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Abstract—Despite growing interest in human-machine collab-
oration for enhanced decision-making, little work has been done
on the optimal fusion of human and machine decisions for
cost-sensitive biometric authentication. An elegant and robust
protocol for achieving this objective is proposed. The merits
of the protocol is illustrated by simulating a scenario where a
workforce of human experts and a score-generating machine are
available for the authentication of handwritten signatures on, for
example, bank cheques. The authentication of each transaction is
determined by its monetary value and the quality of the claimed
author’s signature. A database with 765 signatures is considered,
and an experiment that involves 24 human volunteers and two
different machines is conducted. When a reasonable number of
experts are kept in the loop, the average expected cost associated
with the workforce-machine hybrid is invariably lower than that
of the unaided workforce and that of the unaided machine.

Index Terms—human-machine collaboration, dynamic classi-
fier fusion, cost-sensitive biometric authentication

I. INTRODUCTION

PATTERN recognition protocols that produce multiple candi-
date classifiers, and then combine their output, are popular

and well-established [1]–[3]. Each candidate classifier can
either be a continuous classifier that generates a score, or
a discrete classifier that outputs a decision. Furthermore, by
imposing different thresholds on a machine-generated score,
different discrete classifiers can be obtained. Multiple can-
didate classifiers can be generated by extracting different
features [4] or by utilising different modelling techniques [5].

By considering optimisation data, an optimal candidate
classifier, or group of classifiers (e.g. a maximum attainable
receiver operating characteristic (MAROC) curve) can be
selected and then implemented on different data [6]. The
selected classifiers are referred to as maximum attainable
classifiers. When the cost associated with the misclassification
of an instance (e.g. a handwritten signature), varies from one
instance to another, a second optimisation stage is possible [7].
In these scenarios an optimal candidate classifier, or group
of classifiers, that minimizes the expected cost, can be dy-
namically selected from the available maximum attainable
classifiers during system implementation.

The candidate classifiers are traditionally machines (so-
called hard sensors). More recently, researchers started to
investigate the advantages of keeping humans (so-called soft
sensors) in the loop [8]–[10]. Human-machine collaboration
allows pattern recognition protocols to exploit the unique ca-
pabilities of both humans and machines. Humans are proficient
at integrating information and incorporating context, while
machines are adept at making fast, consistent and objective

decisions. With the advent of the internet, collaboration among
human experts is becoming increasingly viable [11].

Depending on the application, human involvement may
occur at various stages in the decision-making process. Four
possible stages are specified in [12], i.e. the (1) information
acquisition, (2) information analysis, (3) decision and action
selection, and (4) action implementation stage. During the
information acquisition and analysis stages, humans may for
example assist machines in extracting suitable features [13].
During the decision and action selection stage, humans may
select an appropriate action among a machine-generated list
of options [14], or submit a decision, which is then combined
with those of one or more machines and/or other humans, in
order to reach a final decision [15].

The level of automation (human involvement in the
decision-making process) may also vary from one application
to another. In [12] a ten-point scale is proposed that varies
from level one, where the machine offers no assistance to the
human to level ten, where the machine determines everything
and the human is ignored. In [16] and [17], for example, the
feasibility of adapting the level of automation within a human-
robot collaborative system is investigated.

In this paper the feasibility of using a score-generating
machine and a workforce of human experts is investigated
for the purpose of biometric authentication in a cost-sensitive
environment. This investigation considers handwritten signa-
tures on, for example, bank cheques, where authentication
relies on both the transaction’s monetary value and the quality
of the client’s signature. For example, the cost associated
with the acceptance of a large fraudulent transaction may
be high due to the possibility of having to reimburse the
client. The cost associated with the rejection of a small
legitimate transaction may also be high due to the possibility
of unnecessary administrative expenses. The protocol should
therefore lean towards rejecting large transactions with low-
quality signatures, and accepting small transactions with high-
quality signatures. Furthermore, the average expected cost
associated with an expert-machine hybrid, should be lower
than that of the unaided human workforce, and lower than
that of the unaided machine.

