prediction [43].        
The limitations of  include prescription bias when the 
linear model was underspecified. Further, significant 
independent variables, polynomials, or interaction terms are 
present [41]. 

A. 3.5.1. Model 1 Setting Geyser Temperatures at Medium
The 65.8% correlation and 43.3% variance accounted for in

model 1, occurred between setting geyser temperatures at 
medium against increasing electricity consumption and pricing 
patterns. Overall model fit improved 41.5%, 0.73% standard 
distance between observation and regression lines, 95% data 
points are between the regression line and  1.5% of geyser 
temperature settings. Hence, Model 1 is statistically significant 

.

3.5.2. Model 2 Combined Effects of Geyser Temperature 
Settings and Electricity Consumption-Don’t Care 

Over 75.7% correlation and above 57.3% variance were 
allowed in Model 2. Overall model fit improved 54.5%, 0.64% 
standard distance between observation and regression lines, 
95% data points of model lie between the regression line and 

1.3% of combined effects of geyser temperature settings 
and electricity consumption–don’t care. Model 2 improved 
14.0% by adding a second predictor. It was statistically 
significant . 

3.5.3. Model 3 Combined Effects of Geyser Temperature 
Settings, Electricity Consumption-Don’t Care and Day-
lighting 

Above 82.9% correlation and over 68.7% variance were 
allowed in Model 3. About 65.5% overall model fit 
sufficiency, 0.56% standard distance between observation and 
regression lines, 95% model precision of data points lie 
between the regression line and 1.12% of geyser 
temperature settings, electricity consumption-don’t care, and 
day-lighting. An incremental 11.4% model improvement was 
achieved by adding the third predictor. Model 3 was 
statistically significant . 

3.5.4. Model 4 Combined Effects of Geyser Temperature 
Settings, Electricity Consumption-Don’t Care, Day-lighting, 
and Energy-Efficient Buildings and Lighting Conserve Earth 
Resources 

About 86.4% correlation and over 74.7% variance were 
allowed in Model 4. Above all, the 71.0% overall model 
goodness-of-fit, 0.51% standard distance of observation and 
regression lines, occurred while 95% of the model data 
precision points lie between the regression line and  1.0% 
of the geyser temperature settings; electricity consumption-
don’t care; day-lighting and energy-efficient buildings and 
lighting conserve earth resources. Model 4 achieved a 5.9% 
incremental improvement by adding four predictors and was 
statistically significant . 

3.6. The Durbin-Watson Statistic 
Overall, the 71.0% model goodness-of-fit mirrors 

increasing electricity consumption and pricing patterns. 
Therefore, the researchers accept the null hypothesis of the 
DW statistic because the effective DW (2.006) was higher 
than the upper limit of the DW statistics . We also 
conclude that there were no autocorrelation effects in the 
model. This was so because the determined DW (1.994) was 
close to the ideal DW statistic (Since ). 
Therefore, errors in the model were uncorrelated, without 
autocorrelation effects, and without violating the independent 
errors assumption of the Durbin-Watson statistic [44-45]. The 
two (2) DW statistics suggests a very excellent model and also 
strengthens the significance, quality, and adequacy of this and 
the other four (4) developed models, in this paper.        

3.7. Multivariate Interaction Effects 
    Interaction effects occur whenever one variable effect 
depends on another and affect statistical design outcomes. 
They show how a third variable influences links between 
dependent and independent variables [46]. The p-values are 
the statistical significance of fitted interaction plots. Several 
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lines indicate the values of the second independent variable 
[46], while the parallel lines show no interaction effects. 
Different slopes suggest interaction effects. The cross-lines on 
the graph indicate that the interaction effects have significant 
p-values and so, the main effects are interpreted [46].

Logistic regression models use stepwise to select the best
model, give the lowest error rates, broad usage, and sample 
size independence. The model diversity evaluates the model 
quality for reproducibility and each interaction effect indicates 
the compound power index [24]. 

3.7.1. Model 1a Setting Geyser Temperatures at Medium-
Main Interaction Effect (A) 
Model 1a: This factor is highly significant in electricity load 
management because the specific heat capacity of water is 
high, and setting geyser temperature at medium reduces 
energy wastage [1,47].   

