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Abstract— Depending on the building architecture, usage, and
energy consumption patterns, over US$ 60 billion was expended
annually on electric lighting in commercial buildings. Therefore,
the paper focuses on the development of energy-efficient
buildings that minimize energy consumption through integrated
energy-efficient design processes. This can serve as a practical
guide to design buildings that can lower the energy requirements
and a strategy to reduce energy consumption. In this study,
predictive analytics were used to examine how blinds,
daylighting, and geyser temperature settings can reduce
electricity consumption and pricing patterns. A panel of expert
judges was used to validate the 5-point Likert scale residential
electricity load management questionnaire used to gather survey
data for the statistical analysis in a Windhoek suburb, Namibia.
The main goal of this study was to investigate how blinds, day-
lighting, and geyser temperature settings can be used to save
energy, reduce electricity consumption, and costs for sustainable
growth and development. The results from this investigation
indicate a perfect Gaussian histogram of 15 electricity price
jumps confirming 15 four-way stepwise interaction effects.
Optimal 0.5 Quetelet curve index offers average citizen energy
efficiency awareness, education, and behavior modification for
affordable electricity. Females generally set hotter geyser
temperatures and are higher energy consumers. Blinds reduce
electricity consumption by 50% in summer, 25% in winter, and
day-lighting by 25%. These were the least cost and optimal
solutions to the rising electricity consumption and pricing
patterns problem. Adopting the findings or the outcomes of this
paper could provide more optimal and sustainable energy
consumption thereby reducing pressure on the power grid.

Index Terms—Cost-saving, electricity consumption, energy-
saving, loss, waste minimization.
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I. INTRODUCTION

LECTRICITY supply shortages forced the Southern

Africa Development Community (SADC) utilities to

implement the demand-side programs [1-2] with load
shedding negatively impacted some countries socio-economic
development [3]. The Namibian power utility was able to
guarantee power till August of 2016 with the occurrence of
load shedding. Currently, Namibia generates 40% of its power
locally and the remaining 60% from Zambia and Zimbabwe
[4]. Namibia’s electricity demand doubled in 2012 because of
investment in the mining sector, and Eskom supplies over
80% of electricity at significantly increased prices [5]. Liquid
fuel constitutes over 63% of total net energy consumption [6]
while mining expansion leads to flat load curves [7].

Namibia’s electricity price and industrial tariffs are high
while South Africa rates are 20 to 25% lower [8]. Reference
[9] indicates electricity price increases were to modernize
aging infrastructure. The majority of the poor, unemployed,
and rural dwelling Namibians [10] cannot afford high
electricity prices. Namibia has a harsh weather, dry
environment, and acute water shortage problems. The Van
Eck dry-cooling power station in Windhoek was built to
reduce the water used for cooling [11]. Also, the cooling water
needed for the UK’s thermal electricity generation fleet is
equivalent to that used to cool the Van Eck power plant [12].

Load management (LM) is used to effectively optimize and
successfully operate any power utility. Load growth,
increasing generation capacity constraints, rising electricity
imports, and electricity demand beyond supply capacity in
Namibia and Southern African Development Community
(SADC), necessitated new generation capacities or LM to
supply the shortfall [11]. High energy intensity caused rising
electricity tariffs in Namibia [13]. Cost reflective electricity
tariffs were anticipated in 2011/2012, and a high supply
dependence on South Africa hampers the Namibian electricity
supply sector [14].

Blinds systems that comprise curtains, shutters, and shade
over windows and doors could reduce inlet heat by 50.0% in
summer and 25.0% in heat outlets in winter [11]. Day-lighting
is the regulated admission of natural light to reduce electric
lighting and save energy. Day-lighting controls provide
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commercial benefits in the United States (US) because around
75.0% of electricity is consumed in buildings nationwide.
Platinum-level rated tubular skylights use 25.0% less energy
than conventional lighting fixtures, which incorporates day-
lighting to achieve uniform light distribution while limiting
electric lighting. Furthermore, day-lighting provides a 24.0%
energy reduction in Los Angeles schools and reduces by a
third total building energy costs [15].

Total electric energy consumed in commercial buildings is
between 35.0% and 50.0%, while between 10.0% and 20.0%
of energy used for cooling buildings can be saved by
employing day-lighting. Thus, optimization of day-lighting
stratagems can reduce total energy costs by a third [16].
Depending on building architecture, usage, and energy
consumption patterns, day-lighting could reduce electric
lighting between 20.0% and 80.0% [17]. Employing day-
lighting at utility peak demand hours can reduce demand
charges. Turning off and dimming lights when not needed [1],
saves between 10.0% and 20.0% of energy used for cooling a
building. This also increases employees’ productivity and
improves the health of building occupants [18].

Further, above US$60 billion was expended annually for

electric lighting that constitutes over 37.0% average
commercial buildings’ total energy consumption [19]. Also,
over 64 billion square feet of commercial buildings floor space
was lit by fluorescent systems in which between 30.0% and
50.0% of the spaces can access daylight either by skylights or
through windows. Thus, millions of electric lighting fixtures
could be turned off for some periods of the day for energy-
savings advantages [20].
The objective of the study was to determine how blinds, day-
lighting, and geyser temperature settings can be used to save
energy, reduce electricity consumption, and costs for
sustainable growth and development.

Namibia was the test laboratory. The results, conclusions,
and recommendations of the study could be applicable

globally. This paper was organized into Introduction,
Materials and Methods, Results and Discussion, and
Conclusions.

II. MATERIALS AND METHODS

A panel of expert judges was used to validate the 5-point
Likert scale residential electricity load management
questionnaire used to gather survey data for analysis in
Windhoek City, Namibia. Over 300 self-report questionnaires
were randomly distributed in Windhoek, Namibia. The 127
returned questionnaires were analyzed using the statistical
package for social sciences (SPSS) version 11.5.Also, the 127
sample size sufficiency and adequacy criterion were proved by
[21].

The Enter, and Stepwise regression analyses, residuals,
analysis of variance (ANOVA), Durbin-Watson statistics, and
other methods determined the correctness, model fit,
autocorrelation, and overall quality model development [22-
23]. The study was limited to using blinds, day-lighting, and
geyser temperature settings variables to reduce electricity
consumption and pricing patterns employing interactional
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predictive statistics without considering actual electricity
consumption measurements of households or other consumers.
The analysis sub-section that applies more complex
computational and rational tools to study four tables and eight
graphs purely from statistical perspectives can be found in
Appendix A. Also, the questionnaire is shown in Appendix B.

2.1. Sample Size Determination
The Cochran formula was used to obtain the sample size, as:
Z’ pq
ny =21 (1)
e
1.962(0.5)0.5)

(0.05)

where Zis +1.96 (Z -score values), are probabilities or
likely outcomes, e is error (0.05), and study sample size was
approximately 385. Also, model diversity decreases with

increasing sample size, and a local optimum occurs between
300 and 350 samples [24].