Since the performance of humans are often comparable
to that of machines in authenticating handwritten signature
images [18], it is reasonable to investigate human-machine
collaboration within the context of the decision and action
selection stage as proposed in this paper. The empirical
findings in [19] confirm that human team members are ex-
tremely sensitive to their workload in pressured, high-tempo
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situations and when supported by machines, perform better by
maintaining team performance at acceptable levels.

It is concluded in [15] that, with all the human experts in the
loop, the inclusion of an HMM-based machine simplifies cost-
sensitive authentication and decreases the expected cost for
all operating conditions. This self-contained paper improves
on [15] in several ways: (1) a more detailed motivation,
description and analysis of the dynamic classifier selection
strategy is presented; (2) a more proficient classifier fusion
protocol is proposed; and (3) the efficacy of the improved pro-
tocol is demonstrated (for two different machines) in scenarios
where only a subset of the human workforce is available.

In Sections II and III recent work that relates to the proposed
protocol is discussed and relevant ROC-based strategies for
classifier fusion are introduced. This is followed by a discus-
sion on ROC-based classification in a cost-sensitive environ-
ment (Section IV). In Sections V and VI the proposed strategy
for human-machine collaboration is introduced, followed by
an analysis of the relevant handwritten signature data, the
experimental protocol, and results.

II. RELATED WORK

Human-machine collaboration at automation stages, other
than the decision and action selection stage, has been widely
investigated in the fields of aviation [20] and medicine [21].
However, due to the difficulty of quantifying the inherent
uncertainty of human data, very little work has been done
on combining human and machine decisions [8]. Furthermore,
research on human-machine collaboration, for the specific
purpose of biometric authentication, is still in its infancy.
The aforementioned scenario is only investigated in [13],
which focusses on the recognition of flowers and faces. In
this paper human-machine collaboration facilitates feature
extraction during the information acquisition and analysis
stages. A computer-generated impression of the target image
is first superimposed onto the object to be recognised. A
human expert then assists the machine in extracting suitable
features by appropriately modifying the computer-generated
impression. The authors demonstrate that the collaborative
recognition protocol outperforms unaided machine classifica-
tion, is more efficient than unaided human classification, and
that the proficiency of both the human experts and the machine
increases after system implementation.

Classifier selection strategies in scenarios where the mis-
classification cost varies from one instance to another have
only been investigated on a few previous occasions. The con-
struction of so-called cost curves is proposed in [7], where the
‘normalized expected cost’ is plotted against the ‘probability
cost’ for different operating conditions−an operating condition
is obtained by imposing a specific threshold on a machine-
generated score. The authors show that cost curves are superior
to ROC curves for visualising classifier performance in most
scenarios. The reader is referred to [7] for detailed definitions
of the above-mentioned parameters. The protocol proposed in
this paper employs several other parameters also discussed
in [7], for which detailed definitions are given in Section IV.

As an alternative to cost curves, so-called AUCIV curves are
proposed in [22]. AUCIV curves are obtained by adapting
conventional ROC curves in such a way that they allow for
instance-varying costs.

III. INFORMATION FUSION

The proposed protocol for human-machine collaboration is
based upon performance evaluation in receiver operating char-
acteristic (ROC) space. In order to standardise the terminology
and notation, key concepts in ROC analysis are first reviewed.

The true positive rate (TPR) for classifier CA, i.e. t+A,
approximates the probability that it will correctly classify a
positive instance (authentic signature), while its false positive
rate (FPR), i.e. f+

A , approximates the probability that it will
erroneously classify a negative instance (fraudulent signature).

In ROC space, the TPR and FPR represent the vertical and
horizontal axes respectively. The performance of a discrete
classifier (e.g. a human expert that provides a decision of either
‘true’ or ‘false’) can therefore be represented by a single point
in ROC space. When two discrete classifiers are compared, the
superior classifier’s performance is represented by the more
‘northwesterly’ point in ROC space. The two machines consid-
ered in this paper are both examples of continuous classifiers,
since they both output scores to which different decision
thresholds can be applied to determine class membership. The
performance of a continuous classifier is represented by an
ROC curve. An ROC curve therefore consists of a number of
FPR-TPR pairs, where each pair is associated with a specific
threshold value and constitutes a discrete classifier. When two
continuous classifiers are compared, the superior classifier has
a larger area under its corresponding ROC curve (AUC).