Further, the Y-axes for Figs. 3-8 are response figures on a 5-
point Likert scale. The 9-point Likert scale on Y-axis for Fig. 
5 arose because 9 was used to represent missing responses on 
the questionnaire (attached). The X-axes for Figs. 3-8 were 
supposed to have 1 and 2 only because each represents male 
and female. The fractional or decimal values on X-axis arose 
because of the limitations and drawing errors of automatically 
using the preset scaling graph algorithms in SPSS software. 
Therefore, decimal figures on the X-axes for Figs. 3-8 should 
be ignored as machine errors because males and females are 
binary and there are no fractions in human beings.  

Respondents’ gender 
Fig.  3. Setting geyser temperatures at medium against respondents gender [1]. 
    Fig. 3 suggests an H-pole with parallel decreasing logistic 
and cubic regression cross-lines. The graph shows females set 
higher geyser temperatures, cause higher electricity 
consumption and higher prices. The growth regression cross-
line plateaued [46] at level four (4), which means hotter geyser 
temperatures settings by both genders lead to higher electricity 
consumption, higher electricity prices, and higher utility 
penalty payments. However, the vertical parallel lines on 
points 1 and 2 of the X-axis indicate there were no interaction 
effects [24] between the gender and everyone (male or female) 
was at liberty to set hotter geyser temperatures.   

3.7.2. Model 1b Electricity Consumption-Don’t Care-Main 
Interaction Effect (B) 

Model 1b: works directly into the economic objectives of 
utility and could negatively impact electricity supply 
efficiency and usage, electricity bills, and loss reduction. This 
behavioral attitude in electricity consumption stresses utility 
facilities, provides a strong economic basis for electricity price 
increases, which supports utility production inefficiencies and 
could jeopardize the public good, in terms of energy efficiency 
[1]. 

Respondents’ gender 
Fig.  4. Electricity consumption-don’t care Vs Respondents gender [1]. 

Fig. 4 indicates an eta-shaped or table-like plateau of growth 
regression interaction cross-lines. It has high and slowly rising 
logistic and cubic regression gradients by gender. The graph 
shows the highest rates of electricity consumption and penalty 
payments by both genders. The interaction cross-lines of 
logistic and cubic regressions, as well as the entitled electricity 
consumers groups, were gender independent [46]. This was so 
because the vertical parallel lines on points 1 and 2 on the X-
axis (respondents’ gender) indicate no interaction effects 
across gender in electricity consumption. Further, the figures 
on Y-Axis indicate (1-strongly agree, 2-agree, 3-not sure, 4-
disagree, and 5-strongly disagree) the strength of respondents 
agreeing with the propositions on the questionnaire.           

3.7.3. Model 1c Day-lighting-Main Interaction Effect (C) 
Model 1c conserves heat, lowers energy or electricity 

consumption, and electricity are bills paid for home heating by 
natural convection. These reduce wasted energy, greenhouse 
gases (GHG) emissions, fuel burnt for electricity production, 
and avoided production [1,47], defer high-cost power plants, 
transmission, and distribution network systems [30]. 
     Fig. 5 suggests indecision in using day-lighting to reduce 
electricity consumption as shown by the horizontal crossbar of 
H-pole growth regression cross-lines. Day-lighting practice
hovers between strongly agree and agree for logistic and cubic
regression interaction patterns. Therefore, day-lighting
indicates the optimal solutions to reducing electricity
consumption and pricing patterns problem by gender, because
there were no gender interactions in using it to reduce
consumption and costs. Additionally, [15] indicates day-
lighting reduces electricity consumption by 25%.
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 Respondents’ gender 
Fig.  5. Draw/open blinds over windows (Day-lighting) Vs Respondents’ 
gender [1]. 
     Therefore, day-lighting is one of the best strategies for 
keeping electricity consumption and price increases to the 
barest minimum. It could be pivotal in any electricity load 
management model for securing optimal and sustainable 
production, transmission, distribution, and utilization of 
electrical power, globally.       

3.7.4. Model 1d Energy-Efficient Buildings and Lighting 
Conserve Earth Resources-Main Interaction Effect (D) 
Model 1d: directly relates the stress on utility facilities with 
power consumed always. Electricity consumers’ gender, 
economic power, and age determine preferences in an 
electrical appliance used and times of use for households, 
lighting, or electric motors in commerce and industry. The 
quantity and cost of electricity used depend on the application 
[1], which affects electricity pricing [30] and stresses placed 
on utility facilities [47]. 
     Electricity production technologies use coal, natural gas, 
diesel, the nuclear, hydro, wind, and solar while increasing 
electricity consumption worldwide increases global warming. 
Utilities unable to cope with overloads lead to power systems 
failures, instability, unreliable performance, and 
nonconformance with regulatory requirements [1]. 