=384.16 ~ 385

TABLEI
RESIDUAL STATISTICS

Minimum Maximum Mean Std. Deviation N

Predicted Value -1.8139 5.0000 1.7641 1.36459 46
Residual -2.6168 4.8139 2359 1.14898 46
Std. Predicted Value -3.977 3.185 -216 1434 46
Std. Residual . . . . 0

Note: Dependent Variable: Uncontrolled electricity use makes NamPower
increase electricity cost
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Fig. 1.Frequency Vs Regression of Standardized Residual Dependent
variable: Blinds lessen heat inlet by 50% in summer and 25% heat outlet in
winter [1].

2.2. Residual Statistics
Table 1 indicates the estimates of the disparity between
observed and predicted values in regression analyses. The
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leftover effects test skews, accuracy, and adequacy of
statistical predictions in the data. The histogram of
standardized residuals is shown in Fig. 1.

TABLEII
VARIABLES ENTERED/REMOVED [1]

independent response variable is binary (0 and 1). The four-
factor method interprets 15 interdependent interaction effects
using (2k _1), where  is variables number [24].

2.4. Model Summary
Table 3 has one-variable and three composite-variable
models. Standard error measures model precision using
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. Variables
Model Variables Entered Method . .
Removed dependent  variable  units. = The R*’change  measures
Stepwise (Criteria: Probability- ~ advancement in R?upon adding the second evaluator. F'
1 Setting geyser of-F-to- enter < 050, change predicts variables addition improvements while the p-
temperature at medium PrObabll)ltY'Of'F't‘" remove value of [ change is the alternative hypothesis acceptance
=.100)- probability. Statistical shifts exist between dependent and
. Stepwise (Criteria: independent variables [25].
EleCtrlClt}{ , Probability-of-F- to-enter P [25]
2 consumption-don’t < 050, Probability-of-F-to-
care remove > 100). 2.5. Analysis of Variance
Draw blind I Table 4 is the ANOVA that confirms, validate, verify, and
raw blinds Oover a. : : L 15 . .
windows in the S;elgwtlse ((tjme“a- Probability-  strengthens estimates in Tables 1-3. The sum of squares adds
3 evenings and open ot Jo-enier <.050, deviations of observations from their mean. The mean square
hem durine sunlicht Probability-of-F-to- remove N L. . s R
them g g ). is the variation in the model’s measurements. The model is
hours >.100 . . .
perfect if the model line passes through all the observations
Energy-efficient Stepwise (Criteria: [21].
4 buildings and lighting Probability-of-F- to-enter
conserve earth’s < .050, Probability-of-F-to- 1.00 —
resources remove > 100 )-
m’
Note: Dependent Variable: Uncontrolled electricity use makes NamPower 754
increase electricity cost. [ —
g =
TABLE III o
MODEL SUMMARY [1] 1= o
=3
O ]
©
Ch = g
S ap‘g'e Durbin-Watson @
tatistics a
Std. *  0.00 ——
- w ¥ .
R Adjust  Error of O‘W Py 0 78 1.00
Model R Square edR the F p-
quar Square  Estimat Change value
e R Square df a0 F Observed CumProb
Change 1 Chan
& Fig. 2. Expected cumulative probability Vs Observed Cumulative probability
[1].
1 658a) 433 415 72770 433 23707 1 31 .000
2 757(b) 573 545 64196 .140 9833 1 30  .004 2.6. Normal Probability Plots
3 8291 687 655 55904 114 10560 129 .003 Fig. 2was used to present the probability-probability plots of
4 8o4(d) 747 710 51212 .059 6557 1 28 016 1994 standardized residuals. The 0.05 statistical power [26]
measures central tendency, point-fit, subtle deviations from
Note

normality, and the Gaussian determines the characteristic
behavior of increasing electricity prices and consumption
patterns.

Table 4 was used to present the ANOVA and we determine
values of R?and R, for each composite model 1-4.
Model 1: From equation (A.22), the sample square correlation

a Predictors: (Constant), Setting geyser temperature at medium

b Predictors: (Constant), Setting geyser temperature at medium, Electricity consumption-don’t
care

¢ Predictors: (Constant), Setting geyser temperature at medium, Electricity consumption-don’t
care, Draw blinds over all windows in the evenings and open them during sunlight hours

d Predictors: (Constant), Setting geyser temperature at medium, Electricity consumption-don’t
care, Draw blinds over all windows in the evenings and open them during sunlight hours,

Energy-efficient buildings and lighting conserve earth resources (R12 )was 04333, and the sample model correlation R; was

0.6583.  The F (1,32)  distribution  was  below
0.0001probability of observing the values over 23.707 and

2.3. Stepwise Regression

Table 2 was used to present four overall best models.
Logistic regression is a stepwise method for selecting the best
variables at the lowest error rates. The sample size

shows strong evidence against the null hypothesis. Thus, ( Rlz)
indicates 43.3% wvariability and 65.8% moderately strong
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correlation for increasing the price and electricity consumption
with hotter geyser temperature settings.

Model 2: From equation (A.22), the sample square
correlation( R22)was 0.5732, and the sample model correlation

R>was 0.7571. The F (2,30)distribution was below 0.0001
probability of observing valuesover 20.148 and indicates
strong evidence for the alternative hypothesis. Thus, R?

indicates a 57.3% variability and 75.7% strong correlation for
increasing the price and electricity consumption from
combined hotter geyser temperature settings and electricity
consumption-don’t care variables. Thus, model 2 is an
improvement over the one variable model.

Model 3: From equation (A.22), the sample square
correlation( R;)as 0.6871, and the sample model

correlationRswas 0.8289. The [F (3,29) distribution was
below 0.0001probability of observing values over 21.232 and
strong evidence against the null hypothesis. Thus, R?suggests

a 68.7% variability and 82.9% strong correlation at increasing
the price and electricity consumption from combined hotter
geyser temperature settings, electricity consumption-don’t
care, and day-lighting variables. There was an improvement
over the model having two variables.

Model 4: From equation (A.22), the sample square
correlation ( Rf) was 0.7465, and the sample model

correlation R, Was 0.8640. The F (4,28) distribution was

below 0.0001probability of observing values over 20.615 and
strong evidence for the alternative hypothesis. Thus, R

indicates 74.6% variability and 86.4% very strong correlation
between increasing the price and electricity consumption
explained by hotter geyser temperature settings, electricity
consumption-don’t care, day-lighting and, energy-efficient
buildings and lighting conserve earth resources variables.
Thus, model 4 was an improvement over all the other three
models.

III. RESULTS AND DISCUSSION

The results are tabulated in Tables 1-4 and Figures 1-8.
Figure 9 is the methodology flowchart. Table 1 shows residual
statistics and Table 2 indicates stepwise regression results.
Table 3 is a model summary for statistics ranging from the
coefficient of determination to DW statistic. Table 4 is
ANOVA for developed models.