The problem investigated in this paper is addressed by
employing classifier combination at the decision and action
selection stage through majority voting and iterative Boolean
combination (IBC). Majority voting is the most popular clas-
sifier combination strategy when a system has access to the
output of three or more discrete classifiers, e.g. human experts,
that make conditionally independent errors. It is significant
to note that this conditional independence requirement guar-
antees that the estimated combined performance (when the
classifiers in question evaluate signatures produced by a set of
representative writers in a controlled environment) is a good
predictor of future performance (when the same classifiers
evaluate signatures produced by different writers).

The IBC algorithm [23] combines the output of two contin-
uous classifiers−their respective performances are represented
by two ROC curves−by fusing the output of every threshold-
specific discrete classifier associated with the one ROC curve
with the output of every threshold-specific discrete classifier
associated with the other ROC curve. The authors emphasise
that the IBC algorithm does not require any prior assumptions
on the conditional independence of the classifiers or the
convexity of their respective ROC curves. Ten Boolean fusion
functions are implemented for combining the output of any
pair of discrete classifiers, CA and CB , where ∧, ∨, ¬, and ⊕
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denote conjunction, disjunction, negation, and the XOR oper-
ator, respectively: (1) CA∧CB , (2) ¬CA∧CB , (3) CA∧¬CB ,
(4) ¬(CA∧CB), (5) CA∨CB , (6) ¬CA∨CB , (7) CA∨¬CB ,
(8) ¬(CA ∨ CB), (9) CA ⊕ CB , and (10) ¬(CA ⊕ CB). In
this way a set of candidate hybrid classifiers are produced
of which only the the optimal hybrids, represented by the
MAROC curve, are selected.

It is worthwhile to note that the IBC algorithm is also well-
suited for combining the output of three or more continuous
classifiers by first considering the two least proficient classi-
fiers, after which the output of the resulting optimal hybrids,
represented by the MAROC curve, is combined with the output
of the third least proficient classifier. This process is repeated
until all of the available continuous classifiers have been
considered. The authors of the IBC algorithm state that the
proficiency of the hybrid system can be further improved by
repeating the entire procedure, that involves all of the available
continuous classifiers, until no significant gain in proficiency
is observed. However, the details of this iterative process are
not relevant to the protocol employed in this paper.

The classifier combination protocol proposed in this paper is
discussed in detail in Section V and employs the ten Boolean
fusion functions utilised in [23] in conjunction with majority
voting. We show in Section VI that the proposed protocol is
simple, computationally efficient, and robust in the sense that
it leads to small generalisation errors. Note, however, that the
proposed protocol does not combine MAROC curves in an
iterative way as suggested in [23], since the IBC approach is
computationally expensive and does not generalise well in this
context.

IV. COST-SENSITIVE CLASSIFICATION

In order to select the specific hybrid classifier on a MAROC
curve, which is associated with the lowest expected cost, the
use of iso-cost lines with variable gradients is proposed.

It is reasonable to assume that the cost incurred by rejecting
a negative instance and the cost incurred by accepting a pos-
itive instance both equals zero, i.e. S(−|−) = S(+|+) = 0.
Given this assumption, the expected cost associated with a
transaction that is authenticated by a classifier CA can be
expressed as follows [7],

EA = S(−|+) · (1− t+A) ·P (+)+S(+|−) · (f+
A ) ·P (−), (1)

where P (+) and P (−) represent the prior probabilities of the
questioned instance being positive and negative respectively.
The cost incurred by rejecting a positive instance, and the
cost incurred by accepting a negative instance, are denoted
by S(−|+) and S(+|−) respectively, while the error rates for
classifier CA are represented by t+A and f+

A .
It can be deduced from (1) that the iso-cost line in ROC

space, that depicts the proficiency of all hypothetical classifiers
associated with a specific expected cost E, is given by

t+ =

{
S(+|−)P (−)

S(−|+)P (+)

}
f+ − E

S(−|+)P (+)
+ 1.