 
Respondents’ gender 

Fig.  6. Energy-efficient buildings and lighting conserve earth resources [1]. 
Fig. 6 suggests wheel and axle-type interaction plots for 

logistic, cubic, and growth regressions. Male electricity 

consumers prefer energy-efficient buildings and lighting. 
Although the spread is gender independent, females have a 
larger scatter.  Electricity consumption patterns were equal at 
mid-points for cubic and growth regressions (1.5) and logistic 
and growth regressions were close to 1.1. Thus, males were 
more favorably disposed to energy-efficient building and 
lighting principles and practices. 

3.7.5. Using Blinds Reduce Heat Inlet through Windows by 
50% in Summer and Heat Outlet by 25% in the Winter-Main 
Interaction Effect 

 
Respondents gender 

Fig.  7. Using blinds reduce heat inlet through windows by 50% in summer  
and heat outlet by 25% in winter against Respondents’ gender [1]. 
     Fig. 7 is an H-pole growth regression with almost parallel 
logistic and cubic interaction cross-lines. Blinds reduce inlet 
heat through windows by 50% in summer while not running 
air conditioners or other cooling devices. It reduces heat 
exchanges between warmer inside ambience with much colder 
outside temperatures by 25% in winter, while heaters are on 
[1]. This reduces electricity consumption for room and space 
heating/cooling. Electricity prices were stable, even during 
heavy, persistent, and universal electricity consumption. The 
plateau [46] between the H-pole cross-line indicates virtually 
no increases in electricity consumption or prices and no 
interaction effects across gender.       
    However, both the logistic and cubic interaction cross-lines 
show increasing electricity consumption and pricing patterns if 
those using blinds were male. 

3.7.6. Uncontrolled Electricity Use Makes NamPower 
Increase Electricity cost-Main Interaction Effect 

   Fig. 8 is a J-shaped interaction plot of growth, logistic and 
cubic regression cross-lines. The parallel lines [46] indicate no 
interaction effects across gender that controls rising electricity 
consumption and cost patterns, but high electricity 
consumption and pricing patterns are prevalent if consumers 
are female. However, the rate of increase is much higher for 
the growth regression line than either the logistic or cubic 
regression interaction cross-lines. Thus, costs are managed by 
reducing consumption, peak load management, peer 
comparison, and energy efficiency identification projects, 
utility invoice management that optimize facility, and 
involvement in rate-making processes [48].    
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Respondents’ gender 

Fig.  8. Without electricity use control NamPower will increase cost Vs  
Respondents gender [1]. 

3.7.7. One-Way Effects for each of the Four (4) Main 
Interaction Effects-  

The model of each main effect predicts how their combined 
effects encourage rising electricity consumption and pricing 
patterns. Adjusted  value indicates the quality of the model 
and accounts for over 41.5% variance. Thus, rising prices and 
electricity consumption depend on geyser temperature settings 

, electricity consumption-don’t care , Day-lighting 
, and energy-efficient buildings and lighting conserve 

earth resources .        

3.7.8. Two-Way Effects   

    Model 2 is the interaction and predictive relationships of 
setting high geyser temperatures and electricity consumption-
don’t care. Adjusted  value accounts for over 54.5% 
variance in total overall model development. The three major 
relationships were: (a) main effect , (b) main effect , 
and (c) single two-way interaction of items A and B

.The additional 13% variance was a combination of items A 
and B, each acting alone and in concert  [1,22-23]. To 

avoid repetition, the single two-way interaction is 

discussed. Hence, rising price and electricity consumption 
patterns depend on the combined effects of hotter geyser 
temperature settings and electricity consumption–don’t care

. 

3.7.9. Three-Way Effects of Combining the First Three (3) 
Main Effects (Seven Model Effects in All) 
Model 3 is the interaction and predictive relationships among 
three variables: (i) setting high geyser temperatures , (ii) 
electricity consumption-don’t care , and (iii) day-lighting 

.  
    There were seven models: (a) main effect , (b) main 
effect , (c) main effect (C), (d) two-way effect , 

(e) two-way effect , (f) two-way effect , and 

(g) single three-way effect . 