3.1. Histogram of Standardized Residuals

Fig. 1 is a histogram of standardized residuals assessing
normality [27]. It cannot detect subtle deviations but tests for
normality [28]. The X-axis is Observed Cumulative
Probability percentiles in the residuals frequency distribution.
The Y-axis is a Standardized Residual (Z-score) for
computing the Cumulative Density from the Normal
distribution. The normally distributed residuals are on the
diagonal of the identity line. Results show 1.41 standard
deviations, 0 mean, 0 median, 121 nonmissing samples, and
61 point of 0 value were the mean and median of the perfect
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histogram.

3.2. Normal Probability-Probability Plot

Fig. 2 compares the empirical cumulative distribution function
(ecdf) of the variable with the defined theoretical cumulative
distribution function (tcdf). The proportion of the nonmissing
ecdf observations below their heights [29] are sorted
according to increasing order. They determine the deviations
from normality in the distribution centre, whether Gaussian or
not [28]. Linear data distribution point patterns on the P-P plot
through the origin are proof that measurements are normally
distributed [30]. Therefore, the unit slope in Fig. 2, in square
format, is normally distributed [29].

Errors in the Normal P-P plot follow Gaussian normal
distributions for parameters [31]. Results in Fig. 2 are non-
uniform discrete staircase jump function discontinuities. They
are random outcomes in the interval (0, 1) of time distances ¢ .
It is a convex set with one minimum point [32-33].

Interchanging axes of f ( x), determine the graph of x , the

median of X is the smallest number m on the 61* term in Fig. 1
(m is 0.5 percentile of x).Empirical interpretation of u
percentile . is the Quetelet curve [34-35]. This optimization

point was n line segments of lengths . , separated vertically in

order of increasing lengths. Thus, jump distribution functions
occur at 15 points as a countable sequence in Fig. 2.

3.3. Residual Statistics

Table 1 is residual statistics that test remaining variability
and the disparity between observed dependent and predicted
values in regression analysis. They show the predictions
accuracy of models, assumptions, heteroscedasticity, and
dispersion in data [36]. Residuals measure the risk premium
for operating power systems that affect increasing electricity
consumption and pricing patterns [30]. The p-value below
0.0005 suggests perfect model development of statistical
significance.

3.4. Variables Entered/Removed Based on Stepwise
Regression Analyses

The stepwise method fits models automatically by selecting
predictive variables using two significance levels for
removal/addition of variable [37]. The probability for adding
variables is lower than for removing variables based on -
statistics [38].

Table 2Stepwise criteria have: Probability-of-F-to-enter below
0‘05(3'050) and Probability-of-F-to-remove  variables

(2 '100) exceeded 0.10. The model variables were removed in

one step: set geyser temperature at medium, -electricity
consumption-don’t care, daylighting, and energy-efficient
buildings and lighting conserve earth resources.

Setting high geyser temperatures increases electricity
consumption and drives electricity prices higher. Not drawing
blinds over windows causes higher inlet heat in summer and
larger heat outlets in winter. Both factors drive electricity
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consumption and prices higher for space cooling/heating as
shown by the steps/jumps in Fig. 2.

Don’t care electricity consumption accentuates higher
electricity consumption patterns, higher bills, creates hardship
and a vicious spiral for the majority of the population living
below the poverty trap [35,39].

However, stepwise analyses significantly strengthen the most
economical overall model that contains important variables
[40], having minimum predictors [24].

3.5. Model Summary

r measures the relationship between observed and
predicted values of the criterion variable. R? tests the criterion
variable variance and predictors’ goodness-of-fit. Favorable
model outcomes could be overestimated. Adjusted R? is the
most useful model success indicator [23].

Both R?and standard error ( g ) measure goodness-of-fit and
how the model best fits sample data. ¢ measures the model
precision of the absolute data points spread around the
regression line. ¢ is a rough estimate of 95% prediction
interval extending between /7 standard errors of the fitted
regression line [25].

The R? values are relative measures of higher variance
percentages, while larger R?> indicates closely fitted data
points. R? is valid for linear models [25], but independent
variables collectively explain the variance of the dependent
variable. R>measures the relationship strength between the
model and the dependent variable on a 0-100% scale. It tests
the data scatter points about the fitted regression line [41]. It
also contains the precise number of independent variables in
regression models [42]. R?> change enhances R* by adding a
second evaluator. F-test determines the R? change, while
significant [ -change suggests that the added variables
remarkably enhanced the prediction [43].

The limitations of R? include prescription bias when the
linear model was underspecified. Further, significant
independent variables, polynomials, or interaction terms are
present [41].

A. 3.5.1. Model 1 Setting Geyser Temperatures at Medium
The 65.8% correlation and 43.3% variance accounted for in
model 1, occurred between setting geyser temperatures at
medium against increasing electricity consumption and pricing
patterns. Overall model fit improved 41.5%, 0.73% standard
distance between observation and regression lines, 95% data
points are between the regression line and +/ 1.5% of geyser

temperature settings. Hence, Model 1 is statistically significant
(Ffy 3 =23.707 ; p < 0.0005)-

3.5.2. Model 2 Combined Effects of Geyser Temperature
Settings and Electricity Consumption-Don’t Care

Over 75.7% correlation and above 57.3% variance were
allowed in Model 2. Overall model fit improved 54.5%, 0.64%
standard distance between observation and regression lines,
95% data points of model lie between the regression line and

7/ 1.3% of combined effects of geyser temperature settings

and electricity consumption—don’t care. Model 2 improved
14.0% by adding a second predictor. It was statistically

significant (F(LSO) =9.833; p < 0.0004)-

3.5.3. Model 3 Combined Effects of Geyser Temperature
Settings, Electricity Consumption-Don’t Care and Day-
lighting

Above 82.9% correlation and over 68.7% variance were
allowed in Model 3. About 65.5% overall model fit
sufficiency, 0.56% standard distance between observation and
regression lines, 95% model precision of data points lie
between the regression line and +/1.12% of geyser

temperature settings, electricity consumption-don’t care, and
day-lighting. An incremental 11.4% model improvement was
achieved by adding the third predictor. Model 3 was

statistically significant ( F(1,29) =10.560 ; p < 0.0003) -

3.5.4. Model 4 Combined Effects of Geyser Temperature
Settings, Electricity Consumption-Don’t Care, Day-lighting,
and Energy-Efficient Buildings and Lighting Conserve Earth
Resources

About 86.4% correlation and over 74.7% variance were
allowed in Model 4. Above all, the 71.0% overall model
goodness-of-fit, 0.51% standard distance of observation and
regression lines, occurred while 95% of the model data
precision points lie between the regression line and +/ 1.0%

of the geyser temperature settings; electricity consumption-
don’t care; day-lighting and energy-efficient buildings and
lighting conserve earth resources. Model 4 achieved a 5.9%
incremental improvement by adding four predictors and was

statistically significant ( F(ng) =6.557 ; p<0.016)-

3.6. The Durbin-Watson Statistic

Overall, the 71.0% model goodness-of-fit mirrors
increasing electricity consumption and pricing patterns.
Therefore, the researchers accept the null hypothesis of the
DW statistic because the effective DW (2.006) was higher
than the upper limit of the DW statistics (d, =1.73)- We also

conclude that there were no autocorrelation effects in the
model. This was so because the determined DW (1.994) was
close to the ideal DW statistic (Since 4 —1.994 = 2.006 ~ 2.0 ).
Therefore, errors in the model were uncorrelated, without
autocorrelation effects, and without violating the independent
errors assumption of the Durbin-Watson statistic [44-45]. The
two (2) DW statistics suggests a very excellent model and also
strengthens the significance, quality, and adequacy of this and
the other four (4) developed models, in this paper.