In Figure 1 (a) the horizontal, vertical and diagonal lines
represent parallel iso-cost lines, for the scenarios where
S(+|−)P (−) = 0, S(−|+)P (+) = 0, and S(−|+)P (+) =
S(+|−)P (−), respectively.

Since the overwhelming majority of questioned signatures
on bank cheques are authentic, the pragmatic strategy will
be to set the prior probabilities equal to P (+) ≈ 1 and
P (−) ≈ 0. For this scenario, an almost optimal expected cost
(E � 1) can be attained by accepting all questioned signatures
as demonstrated in Figure 1 (b). This strategy will however
cause any manual or automated authentication protocol to be
redundant. It is more sensible to embark from the assumption
that the prior probabilities are equal, i.e. P (+) = P (−) = 0.5.
All human experts are therefore directed to be as unbiased as
possible. The strategy for selecting an optimal hybrid classifier
from a set of candidates is also based on this assumption. As
a result (1) simplifies as follows,

EA = 0.5
[
S(−|+) · (1− t+A) + S(+|−) · (f+

A )
]
. (2)

When the error costs (S(+|−) and S(−|+)) are kept
constant, the line in ROC space represented by t+ = Mf+ +
N(E) depicts the proficiency of all hypothetical classifiers
that correspond to the specific expected cost E, where
M = S(+|−)/S(−|+) and N(E) = 1 − (2E)/S(−|+).
By considering different values of E, different parallel iso-
cost lines can be obtained for a specific value of M . Note
that M therefore denotes both a specific cost ratio, and the
cost gradient of the corresponding iso-cost lines−these two
terms are henceforth used interchangeably. After a cost-ratio
is specified, only one iso-cost line (with gradient M ) intersects
a linearly interpolated version of a MAROC curve at a single
point (see Figure 2 (b)). The aforementioned point is optimal
in the sense that it represents the performance of the hybrid
classifier that corresponds to the lowest expected cost−this
classifier is therefore selected.

It is important to note that, although the above-mentioned
geometric interpretation of the proposed classifier selection
strategy is informative, classifier selection is in actual fact
achieved through a non-geometric approach. This approach
entails the calculation of the expected cost for each of the
candidate hybrids using (2), after which the hybrid associated
with the lowest expected cost is selected.

Figure 2 (b) illustrates the geometric interpretation of the
proposed protocol for selecting the hybrid classifier associated
with the lowest expected cost, for three different cost scena-
rios.

V. SYSTEM DESIGN

The proposed protocol for human-machine collaboration in
a cost-sensitive environment is encapsulated in Figure 3.

It is assumed that, during an initial enrollment phase, a
financial institution requires each new client to produce a
number of authentic samples of his/her handwritten signature.
The utilisation of these samples for signature modelling is
explained in Section VI. This enrollment process is relatively
non-intrusive and may be repeated after set time intervals to
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Fig. 1. (a) The horizontal, vertical and diagonal lines represent iso-cost lines for the scenarios where S(+|−)P (−) = 0, S(−|+)P (+) = 0, and
S(−|+)P (+) = S(+|−)P (−), respectively. (b) The iso-cost lines for ‘pragmatic’ prior probabilities for questioned signatures on bank cheques (P (+) ≈ 1
and P (−) ≈ 0) are depicted by parallel solid grey lines, each with a small positive gradient.
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Fig. 2. The geometric interpretation of the proposed classifier selection protocol. (a) A hypothetical transaction value V is mapped to a specific cost gradient M .
(b) A hypothetical MAROC curve, associated with a specific human expert, and three different cost scenarios with corresponding iso-cost lines. For each cost
scenario the performance of the optimal hybrid with the lowest expected cost is denoted by a solid marker−this classifier is selected.

allow for subtle changes in the client’s signature. The proposed
protocol is partitioned into an optimisation and implementation
stage.

Optimisation. During the optimisation stage both a machine
and a workforce of human experts are required to authenticate
a compilation of labelled authentic and fraudulent signature
samples, in order to assess their proficiency. These samples
are produced by representative writers in a controlled setting.
The protocol for compiling and presenting these signatures is
discussed in detail in Section VI. By considering the represen-
tative signatures, an estimate of the combined performance of
a specific human expert and each threshold-specific machine-
generated classifier is obtained by considering each of the
ten Boolean fusion functions defined in Section III. A set of
candidate human-machine hybrids is therefore generated for
this expert, after which only the MAROC curve is retained.
This process is repeated for every expert so that a set of expert-
specific MAROC curves is obtained.