    Adjusted R2value accounts for over 65.5% variance in total 
overall model development. This suggests an additional 11.0% 
variance above the model with only two interacting predictors 
[1].  
To avoid repetition, only the three two-way effects and one 
three-way effect are discussed. Therefore, rising price and 
electricity consumption patterns depend on the combined 
effects of high geyser temperature settings and electricity 
consumption-don’t care , high geyser temperature 

settings, and day-lighting , electricity consumption-

don’t care and day-lighting and high geyser 

temperature settings, electricity consumption-don’t care and 
day-lighting . 

3.7.10. Four-Way Effects Combine the Four (4) Models 
Selected by the Stepwise Regression (15 Models) 
    The four-way effects of model 4 indicate relationships 
between four predictors: (i) setting high geyser temperatures 

; (ii) electricity consumption-don’t care ; (iii) day-
lighting , and (iv) energy-efficient buildings and lighting 
conserve earth resources .  
    The fifteen models were: (a) main effect , (b) main 
effect , (c) main effect , (d) main effect , (e)  
two-way effect , (f) two-way effect , (g) two-

way effect , (h) two-way effect ,(i) two-way 

effect , (j) two-way effect , (k)  three-way 

effect  ; (l) three-way effect , (m) three-

way effect , (n) three-way effect , and 

one four-way effect . 

     The final Adjusted  value accounts for over 71.0% 
variance in the total overall model developed. The result 
shows an additional 5.5% variance contribution over the 
model with three interacting predictors. The trend indicates 
that additional variance contributions from higher-order 
interacting predictor variables, continuously improved upon 
the quality of model fit in the study (71.0% model fit with 4 
predictors). To avoid repetition we discuss only the combined 
effects.  
     Thus, rising price and electricity consumption patterns 
depend on: high geyser temperature settings and electricity 
consumption-don’t care , high geyser temperature 

settings and day-lighting , high geyser temperature 

settings and energy-efficient buildings and lighting conserve 
earth resources , electricity consumption-don’t care and 

day-lighting , electricity consumption-don’t care and 

energy-efficient buildings and lighting conserve earth 
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resources , day-lighting with energy-efficient 

buildings and lighting conserve earth resources , high

geyser temperature settings, electricity consumption-don’t 
care and day-lighting , high geyser temperature 

settings, electricity consumption-don’t care and energy-
efficient buildings and lighting conserve earth resources

, high geyser temperature settings, day-lighting

and energy-efficient buildings and lighting conserve earth 
resources , electricity consumption-don’t care, 

day-lighting with energy-efficient buildings and lighting 
conserve earth resources , and high geyser 

temperature settings, electricity consumption-don’t care, day-
lighting with energy-efficient buildings and lighting conserve 
earth resources .        

     Nevertheless, the 15 jump discontinuities in Fig. 2 
corroborate the 15 four-way effects developed by the stepwise 
regression in Table 3. The same trend of reinforcements and 
validations are visible from the parameter estimates in Tables 
1, 3, and 4, which have all worked in tandem to strengthen the 
claims of very good model development having the requisite 
accuracy, precision, and reliability in this paper.   

3.8. Analysis of Variance (Table 4) 
TABLE IV 

ANALYSIS OF VARIANCE [1] 

Model Sum of 
Squares Df Mean 

Square F p-value

1 

Regression 12.554 1 12.554 23.707 .000(a)

Residual 16.416 31 .530 

Total 28.970 32 

2 

Regression 16.606 2 8.303 20.148 .000(b)

Residual 12.363 30 .412 

Total 28.970 32 

3 

Regression 19.906 3 6.635 21.232 .000I 

Residual 9.063 29 .313 

Total 28.970 32 

4 

Regression 21.626 4 5.407 20.615 .000(d)

Residual 7.343 28 .262 

Total 28.970 32 

Note 
a Predictors: (Constant), Setting geyser temperature at medium 
b Predictors: (Constant), Setting geyser temperature at medium, 
Electricity consumption-don’t care  
c Predictors: (Constant), Setting geyser temperature at medium, 
Electricity consumption-don’t care, Draw blinds over all windows in 
the evenings and open them during sunlight hours 

d Predictors: (Constant), Setting geyser temperature at medium, 
Electricity consumption-don’t care, Draw blinds over all windows in 
the evenings and open them during sunlight hours, Energy-efficient 
buildings and lighting conserve earth resources 

e Dependent Variable: Uncontrolled electricity use makes NamPower 
increase electricity cost. 