3.7. Multivariate Interaction Effects

Interaction effects occur whenever one variable effect
depends on another and affect statistical design outcomes.
They show how a third variable influences links between
dependent and independent variables [46]. The p-values are
the statistical significance of fitted interaction plots. Several
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lines indicate the values of the second independent variable
[46], while the parallel lines show no interaction effects.
Different slopes suggest interaction effects. The cross-lines on
the graph indicate that the interaction effects have significant
p-values and so, the main effects are interpreted [46].

Logistic regression models use stepwise to select the best
model, give the lowest error rates, broad usage, and sample
size independence. The model diversity evaluates the model
quality for reproducibility and each interaction effect indicates
the compound power index [24].

3.7.1. Model 1a Setting Geyser Temperatures at Medium-
Main Interaction Effect (A)

Model la: This factor is highly significant in electricity load
management because the specific heat capacity of water is
high, and setting geyser temperature at medium reduces
energy wastage [1,47].

Further, the Y-axes for Figs. 3-8 are response figures on a 5-
point Likert scale. The 9-point Likert scale on Y-axis for Fig.
5 arose because 9 was used to represent missing responses on
the questionnaire (attached). The X-axes for Figs. 3-8 were
supposed to have 1 and 2 only because each represents male
and female. The fractional or decimal values on X-axis arose
because of the limitations and drawing errors of automatically
using the preset scaling graph algorithms in SPSS software.
Therefore, decimal figures on the X-axes for Figs. 3-8 should
be ignored as machine errors because males and females are
binary and there are no fractions in human beings.

o Observed

o Linear

o Logarithmic

5 0 Inverse

O Quadrstic
44

Cubic
34 Compound

T Pow er

24 - oS

o Growth

Exponential

0 o Logistic
10 12 14 18 18 20 22

Respondents’ gender

Fig. 3. Setting geyser temperatures at medium against respondents gender [1].

Fig. 3 suggests an H-pole with parallel decreasing logistic
and cubic regression cross-lines. The graph shows females set
higher geyser temperatures, cause higher electricity
consumption and higher prices. The growth regression cross-
line plateaued [46] at level four (4), which means hotter geyser
temperatures settings by both genders lead to higher electricity
consumption, higher electricity prices, and higher utility
penalty payments. However, the vertical parallel lines on
points 1 and 2 of the X-axis indicate there were no interaction
effects [24] between the gender and everyone (male or female)
was at liberty to set hotter geyser temperatures.
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3.7.2. Model 1b Electricity Consumption-Don’t Care-Main
Interaction Effect (B)

Model 1b: works directly into the economic objectives of
utility and could negatively impact electricity supply
efficiency and usage, electricity bills, and loss reduction. This
behavioral attitude in electricity consumption stresses utility
facilities, provides a strong economic basis for electricity price
increases, which supports utility production inefficiencies and
could jeopardize the public good, in terms of energy efficiency

[1].

o Observed

o Linear

o Logarithmic

S« O Inverse

O Quadr stic

Cubic
2d Compound

Pow er

24 oS

o Growth

o Exponentisl

0 o Logistic

Respondents’ gender
Fig. 4. Electricity consumption-don’t care Vs Respondents gender [1].

Fig. 4 indicates an eta-shaped or table-like plateau of growth
regression interaction cross-lines. It has high and slowly rising
logistic and cubic regression gradients by gender. The graph
shows the highest rates of electricity consumption and penalty
payments by both genders. The interaction cross-lines of
logistic and cubic regressions, as well as the entitled electricity
consumers groups, were gender independent [46]. This was so
because the vertical parallel lines on points 1 and 2 on the X-
axis (respondents’ gender) indicate no interaction effects
across gender in electricity consumption. Further, the figures
on Y-Axis indicate (1-strongly agree, 2-agree, 3-not sure, 4-
disagree, and 5-strongly disagree) the strength of respondents
agreeing with the propositions on the questionnaire.

3.7.3. Model 1c Day-lighting-Main Interaction Effect (C)

Model 1c conserves heat, lowers energy or electricity
consumption, and electricity are bills paid for home heating by
natural convection. These reduce wasted energy, greenhouse
gases (GHG) emissions, fuel burnt for electricity production,
and avoided production [1,47], defer high-cost power plants,
transmission, and distribution network systems [30].

Fig. 5 suggests indecision in using day-lighting to reduce
electricity consumption as shown by the horizontal crossbar of
H-pole growth regression cross-lines. Day-lighting practice
hovers between strongly agree and agree for logistic and cubic
regression interaction patterns. Therefore, day-lighting
indicates the optimal solutions to reducing -electricity
consumption and pricing patterns problem by gender, because
there were no gender interactions in using it to reduce
consumption and costs. Additionally, [15] indicates day-
lighting reduces electricity consumption by 25%.



SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

o Observed

o Linear

o Logarithmic

0 Inverse

O Quadrstic

&d Cubic

ad

24 o Growth

= Exponential

0 o Logistic

10 12 14 16 18 20 22

Respondents’ gender
Fig. 5. Draw/open blinds over windows (Day-lighting) Vs Respondents’
gender [1].

Therefore, day-lighting is one of the best strategies for
keeping electricity consumption and price increases to the
barest minimum. It could be pivotal in any electricity load
management model for securing optimal and sustainable
production, transmission, distribution, and utilization of

electrical power, globally.

3.7.4. Model 1d Energy-Efficient Buildings and Lighting
Conserve Earth Resources-Main Interaction Effect (D)

Model 1d: directly relates the stress on utility facilities with
power consumed always. Electricity consumers’ gender,
economic power, and age determine preferences in an
electrical appliance used and times of use for households,
lighting, or electric motors in commerce and industry. The
quantity and cost of electricity used depend on the application
[1], which affects electricity pricing [30] and stresses placed
on utility facilities [47].