The consultant and the client (financial institution) agree
on a mapping between the transaction value V ∈ [Vmin, Vmax]

(in monetary terms) and a finite set of discrete cost gradients
{Mi}, i = 1, 2, . . . ,K, i.e. V �→ {Mi} (see Figure 2 (a)).

For a specific cost gradient, the optimal expert-machine
hybrid, i.e. the hybrid that corresponds to the lowest expected
cost, is selected for each expert-specific MAROC curve. This
process is repeated for every specified cost gradient. After
the conclusion of the optimisation stage, only the optimal
expert-specific hybrids for every specified cost gradient are
stored and the optimisation process is only conducted once.
When new experts are added to the human workforce, or
when existing experts undergo updated proficiency tests, the
optimal hybrid for only the aforementioned experts need to
be re-calculated. Figure 2 (b) illustrates three different cost
scenarios with the corresponding iso-cost lines, as well as a
hypothetical expert-specific MAROC curve. For each of these
scenarios, the performance of the optimal hybrid is denoted
by a solid marker.

Implementation. During the implementation stage the op-
timal expert-specific hybrids are efficiently and dynamically
selected. When investigating an unlabelled signature, claimed
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Fig. 3. Outline of the proposed human-machine collaboration protocol.

to belong to a specific writer and associated with a certain
transaction value, the transaction value is first mapped to the
appropriate cost gradient. Subsequently, for the cost-gradient
in question, the output from all the optimal expert-specific
hybrids are combined through majority voting. In this way all
the available experts are included in the decision process.

The protocol presented here differs from the one proposed
in [15]. According to the protocol adopted in [15] the output
from all of the available human experts (and not the decisions
of expert-specific hybrids) is first fused through majority
voting−the majority-vote decision of the entire available work-
force is then combined with every threshold-specific machine-
generated decision. It is shown in Section VI-C that the
human-machine collaboration protocol proposed in this paper
is superior to and more robust than the one proposed in [15],
as long as a significant number of human experts are kept in
the loop.

VI. EXPERIMENTS

The experimental data is split into an optimisation set (OS)
and evaluation set (ES). In order to prevent model over-
fitting and biased results, the above-mentioned subsets contain
signatures produced by different writers. The OS contains
signatures produced by representative writers in a controlled
setting, while the ES contains signatures from other writers
emulating banking clients. It is reasonable to presume that
positive signatures are obtainable for each writer in both
the OS and ES. These signatures may be used to train
writer-specific HMMs, act as reference signatures for writer-
independent LDF-based classifiers, or serve as reference for
human experts.

Labelled positive and negative signatures are associated with
writers in the OS only. These signatures may be used for

estimating the proficiency of the human experts and the ma-
chine in question, as well as for selecting the optimal expert-
specific hybrids. Unlabelled positive and negative signatures,
that belong to writers in the ES, are used to estimate the
generalisation capability of the proposed protocol.

A. Data

The efficacy of the proposed protocol is illustrated by
considering a selected subset of signatures within a larger
database originally captured online [24]. This dataset contains
dynamic signatures from 51 different writers. In order to
emulate signatures extracted from bank cheques, the dynamic
data is transformed into static images by applying a mor-
phological dilation operator to the pixels positioned at the
captured pen tip coordinates [25]. Only skilled forgeries are
used for experimentation. A skilled forgery is produced by
an individual who had ample time to study a set of known
(labelled) authentic signatures at his/her leisure. Adopting the
terminology laid out in [24], this dataset contains 15 authentic
‘training’ signatures and 75 ‘test’ signatures for each writer.
The 75 ‘test’ signatures consist of 15 authentic samples and 60
skilled forgeries.