    ANOVA splits observed variance for significance and tests 
whether linear relationships exist between dependent and 
independent variables [49]. The error sum of residuals is a 
portion of total variability not explained by the model and 
nonlinear portions of the dependent variable 
[22],[23],[45],[49]. Although the F-test does not indicate 
which parameters is not zero, only that at least one of 

them is linearly related to the response variable. Further, the 
square root of  is the multiple association coefficient  
between observations yi and fitted values [50]. 
    The distribution F(1,32)has below 0.0001 probability of 
observing a value over 23.707 and strong evidence for the 
alternative hypothesis. Thus, indicates 43.3% variability 
and 65.8% moderately strong correlation explained by 
increasing price and electricity consumption patterns for high 
geyser temperature settings. Also, the distribution has 

below 0.0001 probability of observing a value over 20.148 and 
strong proof for the alternative hypothesis. Thus, suggests 
57.3% variability and 75.7% strong correlation explained by 
increasing price and electricity consumption patterns for the 
combined high geyser temperature settings and electricity 
consumption-don’t care variables. This was 14.0% better than 
the one variable linear model.     
    The distribution  has below 0.0001 probability of 

observing a value over 21.232and strong indication against the 
null hypothesis. Thus  implies 68.7% variability and 82.9% 
strong correlation explained by rising price and electricity 
consumption patterns for the combined high geyser 
temperature settings, electricity consumption-don’t care, and 
day-lighting variables. There was an 11.0% enhanced 
performance over the two variables model. 
    The distribution has below0.0001 probability of 

observing a value exceeding 20.615 and strong evidence 
against the null hypothesis. Thus, stipulates over 74.6% 
variability and 86.4% very strong correlation explained by 
increasing price and electricity consumption patterns for 
combined high geyser temperature settings, electricity 
consumption-don’t care, day-lighting with energy-efficient 
buildings and lighting conserve earth resources variables. 
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There was an extra 5.9% refinement over all the other models 
and especially that having only three variables.  

Fig.  9. Flowchart. 

IV. CONCLUSIONS

    Using blinds, shutters, or shades significantly reduced inlet 
heat through windows by 50.0% in summer and heat outlet by 
25.0% during winter, while day-lighting reduced electricity 
consumption by 25.0% as electricity prices were stable, even 
during heavy, persistent, and widespread electricity 
consumption. 
Both electricity price jump discontinuities and stepwise 
regression four-factor interaction analyses were 15 each, and 
the 0.5 Quetelet curve index at median percentile was the 
optimal solution to the empirical electricity consumption and 

net pricing distribution patterns problem. Furthermore, the 
Quetelet index is used to create awareness, education, and 
behavior modification especially among the average citizens 
on energy efficiency for affordable, reliable, and sustainable 
supply.   
     Logistic and cubic interaction cross-lines show males 
prefer using blinds over windows than females. Blinds and 
day-lighting were the least cost and optimal strategies for 
curtailing electricity consumption and latching price increases. 
Therefore, blinds and day-lighting could lead to optimal and 
more sustainable production, transmission, distribution, and 
utilization of electrical power, worldwide. 
Future research should consider actual electricity consumption 
measurements by electrical appliances category to ascertain 
quantifiable energy savings. Consequently, actual electricity 
consumption measurements of appliances in households and 
other consumers could be used to better understand the cause-
effect relationships and to determine specific energy savings 
from particular and specialized consumer categories.  

APPENDIX 

I. APPENDIX A
A.1. Analyses

This section contains the analyses of the study.

A.1.1. Normal probability-probability plot
Fig. 2 is a Normal P-P plot that compares the variable

empirical cumulative distribution function (ecdf) with the 
theoretical cumulative distribution function (tcdf) F(.). The 
ecdf Fn(x) is the nonmissing observation proportion equivalent 
to x, because . Furthermore, the n 

nonmissing values follow an increasing order [29]: 
        (A.1) 

The ordered value X(i) on the P-P plot in the X-coordinate 
is , and in the Y-coordinate is [i/n]. 

    Errors in the Normal P-P plot follow Gaussian normal 
distributions for parameters [27],[31]. 