Electricity production technologies use coal, natural gas,
diesel, the nuclear, hydro, wind, and solar while increasing
electricity consumption worldwide increases global warming.
Utilities unable to cope with overloads lead to power systems
failures,  instability,  unreliable  performance, and
nonconformance with regulatory requirements [1].

o Observed

o Linesr

o Logarithmic

54 O Inverse

0 Quadrstic
Cubic
2 Compound

Pow er

o$S

o Growth

o Exponential

0 o Logistic
10 12 14 18 18 20 22

Respondents’ gender
Fig. 6. Energy-efficient buildings and lighting conserve earth resources [1].

Fig. 6 suggests wheel and axle-type interaction plots for
logistic, cubic, and growth regressions. Male electricity

consumers prefer energy-efficient buildings and lighting.
Although the spread is gender independent, females have a
larger scatter. Electricity consumption patterns were equal at
mid-points for cubic and growth regressions (1.5) and logistic
and growth regressions were close to 1.1. Thus, males were
more favorably disposed to energy-efficient building and
lighting principles and practices.

3.7.5. Using Blinds Reduce Heat Inlet through Windows by
50% in Summer and Heat Outlet by 25% in the Winter-Main
Interaction Effect

o QObserved

o Linear

o Logarithmic

5« O Inverse

O Quadrstic
Cubic

34 Compound

© Growth

Exponential

0 o Logistic
10 12 14 18 18 20 22

Respondents gender
Fig. 7. Using blinds reduce heat inlet through windows by 50% in summer
and heat outlet by 25% in winter against Respondents’ gender [1].

Fig. 7 is an H-pole growth regression with almost parallel
logistic and cubic interaction cross-lines. Blinds reduce inlet
heat through windows by 50% in summer while not running
air conditioners or other cooling devices. It reduces heat
exchanges between warmer inside ambience with much colder
outside temperatures by 25% in winter, while heaters are on
[1]. This reduces electricity consumption for room and space
heating/cooling. Electricity prices were stable, even during
heavy, persistent, and universal electricity consumption. The
plateau [46] between the H-pole cross-line indicates virtually
no increases in electricity consumption or prices and no
interaction effects across gender.

However, both the logistic and cubic interaction cross-lines
show increasing electricity consumption and pricing patterns if
those using blinds were male.

3.7.6. Uncontrolled Electricity Use Makes NamPower
Increase Electricity cost-Main Interaction Effect

Fig. 8 is a J-shaped interaction plot of growth, logistic and
cubic regression cross-lines. The parallel lines [46] indicate no
interaction effects across gender that controls rising electricity
consumption and cost patterns, but high -electricity
consumption and pricing patterns are prevalent if consumers
are female. However, the rate of increase is much higher for
the growth regression line than either the logistic or cubic
regression interaction cross-lines. Thus, costs are managed by
reducing consumption, peak load management, peer
comparison, and energy efficiency identification projects,
utility invoice management that optimize facility, and
involvement in rate-making processes [48].
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Fig. 8. Without electricity use control NamPower will increase cost Vs
Respondents gender [1].

3.7.7. One-Way Effects for each of the Four (4) Main
Interaction Effects- 4 B C, D

The model of each main effect predicts how their combined
effects encourage rising electricity consumption and pricing
patterns. Adjusted R? value indicates the quality of the model

and accounts for over 41.5% variance. Thus, rising prices and
electricity consumption depend on geyser temperature settings

(A), electricity consumption-don’t care (B), Day-lighting
(C), and energy-efficient buildings and lighting conserve

earth resources (D)-

3.7.8. Two-Way Eﬁ’ects(A, B,AxB)
Model 2 is the interaction and predictive relationships of
setting high geyser temperatures and electricity consumption-

don’t care. Adjusted R?> value accounts for over 54.5%
variance in total overall model development. The three major

relationships were: (a) main effect (4), (b) main effect (B),
and (c) single two-way interaction of items A4 and B( Ax B)
.The additional 13% variance was a combination of items A
and B, each acting alone and in concert ( Ax B) [1,22-23]. To
avoid repetition, the single two-way interaction ( Ax B)is

discussed. Hence, rising price and electricity consumption
patterns depend on the combined effects of hotter geyser
temperature settings and electricity consumption—don’t care

(AxB):-

3.7.9. Three-Way Effects of Combining the First Three (3)
Main Effects (Seven Model Effects in All)

Model 3 is the interaction and predictive relationships among
three variables: (i) setting high geyser temperatures (4), (ii)

electricity consumption-don’t care ( B), and (iii) day-lighting
(©)-
There were seven models: (a) main effect (4), (b) main

effect (B), (c) main effect (C), (d) two-way effect( Ax B),

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

(e) two-way effect ( A><C)a (f) two-way effect ( BxC)a and
(g) single three-way effect( Ax Bx C).

Adjusted R?value accounts for over 65.5% variance in total
overall model development. This suggests an additional 11.0%
variance above the model with only two interacting predictors

[1].

To avoid repetition, only the three two-way effects and one
three-way effect are discussed. Therefore, rising price and
electricity consumption patterns depend on the combined
effects of high geyser temperature settings and electricity

consumption-don’t care ( Ax B), high geyser temperature
settings, and day-lighting ( Ax C) , electricity consumption-
don’t care and day-lighting ( Bx C) and high geyser
temperature settings, electricity consumption-don’t care and
day-lighting ( Ax Bx C).

3.7.10. Four-Way Effects Combine the Four (4) Models

Selected by the Stepwise Regression (15 Models)

The four-way effects of model 4 indicate relationships
between four predictors: (i) setting high geyser temperatures
(A); (ii) electricity consumption-don’t care (B); (iii) day-
lighting ('), and (iv) energy-efficient buildings and lighting
conserve earth resources (D).

The fifteen models were: (a) main effect (4), (b) main
effect (B), (¢) main effect (), (d) main effect (D), (¢)
two-way effect ( Ax B), () two-way effect ( Ax C), (g) two-
way effect ( Ax D), (h) two-way effect ( BxC)»(i) two-way

effect( B x D), (j) two-way effect(cX D), (k) three-way

effect ( Ax Bx D); (1) three-way effect( Ax Bx C), (m) three-
way effect ( BxCx D), (n) three-way effect ( AxCx D)» and
one four-way effect ( Ax BxCx D)'

The final Adjusted R> value accounts for over 71.0%
variance in the total overall model developed. The result
shows an additional 5.5% variance contribution over the
model with three interacting predictors. The trend indicates
that additional variance contributions from higher-order
interacting predictor variables, continuously improved upon
the quality of model fit in the study (71.0% model fit with 4
predictors). To avoid repetition we discuss only the combined
effects.