B. Experimental protocol

For each writer in the dataset, all of the 15 authentic training
signatures are selected for signature modelling. A reduced test
set, that consists of only 15 signatures, is now constructed.
This new test set is employed during the optimisation and
implementation stages of experimentation and contains a ran-
domly selected number (between 0 and 15) of skilled forgeries.
The rest of the test signatures are randomly selected from the
15 authentic test signatures for the writer in question. A spe-
cific test set may therefore consist of only authentic signatures
or only skilled forgeries. Consequently, each classifier (human
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expert or machine) authenticates 15×51 = 765 test signatures
in total. Due to the random nature of this selection strategy,
the total number of authentic and forged samples in the entire
reduced test set is 432 and 333 respectively.

Human experts. The potential actions of a human expert is
emulated by presenting each volunteer (a faculty member or a
graduate student) with a training set (15 signatures) and cor-
responding test set (15 signatures) for all 51 writers. Twenty-
four volunteers are utilised. Each volunteer is presented with
all the writers’ training and corresponding test sets on different
sheets of paper. The volunteers are instructed to compare every
test signature to the corresponding training set, and decide
which of the test signatures are fraudulent. Each training set
is scrutinised as a whole. These volunteers are also instructed
not to mull over each decision, so as to emulate the probable
actions of a typical bank employee.

Machines. The signatures presented to the human vo-
lunteers, are also presented to two machines, i.e. a writer-
dependent hidden Markov model-based (HMM-based) classi-
fier [25] and a writer-independent linear discriminant function-
based (LDF-based) classifier [26], as discussed below.

HMM-based classifier. Features based on the computation
of the discrete Radon transform (DRT), are extracted from
each signature image. These features are employed to train an
HMM for each writer in the dataset. A questioned signature is
matched with the appropriate HMM through Viterbi-alignment
and a score is obtained. This score is then normalised through
a strategy based on the z-norm.

LDF-based classifier. During signature modelling, a dis-
similarity representation is achieved by employing a two-
stage process. Binary signature images are first converted into
feature sets using the DRT. Using a dynamic time warping
algorithm these feature sets are matched to those extracted
from writer-specific reference signatures, so that a set of
dissimilarity vectors is obtained. The dissimilarity vectors
obtained from signatures in the training set are used to train
an LDF. During the implementation stage, questioned signa-
tures from the ES are encoded into dissimilarity vectors, by
comparing these signatures to the appropriate writer-specific
reference signatures. The trained LDF is then used to predict
class membership.

Cross-validation with repetition. The experimental proto-
col employs three-fold cross validation in conjunction with
repetitive data randomisation. The experimental protocol is
outlined as follows: (1) The dataset is partitioned into three
equal subsets, where each subset contains signatures produced
by 17 writers; (2) Each subset, in turn, is employed as an
ES, that contains signatures produced by 17 writers, while
the remaining two subsets constitute the OS, that contains
signatures produced by the other 34 writers; (3) The order
of the writers is randomly rearranged, and the procedure is
repeated 10 times. The results for 30 trials are thus reported.

A set of 19 different cost gradients is specified as follows,

M =

{
1

10
,
1

9
,
1

8
, . . . ,

1

4
,
1

3
,
1

2
, 1, 2, 3, . . . , 8, 9, 10

}
. (3)

A specific trial is executed by considering all of the cost
gradients in (3). For a specific cost gradient, the signatures
in the OS are first used to select the optimal expert-machine
hybrid (i.e. the hybrid that corresponds to the lowest expected
cost) on each expert-specific MAROC curve. The signatures
in the ES are then authenticated by combining the decisions of
the optimal expert-machine hybrids through majority voting,
and the expected cost is estimated. This process is repeated
for every cost gradient in (3) so that the average expected cost
over all cost gradients is reported for the trial in question.

In order to demonstrate the efficacy of the proposed pro-
tocol for randomly selected subgroups of human experts, the
empirical protocol outlined in Algorithm 1 is adopted.

SizeOfWorkforce ← 24;
NrOfShuffles ← 10; NrOfFolds ← 3
for all NrOfSelectedExperts such that
NrOfSelectedExperts ∈ [1, SizeOfWorkforce] do

Randomly select NrOfSelectedExperts humans
from the workforce
TrailNr ← 1
for all ShuffleNr such that
ShuffleNr ∈ [1, NrOfShuffles] do

Randomly shuffle the 51 writers in the dataset
for all Fold such that Fold ∈ [1, NrOfFolds] do

Optimisation set ← 34 writers in the dataset
Evaluation set ← 17 writers in the dataset
Execute trial TrailNr
TrailNr ← TrailNr + 1

end for
end for

end for
Algorithm 1: Experimental protocol.