Fig. 2 was used to present the results of discrete non-
uniform staircase jump functions. They lie along with 
electricity consumption against the net pricing distribution 
curve. Electricity switching and consumption patterns are 
random intervals (0, 1). Their time distances, t occur between 
0 and 1. The probability t is between t1 and t2 [34]: 

(A.2) 

The random variable X is 
(A.3) 

    The variable has double meanings: Experimentation 
outcome and also, corresponding value x(t) of random variable 
X. We show the ramp distribution function, F(x) of X [34]:
If , then  for every outcome: 

(A.4) 

Materials & 
Methods

• Residual statistics
• Stepwise regression
• Model summary
• Analysis of variance (ANOVA)
• Normal probability plots
• Analyses

Residual 
Statistics

•Residual statistics are leftover effects that test
skews, accuracy and adequacy of predictions
in data

Stepwise 
Regression

• Uses logistic regression to select best variables at
least error rates

• Sample size independent variable response is binary
(0 and 1)

Model 
Summary

• Comprises one-variable and three composite-
variable models

Analysis of 
Variance

• Confirms, validates, verifies and strengthens
estimates in Tables 1-3

Normal 
Probability 

Plots

• Are standard residuals that measure central
tendency, point-fit and subtle deviations from
normality

Analyses

• Normal probability plots test central tendency,
point-fit & deviations

• Durbin-Watson (DW) statistic tests autocorrelation
effects and goodness-of-fit in models

• ANOVA uses significance tests to determine linear
relationships between dependent and independent
variables
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If  , then for every  in interval 

Thus: 
  (A.5) 

If , then is the impossible event because 

 for every . Whence, 

                   (A.6) 

Established as, required. 
Percentile η of the random variable is the smallest 

number Xu because [34]: 
                                              (A.7) 

Hence, Xu is the inverse of the function , in 

interval , on the X-axis. We interchange the axes of 
F(x) to determine the graph of Xu. The median of X is the 
smallest number m as F(m) = 0.5, which is the 61st term of 
Fig.1, where m is the 0.5 percentile of X. 

The frequency interpretation of F(x) and Xu follows: we 
perform the experiment n	times and observe n values X1,…,Xn 
random variables X [34]. If these numbers on the x-axis form 
the staircase function Fn(x); the steps are located at points xi, 
and their height equals 1/n [29]. It starts at the smallest value 
xmin of xi and Fn(x) = 0 for x < xmin.  

The function Fn(x) is the empirical distribution of random 
variable X. For any specific X, the number of Fn(x) steps 
equals the number nx of xis smaller than X. Hence, 

. But,  for large 

, so we conclude that [34]: 

as           (A.8) 

    The empirical interpretation of the u percentile xu is the 
Quetelet curve. This derives from 𝑛𝑛 line segments of lengths  
xi, separated vertically in order of increasing length, by 
distance 1/n. It forms the staircase function with corners at the 
endpoints of those segments.  
   Empirically, xu equals the empirical distribution of Fn(x), if 
the axes were interchanged. We know that [34]: 

                                               (A.9) 

                                                             (A.10) 

                                   (A.11) 

                                     (A.12) 

     At a discontinuity, both the left and right-hand limits are 
different, and equation (A.12), becomes: 

                            (A.13) 

    The only discontinuities of a distribution function Fn(x) are 
jumps, which occur at points x0 where equation (A.13) is 
satisfied. Also, these points are listed as a sequence and can be 
counted [34]. The countable jump discontinuities [51] in 
Figure 2 were fifteen (15). 
    We deduce the staircase function using nonnegative real 
numbers corollary [34],[51]:  

As ,then   
, 

and therefore, 
        (A.14) 

F(x) is a staircase function having an infinite number of steps, 
where i-th step size equals , pi, . 
    If  is constant except for a finite number of jump 

discontinuities, then  is a discrete random variable. Such 
 is a discontinuity point, and from equation (A.13), 

becomes [34],[52]: 
                        (A.15) 

At discontinuity:  
               (A.16) 

At such discontinuity: 
               (A.17) 

    The following Durbin-Watson statistic confirms the quality 
of interpretations of the study. 
 
A.1.2. Durbin-Watson (DW) statistic 
    The 1.994 calculated Durbin-Watson (DW) statistic in 
model 4 (Table 3), was used for the model analyses [45]: 
    Decision rules for testing between the two hypotheses 
include: If D > dU, we conclude H0. If D > dL, we conclude Ha. 
If dL ≤ D ≤ dU, DW test is inconclusive: where D is the 
computed DW value, dU is the upper D limit, dL is the lower D 
limit, ρ is the autocorrelation parameter estimate, H0 is the null 
hypothesis, and Ha is the alternative hypothesis.   
    The DW statistic was evaluated using each residual value, et 
and its previous value, et-1 [53],[54]: 