Thus, rising price and electricity consumption patterns
depend on: high geyser temperature settings and electricity

consumption-don’t care ( Ax B), high geyser temperature
settings and day-lighting( AXC)» high geyser temperature
settings and energy-efficient buildings and lighting conserve
earth resources ( Ax D)> electricity consumption-don’t care and
day-lighting( Bx C)» electricity consumption-don’t care and

energy-efficient buildings and lighting conserve earth
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resources ( Bx D), day-lighting  with  energy-efficient

buildings and lighting conserve earth resources (C>< D), high

geyser temperature settings, electricity consumption-don’t
care and day-lighting ( Ax BXC)> high geyser temperature

settings, electricity consumption-don’t care and energy-
efficient buildings and lighting conserve earth resources

( Ax Bx D), high geyser temperature settings, day-lighting

and energy-efficient buildings and lighting conserve earth
resources( AxCx D), electricity consumption-don’t care,

day-lighting with energy-efficient buildings and lighting
conserve earth resources ( BxCx D), and high geyser

temperature settings, electricity consumption-don’t care, day-
lighting with energy-efficient buildings and lighting conserve

earth resources ( AxBxCx D)-

Nevertheless, the 15 jump discontinuities in Fig. 2
corroborate the 15 four-way effects developed by the stepwise
regression in Table 3. The same trend of reinforcements and
validations are visible from the parameter estimates in Tables
1, 3, and 4, which have all worked in tandem to strengthen the
claims of very good model development having the requisite
accuracy, precision, and reliability in this paper.

3.8. Analysis of Variance (Table 4)

TABLE IV
ANALYSIS OF VARIANCE [1]

Sum of Mean

Model Squares Square p-value

Regression 12.554 1 12.554 23.707 .000(a)
1 Residual 16.416 31 .530

Total 28.970 32

Regression 16.606 2 8303 20.148 .000(b)
2 Residual 12.363 30 412

Total 28.970 32

Regression 19.906 3 6.635 21.232 .000I
3 Residual 9.063 29 313

Total 28.970 32

Regression 21.626 4 5407 20.615 .000(d)
4 Residual 7.343 28 262

Total 28.970 32

Note

a Predictors: (Constant), Setting geyser temperature at medium

b Predictors: (Constant), Setting geyser temperature at medium,
Electricity consumption-don’t care

¢ Predictors: (Constant), Setting geyser temperature at medium,
Electricity consumption-don’t care, Draw blinds over all windows in
the evenings and open them during sunlight hours

d Predictors: (Constant), Setting geyser temperature at medium,
Electricity consumption-don’t care, Draw blinds over all windows in
the evenings and open them during sunlight hours, Energy-efficient
buildings and lighting conserve earth resources

e Dependent Variable: Uncontrolled electricity use makes NamPower
increase electricity cost.

ANOVA splits observed variance for significance and tests
whether linear relationships exist between dependent and
independent variables [49]. The error sum of residuals is a
portion of total variability not explained by the model and
nonlinear  portions of the  dependent  variable
[22],[23],[45],[49]. Although the F-test does not indicate
which parameters ( ﬂk)is not zero, only that at least one of

them is linearly related to the response variable. Further, the
square root of R? is the multiple association coefficient R
between observations yi and fitted values )j [50].

i

The distribution F(1,32)has below 0.0001 probability of
observing a value over 23.707 and strong evidence for the

alternative hypothesis. Thus, R12 indicates 43.3% variability

and 65.8% moderately strong correlation explained by
increasing price and electricity consumption patterns for high

geyser temperature settings. Also, the distribution F(2 30)has

below 0.0001 probability of observing a value over 20.148 and
strong proof for the alternative hypothesis. Thus, R?suggests

57.3% variability and 75.7% strong correlation explained by
increasing price and electricity consumption patterns for the
combined high geyser temperature settings and electricity
consumption-don’t care variables. This was 14.0% better than
the one variable linear model.

The distribution 1[7(3 ) has below 0.0001 probability of

observing a value over 21.232and strong indication against the
null hypothesis. Thus R’ implies 68.7% variability and 82.9%

strong correlation explained by rising price and electricity
consumption patterns for the combined high geyser
temperature settings, electricity consumption-don’t care, and
day-lighting variables. There was an 11.0% enhanced
performance over the two variables model.

The distribution F(4 % has below0.0001 probability of

observing a value exceeding 20.615 and strong evidence
against the null hypothesis. Thus, R stipulates over 74.6%

variability and 86.4% very strong correlation explained by
increasing price and electricity consumption patterns for
combined high geyser temperature settings, -electricity
consumption-don’t care, day-lighting with energy-efficient
buildings and lighting conserve earth resources variables.
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There was an extra 5.9% refinement over all the other models
and especially that having only three variables.

* Residual statistics )
« Stepwise regression

* Model summary

* Analysis of variance (ANOVA)

* Normal probability plots

* Analyses J

Materials &
Methods

N
*Residual statistics are leftover effects that test

) skews, accuracy and adequacy of predictions
ISl i data

Statistics )

« Uses logistic regression to select best variables at
least error rates

« Sample size independent variable response is binary
(0 and 1)

N
» Comprises one-variable and three composite-
Model variable models
Summary )
~N
« Confirms, validates, verifies and strengthens
Analysis of estimates in Tables 1-3
Variance )
~

* Are standard residuals that measure central
tendency, point-fit and subtle deviations from
normality

Probability
Plots J

» Normal probability plots test central tendency, \
point-fit & deviations

* Durbin-Watson (DW) statistic tests autocorrelation
effects and goodness-of-fit in models

* ANOVA uses significance tests to determine linear

relationships between dependent and independent
variables )

Fig. 9. Flowchart.

IV. CONCLUSIONS

Using blinds, shutters, or shades significantly reduced inlet
heat through windows by 50.0% in summer and heat outlet by
25.0% during winter, while day-lighting reduced electricity
consumption by 25.0% as electricity prices were stable, even
during heavy, persistent, and widespread electricity
consumption.

Both electricity price jump discontinuities and stepwise
regression four-factor interaction analyses were 15 each, and
the 0.5 Quetelet curve index at median percentile was the
optimal solution to the empirical electricity consumption and
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net pricing distribution patterns problem. Furthermore, the
Quetelet index is used to create awareness, education, and
behavior modification especially among the average citizens
on energy efficiency for affordable, reliable, and sustainable
supply.

Logistic and cubic interaction cross-lines show males

prefer using blinds over windows than females. Blinds and
day-lighting were the least cost and optimal strategies for
curtailing electricity consumption and latching price increases.
Therefore, blinds and day-lighting could lead to optimal and
more sustainable production, transmission, distribution, and
utilization of electrical power, worldwide.
Future research should consider actual electricity consumption
measurements by electrical appliances category to ascertain
quantifiable energy savings. Consequently, actual electricity
consumption measurements of appliances in households and
other consumers could be used to better understand the cause-
effect relationships and to determine specific energy savings
from particular and specialized consumer categories.

APPENDIX

1. APPENDIX A

A.1. Analyses
This section contains the analyses of the study.