C. Results
The dataset introduced in Section VI-A is now considered,

and the level of experimental complexity is increased in a
step-wise fashion. This approach clarifies the methodology and
demonstrates the efficacy of the collaboration protocol

A single human expert is first considered and the OS is
employed to illustrate how the optimal expert-machine hybrid,
for a specific cost gradient, is selected (see Figure 4). Three
human experts are then considered and the ES is employed
to show that, when the selected three expert-machine hybrids
are again combined through majority voting, the expected cost
associated with the combined hybrid classifier is lower than
that of the optimal unaided threshold-specific machine for the
cost gradient in question (see Figure 5). The expected cost
associated with the combined hybrid classifier is also lower
than that of the unaided human workforce, when the individual
human decisions are combined through majority voting. The
results in Figures 4 and 5 are generated for a single cost
gradient during a single trial, while only the HMM-based
machine is considered.

Since only the cost gradient/ratio M is specified in the
remaining experiments, and not the individual error costs
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Fig. 4. MAROC curve generation for a single expert using the OS. The estimated performance (in ROC space) of an unaided human expert and an unaided
HMM-based machine (see Section VI-B) are depicted by the pentagram and the dashed line respectively. The performance of the candidate expert-HMM
hybrids, when all the Boolean fusion functions described in Section III are used to combine the expert decision with every threshold-specific machine decision,
is represented by grey dots, while the MAROC-curve for the candidate expert-HMM hybrids is denoted by black circles.

Fig. 5. Dynamic classifier selection, majority voting and performance evaluation for three human experts using the ES. When an unseen questioned signature
associated with a cost gradient of M∗ = 0.2 is to be authenticated, only one optimal hybrid is selected on each of the three expert-specific MAROC curves
(three black dots). These hybrids are used to authenticate the questioned signature, after which the three decisions are combined through majority voting.
When all the questioned signatures in the ES are authenticated in this way, the performance is depicted by the diamond. The estimated cost associated with the
aforementioned classifier is lower than that of the optimal unaided threshold-specific HMM-based classifier (square)−the gain in cost is depicted by the grey
double-arrow. The cost depicted by the diamond is also lower than that of the unaided human workforce (pentagram), when the individual human decisions
are combined through majority voting−the gain in cost is depicted by the black double-arrow.
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(S(+|−) and S(−|+)), the constraint, S(+|−)+S(−|+) = 1,
is imposed. Since M = S(+|−)/S(−|+), (2) simplifies to

EA =
0.5

M + 1

[
(1− t+A) + (M · f+

A )
]
,

for an arbitrary classifier CA. This is convenient for plotting
the expected cost associated with CA as a function of the cost
gradient M . The relaxation of the above-mentioned constraint
has no impact on the shape of the EA −M graph. In fact,
this relaxation only results in a re-calibration of the EA-axis.

In Figure 6 the average expected cost over all 30 trials is
shown as a function of the cost gradient M , with the different
values of M specified in (3). The same three human experts
that relate to Figure 5 are again considered here. For a specific
trial and cost gradient, the OS is used to select the three opti-
mal expert-machine hybrids, while the ES is used to estimate
the expected cost when these hybrids are combined through
majority voting. The combined hybrid classifier outperforms
the optimal unaided HMM-based classifier and the unaided
human workforce (when the individual human decisions are
combined through majority voting) for all cost gradients.
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Fig. 6. The average expected cost over all 30 trials as a function of the
cost gradient M . The same three human experts that relate to Figure 5
are again considered here. The combined hybrid classifier outperforms the
optimal unaided threshold-specific HMM-based classifier and the unaided
human workforce (when the individual human decisions are combined through
majority voting) for all cost gradients. The cost gradient considered in
Figure 5, i.e. M∗ = 0.2, is indicated for reference.