                                             (A.18)             

Where T is the number of time-series observations. Also, 
small D values indicate that ρ > 0 especially because 
neighboring error terms et and et-1 have similar magnitudes, 
and are positively autocorrelated. If the residual differences et 
– et-1 are small when ρ > 0, we have a small D numerator and a 
small test statistic.  
    Using parameters: k = 4; n = df + 1(32 + 1) = 33 and α = 
0.05, where: df is the degree of freedom, 𝑛𝑛 is the number of 
Cronbach’s Reliability test predictors. 
Reject H0 if DW < dL                                                                                     (A.19) 
Fail to reject 𝐻𝐻! if (4 – DW) > dU                                                     (A.20)  
But, 4 – DW = 4 – 1.994 (= 2.006) > dU (= 1.73). 
    So, we fail to reject the Null hypothesis. Thus, the 
goodness-of-fit closely mimics the electricity consumption 
and pricing model by 71.0%. The model is significant at 
70.0% cut-off without autocorrelation effects or independent 
error assumption violations [54].  
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A.1.3. ANOVA
ANOVA partitions observed sample variance and the sum

of squares into the minimum number of different significance 
tests to determine linear relationships between dependent and 
independent variables. Imperfect models have unexplained 
observed total variability [45],[49]. 

Basic regression line concept [50]: Data = Fit + Residual 
 (A.21) 

The first term in equation (A.21) is total	𝑦𝑦 response variation, 
the second term is mean response variation, and the third term 
is the residual value.  
    Simplifying equation (A.21): 

      (A.22) 

Equation (A.22) becomes: SST = SSM + SSE, where SS is a 
sum of squares, T, M, and E, are total, model, and error 
symbols, respectively.  
    The sample square correlation is the ratio between the sum 
of squares and the total sum of squares: r2 = SSM/SST. Thus, r2 
is the variability fraction in the data explained by the 
regression model and sample variance [49],[50]: 

     (A.23) 

    MSM (model mean square) = 

. The linear regression model 

has one variable X. Mean square error: 

              (A.24) 

estimates variance about the population regression line  
-value tests hypothesis: against the 

null hypothesis: , parameter estimates and is 
Fisher-value). A test statistic is the ratio . When 

MSM is large, and the test ratio is large, there is evidence 
against the null hypothesis [23],[50]. 
    Multiple linear regressions use ANOVA computations to 
adjust the minimum number of explanatory variables in the 
model [50]. The test statistic has 

distribution. The null hypothesis states: 
, alternative hypothesis indicates at 

least one parameter , SSM/SST = R2, k = 0,1, …, q.  
However, 𝐹𝐹-test does not indicate which parameters  
are not zero. But, one parameter linearly depends on the 
response variable [50].                

      The ratio  is the squared multiple correlation 

coefficient. Its square root is the multiple correlation 
coefficient R, and tests the relationship between observations 
yi and the fitted values ÿi [50]. 

II. APPENDIX B

B. I.ELECTRICITY LOAD MANAGEMENT 
QUESTIONNAIRE (PUBLIC)
    Generally, electricity load management is the control of 
electricity consumption after the meter. This electricity 
consumption pattern involves several switching processes 
undertaken by the consumer. Consequently, it is to your 
advantage to be recognized as a resident in Namibia, which 
has an excellent reputation for quality housing development. 
Houses and building complexes are increasing in number, so 
also is the increasing need for satisfying electricity 
requirements.  
    In the light of the foregoing, therefore, we would like to 
please request you to give your candid opinion about efficient 
lighting and use of electricity in Buildings. We would also like 
you to please complete the following questionnaire with your 
permission, which we believe will not take more than fifteen 
minutes of your valuable time to answer.   

Thank you for your willingness to cooperate by answering this 
questionnaire. 