A.1.1. Normal probability-probability plot

Fig. 2 is a Normal P-P plot that compares the variable
empirical cumulative distribution function (ecdf) with the
theoretical cumulative distribution function (tcdf) F(.). The
ecdf Fn(x) is the nonmissing observation proportion equivalent

to x, because . Furthermore, the =
Xa) < X2) < X

nonmissing values follow an increasing order [29]:

Al
Xy S Xy S X, (A.D)

The ;” ordered value X on the P-P plot in the X-coordinate
is z ( X, ) , and in the Y-coordinate is [i/n].

Errors in the Normal P-P plot follow Gaussian normal
distributions for parameters [27],[31].

Fig. 2 was used to present the results of discrete non-
uniform staircase jump functions. They lie along with
electricity consumption against the net pricing distribution
curve. Electricity switching and consumption patterns are
random intervals (0, 1). Their time distances, ¢ occur between
0 and 1. The probability ¢ is between t1 and t2 [34]:

P{t,<t<t,}=t,—1, (A2)

The random variable X is

x(t)=r...0<r<1 (A3)
The variable has double meanings: Experimentation

outcome and also, corresponding value x(t) of random variable
X. We show the ramp distribution function, F(x) of X [34]:
If x> 1,then x( t) <  for every outcome:

F(x)=P{X <x}=P{0<t<1}=P(S)=1.x>1
(A4)
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If o<x<1,then X(z) < xfor every ¢ in interval (O,x)
Thus:

F(x)=P{X<x}=P{0<t<x}=x.0<x<1 (AS)
If x<0, then { X < x} is the impossible event because
X(1)=0 for every ¢. Whence,

F(x)=P{X<x}=P{®}=0.x<0 (A.6)
Established as, required.

Percentile  of the random wvariable X is the smallest
number Xu because [34]:
uzP{Xﬁx} =F(xu)
Hence, Xu is the inverse of the function , — F( x)= in

(A7)

interval 0 <4 <1, on the X-axis. We interchange the axes of
F(x) to determine the graph of Xu. The median of X is the
smallest number m as F(m) = 0.5, which is the 61% term of
Fig.1, where m is the 0.5 percentile of X.

The frequency interpretation of F(x) and Xu follows: we
perform the experiment n times and observe n values Xi,...,Xn
random variables X [34]. If these numbers on the x-axis form
the staircase function Fu(X); the steps are located at points x;,
and their height equals 1/n [29]. It starts at the smallest value
Xmin O Xi and Fu(X) = 0 for X < Xmin.

The function Fa(x) is the empirical distribution of random
variable X. For any specific X, the number of Fa(x) steps
equals the number nx of xis smaller than X. Hence,

7 (x)= n% But, n% = P{x=x} for large
nA = Plx=x) OV conclude that [34]:
n as n —» o0 (A.8)

F,(x)=—=—> P{X <x}=F(x)

n
The empirical interpretation of the u percentile xu is the

Quetelet curve. This derives from n line segments of lengths
xi, separated vertically in order of increasing length, by
distance 1/n. It forms the staircase function with corners at the
endpoints of those segments.

Empirically, xu equals the empirical distribution of Fu(x), if
the axes were interchanged. We know that [34]:

P{X >x}=1-F(x) (A.9)
P ()= (%) (A10)
P{XISx2}=F(x2)—F(x]) (A.11)
P{X =x}=F(x)—F(x") (A.12)

At a discontinuity, both the left and right-hand limits are
different, and equation (A.12), becomes:
P{X =x}=F(x)—F(x)>0

The only discontinuities of a distribution function Fa(x) are
jumps, which occur at points Xo where equation (A.13) is
satisfied. Also, these points are listed as a sequence and can be
counted [34]. The countable jump discontinuities [51] in
Figure 2 were fifteen (15).

We deduce the staircase function using nonnegative real
numbers corollary [34],[51]:

(A.13)

As X ,then

X, = x <X,

{X(n) = x} = UV,(:\ {X(”) = xk} = U/f»:l {X(”) = X% } ’
and therefore,

F(x) :P{X(n) Sx}kz;l:pk....x, =x<x.,

F(x) is a staircase function having an infinite number of steps,

(A.14)

where i-th step size equals p., pi, j =1,2,..00-
If ( x) is constant except for a finite number of jump

discontinuities, then X is a discrete random variable. Such
x. 1s a discontinuity point, and from equation (A.13),

becomes [34],[52]:

P{X:x[}zF;(x[)—F;(xf):pi (A.15)
At discontinuity:

P{X=a}=F, (a)—F,(a" )=1-0=1 (A.16)
At such discontinuity:
P{X=0}=F,(0)-F,(07)=¢g-0=¢g (A17)

The following Durbin-Watson statistic confirms the quality
of interpretations of the study.

A.1.2. Durbin-Watson (DW) statistic

The 1.994 calculated Durbin-Watson (DW) statistic in
model 4 (Table 3), was used for the model analyses [45]:

Decision rules for testing between the two hypotheses
include: If D > du, we conclude Ho. If D > di, we conclude H..
If d. < D < du, DW test is inconclusive: where D is the
computed DW value, du is the upper D limit, dv is the lower D
limit, p is the autocorrelation parameter estimate, Ho is the null
hypothesis, and Ha is the alternative hypothesis.

The DW statistic was evaluated using each residual value, e
and its previous value, e.; [53],[54]:

> (e—e)

DW == _——"
>

Where T is the number of time-series observations. Also,
small D values indicate that p > 0 especially because
neighboring error terms e: and er1 have similar magnitudes,
and are positively autocorrelated. If the residual differences et
— er1 are small when p > 0, we have a small D numerator and a
small test statistic.

Using parameters: k = 4, n =df + 132+ 1)=33 and a =
0.05, where: df is the degree of freedom, n is the number of
Cronbach’s Reliability test predictors.

Reject Ho if DW <dL
Fail to reject H, if (4 — DW) > du
But,4 —DW =4 —-1.994 (=2.006) > du (= 1.73).

So, we fail to reject the Null hypothesis. Thus, the
goodness-of-fit closely mimics the electricity consumption
and pricing model by 71.0%. The model is significant at
70.0% cut-off without autocorrelation effects or independent
error assumption violations [54].

(A.18)

(A.19)
(A.20)
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A.1.3. ANOVA

ANOVA partitions observed sample variance and the sum
of squares into the minimum number of different significance
tests to determine linear relationships between dependent and
independent variables. Imperfect models have unexplained
observed total variability [45],[49].

Basic regression line concept [50]: Data = Fit + Residual
(A.21)

~

(o) {oos -5

The first term in equation (A.21) is total y response variation,
the second term is mean response variation, and the third term
is the residual value.

Simplifying equation (A.21):

~

>(»-») —z[y_yJ +3(»,
Equation (A.22) becomes: SSt = SSm + SSE, where SS is a
sum of squares, T, M, and E, are total, model, and error
symbols, respectively.