Figures 7 and 8 show the average expected cost for the
unaided human workforce (using majority voting), the optimal
unaided threshold-specific machine, the human-machine col-
laboration strategy proposed in [15], and the human-machine
collaboration strategy proposed in this paper, as a function of
the number of available experts, by considering the HMM-
based and LDF-based machines (described in Section VI-B),
respectively. By considering the ES only, the average expected
cost is obtained by calculating the mean cost over all 30
trials (and all specified cost gradients). For the HMM-based
machine, both of the above-mentioned collaboration strategies
outperform the unaided human workforce and the optimal
unaided threshold-specific HMM-based classifier when more
than two experts are available. For the LDF-based machine,
only the collaboration strategy proposed in this paper outper-
forms the unaided human workforce and the optimal unaided

threshold-specific LDF-based classifier when more than five
experts are available.

Since the human-machine collaboration protocol presented
in this paper enhances the performance of both the less
proficient HMM-based machine and the more proficient LDF-
based machine, when a reasonable number of experts are kept
in the loop, the protocol presented here is superior to, and
more robust than, the one proposed in [15].
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Fig. 7. The average expected cost estimated on the ES (for 19 different cost
gradients and for all 30 trials) of the unaided human workforce (using majority
voting), the optimal unaided threshold-specific machine, the human-machine
collaboration strategy proposed in [15], and the human-machine collaboration
strategy proposed in this paper, as a function of the number of available
experts, when an HMM-based machine is considered. Both of the above-
mentioned collaboration strategies outperform the unaided human workforce
and the optimal unaided threshold-specific HMM-based classifier when more
than two experts are available. Since three experts are available for the scenario
depicted in Figure 6, the average expected costs associated with this scenario
is specifically indicated.
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Fig. 8. The average expected cost estimated on the evaluation set (for 19
different cost gradients and for all 30 trials) of the unaided human workforce
(using majority voting), the optimal unaided threshold-specific machine, the
human-machine collaboration strategy proposed in [15], and the human-
machine collaboration strategy proposed in this paper, as a function of the
number of available experts, when an LDF-based machine is considered. The
collaboration strategy proposed in this paper outperforms the unaided human
workforce and the optimal unaided threshold-specific LDF-based classifier
when more than five experts are available.

VII. CONCLUSION AND FUTURE WORK

A novel human-machine collaboration protocol for the
purpose of biometric authentication in a cost-sensitive envi-
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ronment was proposed. This protocol enables a consultant
to provide a client (financial institution) with a customised
and intuitively understandable mapping between a finite set of
transaction value intervals and corresponding cost gradients.
Should the economic climate change, the mapping can be
easily adjusted. In order to demonstrate the feasibility of
the protocol, twenty-four human volunteers and two different
machines were considered for the purpose of detecting skilled
forgeries in a dataset that contains 765 static handwritten
signatures from fifty-one different writers. It was clearly shown
that, when compared to scenarios where either an unaided
human workforce or an unaided machine is employed, the
utilisation of the proposed collaboration strategy consistently
leads to a lower average expected cost. This is invariably the
case when a reasonable number of human experts (more than
five) are kept in the loop.

Potential future work may involve an investigation into
a human-machine collaboration strategy where the Boolean
fusion functions detailed in Section III are first utilised to
combine the output of a specific human expert with that
of every threshold-specific machine-generated classifier, after
which the best expert-specific hybrid is selected. This process
is then repeated for every available expert, so that a pool of
optimal expert-machine hybrids is produced. For each speci-
fied ROC-based cost gradient, a genetic search algorithm can
subsequently be used to obtain the subset of expert-machine
hybrids that minimises the expected cost−fusion is achieved
through majority voting. This expert-machine collaboration
strategy may potentially be more accurate than the protocol
proposed in this paper, but certainly much less efficient.
Furthermore, the utilisation of a genetic search algorithm
within this context does not guarantee that all the available
experts are included in the authentication process. However,
the number of experts in the loop may be maximised by using
both the cardinality of the hybrid set and the expected cost as
objective functions to guide the search.

A protocol may also be investigated for scenarios where
each human expert, instead of submitting a decision, assigns
a score or confidence value to each questioned biometric
instance.
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