The questions follow: 
1. Name:  (Optional)……………………………………… 
2. Respondents Gender: Male   Female   Age: 18-25, 26-35,

36-45, 46-55, Above 55
3. Region:…………………………Occupation……………… 

E-mail ……………………Tel:………………………… 
1. The key to answering the questions that follow in this

questionnaire: SA-Strongly Agree A-Agree U-Not Sure DA-
Disagree SD-Strongly disagree

S/N Description SA A U DA SD 
 4 Electricity is meant to 

be enjoyed as long as I 
can pay for it 

5 I should always switch 
off lights that I am not 
using 

6 Control switches should 
be used on geysers, air 
conditioners, and other 
high energy consuming 
house appliances  

7 “Energy savers” reduce 
the cost of electricity 
consumed 

8 I feel I can live 
comfortably anywhere 
in Windhoek city 
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9 Energy savers are not 
bright enough and are 
very costly  

10 Reduced electricity 
consumption decreases 
money paid to 
Municipality or 
NAMPOWER 

11 The smaller amount of 
electricity I use helps 
NAMPOWER to 
regularly supply 
electricity to all 

12 I will only use efficient 
lighting bulbs or lamps 
if supplied by ECB or 
Municipality 

13 I can only live in some 
areas of Windhoek city 
if asked to do so by law 
or legislation 

14 I can live in some areas 
of Windhoek city if 
asked to do so by law or 
legislation 

15 I do not need to reduce 
the electricity consumed 
since I can pay the 
amount charged by 
Municipality or ECB or 
NAMPOWER 
If you have a washing 
machine with a dryer, 
please answer the 
following questions  

16 I prefer to use a dryer 
than the clothesline in 
drying my clothes 

17 Controlled electricity 
consumption reduces 
stress on NAMPOWER 
facilities 

18 Increased electricity 
consumption increases 
global warming 

19 I will like to buy 
energy-efficient 
equipment to reduce the 
amount of money spent 
on electricity bills 

20 Whatever affects 
NAMPOWER does not 
necessarily affect me 

21 Reducing electricity 
consumption reduces 
global warming 

22 Engineers are there to 
produce enough energy 
for me to enjoy 

23 More daylighting in 
buildings reduce 
electricity use  

24 NAMPOWER should 
be allowed to charge 
any amount for 
electricity supply to 
consumers 

25 Reducing wasted 
electricity is good for 
development 

26 Increasing electricity 
use does not affect the 
environment 

27 Energy-efficient 
buildings and lighting 
protect the globe and 
earth resources 

28 If electricity use is not 
controlled 
NAMPOWER will 
continue to increase the 
cost of electricity 

29 Efficient use of 
electricity will enable 
delay in building new 
power generation 
stations 

30 Building new electricity 
generation stations 
reduce global warming  

31 Allowing my television 
to be “on” without 
anyone watching it, is a 
good energy use method  
How much do you agree 
that any of the following 
actions can reduce your 
energy and electricity 
bills?  

32 I turn off radiators or 
close air ducts in rooms 
used for guests  

33 I lower the thermostat at 
night or any time the 
house is vacant 

34 I draw curtains over all 
windows in the 
evenings and open them 
during sunlight hours 

35 I lock all windows 
tightly during winter to 
cut down on heat loss 
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36 I insulate my house as 
much as I can to save 
energy and money 

     

37 Using blinds, shutters or 
shades can reduce the 
heat coming through 
windows by 50% during 
summer and reduce heat 
loss by 25% in cold 
months. These actions 
can save me money and 
reduce energy wastage  

     

38 Installing underlay or 
carpets over windows 
and doors can reduce 
about 75% sunlight heat 
from getting into the 
house 

     

39 I shut off my air 
conditioner whenever I 
leave home for more 
than one hour or two  

     

40 I keep air conditioners 
clean and do not block 
them with drapes or 
furniture 

     

41 I keep windows closed 
and only open doors 
when necessary if the 
air conditioner is 
operating  

     

42 I keep heat-producing 
appliances away from 
the thermostat so that it 
can give accurate 
readings 

     

43 All rooms air 
conditioners and outside 
compressors are 
protected from the sun 

     

44 I set the temperature of 
my water heater at a 
medium   

     

45 I turn off the heater if I 
go away for more than a 
few days in winter 

     

46 I should open 
refrigerator and freezer 
doors rarely, especially 
in hot weather 

     

47 I maintain proper 
temperature in 
refrigerator and freezer 
compartments 

     

48 I cook with as little 
water as possible 

     

49 I boil liquids quickly in 
tightly closed pans and 
save about 20% of 
energy, if otherwise 

     

50 I keep the bottom of my 
pans and pots shining to 
reduce energy wastage 

     

51 My pots and pans 
should be the same sizes 
as the sizes of burners I 
put them upon 

     

52 I use fluorescent lamps 
whenever practicable 

     

53 I install automatic 
switches in closets for 
the lights to go off 
whenever the door is 
closed 

     

54 I should not switch on 
fluorescent lamps within 
15 minutes of switching 
off  
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