The sample square correlation is the ratio between the sum
of squares and the total sum of squares: 1> = SSm/SSrt. Thus,
is the variability fraction in the data explained by the
regression model and sample variance [49],[50]:

(y P j/j SS
SE=2 T = DF,
MSwm (model mean square) =

5

[yi_,VJ sS,,

]2 (A22)

(A.23)

. The linear regression model

ST =20 ) T Dr
has one variable X. Mean square error:
> [yf ~ v, j A24
(MSE ) = ' = S5y ( )
n—2 DF,

Estimate

estimates variance about the population regression line 2

F[ MS,, ]-Value tests hypothesis: 3 -+ (against thd-

MS,,
null hypothesis: B =0> 43 Darameter estimates and F is

Fisher-value). A test statistic is the ratio (" azs,, . When
[
MSw is large, and the test ratio is large, there is evidence
against the null hypothesis [23],[50].
Multiple linear regressions use ANOVA computations to
adjust the minimum number of explanatory variables in the

model [50]. The test statistic [ MS,, jhas FEq ngt)
MS,.

distribution. The null hypothesis states:

( B=p=.=p= 0), alternative hypothesis indicates at

least one parameter B, =0> SSM/SSt=R2%, k=0,1, ..., q.
However, F-test does not indicate which parameters g = 0

are not zero. But, one parameter linearly depends on the
response variable [50].
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The ratio SS,, _ R> is the squared multiple correlation
SS,

coefficient. Its square root is the multiple correlation
coefficient R, and tests the relationship between observations
yi and the fitted values i [50].
II. APPENDIX B
B. LELECTRICITY MANAGEMENT
QUESTIONNAIRE (PUBLIC)

Generally, electricity load management is the control of
electricity consumption after the meter. This -electricity
consumption pattern involves several switching processes
undertaken by the consumer. Consequently, it is to your
advantage to be recognized as a resident in Namibia, which
has an excellent reputation for quality housing development.
Houses and building complexes are increasing in number, so
also is the increasing need for satisfying electricity
requirements.

In the light of the foregoing, therefore, we would like to
please request you to give your candid opinion about efficient
lighting and use of electricity in Buildings. We would also like
you to please complete the following questionnaire with your
permission, which we believe will not take more than fifteen
minutes of your valuable time to answer.

LOAD

Thank you for your willingness to cooperate by answering this
questionnaire.

The questions follow:

I. Name: (Optional)..........cocoiiiiiiiiiiiiiiiiiins

2. Respondents Gender: Male Female Age: 18-25, 26-35,
36-45, 46-55, Above 55

E-mail ... Telioii,
The key to answering the questions that follow in this
questionnaire: SA-Strongly Agree A-Agree U-Not Sure DA-
Disagree SD-Strongly disagree

S/N | Description SA|A|U|DA|SD

4 Electricity is meant to
be enjoyed as long as |
can pay for it

5 I should always switch
off lights that I am not
using

6 Control switches should
be used on geysers, air
conditioners, and other
high energy consuming
house appliances

7 “Energy savers” reduce
the cost of electricity
consumed

8 I feel 1 can live
comfortably anywhere

in Windhoek city
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9 Energy savers are not 22 | Engineers are there to
bright enough and are produce enough energy
very costly for me to enjoy

10 | Reduced electricity 23 | More daylighting in
consumption decreases buildings reduce
money paid to electricity use
Municipality or 24 | NAMPOWER  should
NAMPOWER be allowed to charge

11 | The smaller amount of any amount for
electricity I use helps electricity  supply to
NAMPOWER to consumers
regularly supply 25 | Reducing wasted
electricity to all electricity is good for

12 | I will only use efficient development
lighting bulbs or lamps 26 | Increasing  electricity
if supplied by ECB or use does not affect the
Municipality environment

13 | I can only live in some 27 | Energy-efficient
areas of Windhoek city buildings and lighting
if asked to do so by law protect the globe and
or legislation earth resources

14 | I can live in some areas 28 | If electricity use is not
of Windhoek city if controlled
asked to do so by law or NAMPOWER will
legislation continue to increase the

15 | I do not need to reduce cost of electricity
the electricity consumed 29 | Efficient use of
since I can pay the electricity will enable
amount charged by delay in building new
Municipality or ECB or power generation
NAMPOWER stations
If you have a washing 30 | Building new electricity
machine with a dryer, generation stations
please  answer  the reduce global warming
following questions 31 | Allowing my television

16 | I prefer to use a dryer to be “on” without
than the clothesline in anyone watching it, is a
drying my clothes good energy use method

17 | Controlled electricity How much do you agree
consumption  reduces that any of the following
stress on NAMPOWER actions can reduce your
facilities energy and electricity

18 | Increased electricity bills?
consumption increases 32 | I turn off radiators or
global warming close air ducts in rooms

19 | I will like to buy used for guests
energy-efficient 33 | I lower the thermostat at
equipment to reduce the night or any time the
amount of money spent house is vacant
on electricity bills 34 | I draw curtains over all

20 | Whatever affects windows in the
NAMPOWER does not evenings and open them
necessarily affect me during sunlight hours

21 | Reducing electricity 35 | I lock all windows
consumption  reduces tightly during winter to
global warming cut down on heat loss
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36 | I insulate my house as 49 | I boil liquids quickly in
much as I can to save tightly closed pans and
energy and money save about 20% of
37 | Using blinds, shutters or energy, if otherwise
shades can reduce the 50 | I keep the bottom of my
heat coming through pans and pots shining to
windows by 50% during reduce energy wastage
summer and reduce heat 51 | My pots and pans
loss by 25% in cold should be the same sizes
months. These actions as the sizes of burners I
can save me money and put them upon
reduce energy wastage 52 | I use fluorescent lamps
38 | Installing wunderlay or whenever practicable
carpets over windows 53 |1 install automatic
and doors can reduce switches in closets for
about 75% sunlight heat the lights to go off
from getting into the whenever the door is
house closed
39 |1 shut off my air 54 | I should not switch on
conditioner whenever I fluorescent lamps within
leave home for more 15 minutes of switching
than one hour or two off
40 | I keep air conditioners
clean and do not block
them with drapes or ACKNOWLEDGMENT
furniture . This is an extended and updated version of an unpublished
41 | T keep windows closed paper (not published in IEEExplore), originally accepted for
and only open doors the IEEE International Conference on Industrial Technology
when necessary if the (IEEE ICIT 2013) held in Cape Town, South Africa between
zgeratiri;ndltloner 1 25 and 27 February 2013,
42 |1 kéep heat-producing REFERENCES
appliances away from [1] S. Bimenyimana, A. Ishimwe, G. N. O. Asemota, C. M. Kemunto, and L.
the thermostat so that it Li, “Web-based design and implementation of smart home appliances
can giVG accurate control system,” in ICRET, Kuala Lumpur, Malaysia. IOP Conf- Series:
readings Earth and Env. Sci., vol. 168, pp. 1-9, 2018,
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