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Abstract—An image can be described by the objects within
it, and interactions between those objects. A pair of object
labels together with an interaction label is known as a visual
relationship, and is represented as a triplet of the form (subject,
predicate, object). Recognising visual relationships in images is a
challenging task, owing to the combinatorially large number of
possible relationship triplets, which leads to an extreme multi-
class classification problem. In addition, the distribution of visual
relationships in a dataset tends to be long-tailed, i.e. most triplets
occur rarely compared to a small number of dominating triplets.
Three strategies to address these issues are investigated. Firstly,
instead of predicting the full triplet, models can be trained
to predict each of the three elements separately. Secondly a
multitask learning strategy is investigated, where shared network
parameters are used to perform the three separate predictions.
Thirdly, a class-selective mini-batch construction strategy is used
to expose the network to more of the rare classes during
training. Experiments demonstrate that class-selective mini-batch
construction can improve performance on classes in the long tail
of the data distribution, possibly at the expense of accuracy on
the small number of dominating classes. It is also found that a
multitask model neither improves nor impedes performance in
any significant way, but that its smaller size may be beneficial.
In an effort to better understand the behaviour of the various
models, a novel evaluation approach for visual relationship
recognition is introduced. We conclude that the use of semantics
can be helpful in the modelling and evaluation process.

Index Terms—mini-batch construction, multitask learning, vi-
sual relationship recognition

I. INTRODUCTION

HERE exists a variety of effective computer vision
methods for locating and labelling objects in an image
[1], [2]. In order to further develop the image understanding
pipeline one can consider methods for recognising interactions
or relationships between different objects in the same image.
A visual relationship is defined as a triplet of the form
(subject, predicate, object) and describes some visible inter-
action between a pair of objects in an image. The image in
Fig. 1, for example, contains the visual relationship (boy,
on top of, surfboard). Such visual relationships can be
used to construct scene graph representations [3] for advanced
visual reasoning in tasks such as image retrieval, visual
question answering, and automated surveillance.
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Fig. 1. An example of visual relationship recognition. The task is to label
the subject, the predicate (relationship) and the object, given an image and a
bounding box around a pair of objects.

Visual relationship recognition is the problem of producing
(subject, predicate, object) triplets from a given image. It
is often coupled with the object localisation problem, but
the focus of this paper is on the labelling task and we will
therefore assume knowledge of tight bounding boxes around
pairs of objects (a sensitivity analysis on this assumption
follows later in the paper). Bounding boxes around objects
can be generated by an off-the-shelf object detector (e.g. [1])
and merged pairwise in a straightforward manner.

Visual relationship recognition is challenging for a number
of reasons. Firstly, predicates tend to be slightly more ab-
stract than the subjects and objects, often making their visual
representations difficult to model and recognise. Secondly,
the number of possible relationships explodes combinatori-
ally and leads to what is known as an extreme multiclass
classification problem. For example, 100 possible subject and
object labels, and 70 possible predicates, amount to 700,000
possible triplets. Such a large number means that it is difficult
to collect data representative of all those triplets. In fact,
one of the first datasets on visual relationship recognition,
called VRD [4], represents a 700,000 class problem (taking
all possible combinations of subjects, predicates and objects
into account) but contains data of only around 15,000 unique
visual relationships. A substantially larger dataset called Visual
Genome [5] contains 75,729 unique objects but only 40,480
unique visual relationships.

The third challenge in visual relationship recognition is that
the distribution of triplets in a dataset typically exhibits a long
tail: the vast majority of possible triplets occur only a few
times (or never) in the training set, while a small number
may be much more frequent. A long tail in the distribution of
training data is problematic for optimisation-based learning,
because an undesired local optimum to the objective can be
found quickly by merely predicting the dominant classes most
often.
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Another challenge is that there can be an inherent ambiguity
in the labelling of visual relationships. For example, the visual
relationship (boy, on top of, surfboard) can legitimately
be labelled (boy, riding, surfboard) or (surfboard,
under, boy). Multiple semantically correct classifications of
a visual relationship, with typically only a single ground truth
label in the dataset, make both the modelling and evaluation
of visual relationship recognition difficult.

The aim of this paper, therefore, is to investigate a number
of strategies to deal with these challenges. To address the
combinatorially large set of possible classes, models can be
designed to predict the elements of a triplet separately, instead
of the triplet as a whole. This strategy also allows for a
multitask design where the different elements can be predicted
with shared model parameters, potentially resulting in induc-
tive transfer and statistical data amplification [6] for improved
generalisation. For model training we also implement selective
mini-batch construction, in an effort to better capture the long
tail of the distribution over visual relationships.

The performance of the proposed multitask model is then
compared against multiple single-task models, while the per-
formance of the proposed mini-batch construction strategy
is compared against standard uniformly random mini-batch
sampling. To partially address the problem of semantic ambi-
guity in the labels of visual relationships a new performance
metric is also presented. Finally the sensitivity of the best-
performing model is measured against perturbations in the
assumed bounding box coordinates.

The contributions of this work can be summarised as
follows:

1) we demonstrate that multitask learning in the setting of
visual relationship recognition is effective at reducing
model complexity, without a significant positive or neg-
ative impact on performance;

2) we show that the proposed approach to mini-batch
construction is useful as a simple strategy to improve
performance on underrepresented relationships;

3) we introduce a performance metric that seems to im-
prove the understanding of model behaviour in visual

relationship recognition.

II. RELATED WORK

The literature on visual relationship recognition can be
grouped broadly into three common approaches. The first
involves the learning of a visual-semantic embedding space.
Such embeddings can be achieved by imposing criteria such
as small distances between similar relationships [4], by mod-
elling a relationship as vector translation between embedded
objects [7], or by minimising a triplet-softmax loss [8]. Visual-
semantic embedding allows for few- and zero-shot learning,
and can therefore be suitable for modelling a long-tailed
distribution; however a separate classifier would still need to
be trained on top of the embedding.

The second common approach attempts to generate the
scene graph, or collection of interconnected relationships,
directly. Xu et al. [9] perform probabilistic graph inference
with a structural recurrent neural network and an iterative

message passing scheme to refine the predictions. Zellers
et al. [10] observe that natural images usually have certain
kinds of structural regularities, which they dub motifs, and
propose stacked neural networks (“MotifNets”) to predict
graph elements as well as an LSTM to encode global con-
text. Further examples of this approach include the use of
associative embeddings [11], graph parsing neural networks
[12], and graph R-CNN [13]. Woo et al. [14] improve on
graph generation strategies by designing an explicit relational
reasoning module. Generating a scene graph is more direct
than the visual-semantic embedding approach, and end-to-end
training to accomplish the intended task directly can lead to
superior performance.

The third approach, and the one most relevant to our work,
treats the prediction of each element of the visual relationship
triplet as its own classification task. Some works use multi-
stream architectures for each task [15]-[18], while others
employ a single multitask scheme [19], [20] which is similar
to what we will investigate.

There seems to be a central theme of transferring knowledge
for improved performance through message passing, global
context cues, or inductive transfer in multitask learning. The
multi-stream and multitask settings can deal with the huge
number of classes in visual relationship recognition by making
use of multiple outputs of smaller dimensions. It remains un-
clear, however, whether multitask learning would necessarily
provide better performance. Existing approaches also tend to
build very large systems, with many parameters, and it is
usually not clear exactly how the long tail of typical datasets
are dealt with. Within the domain of visual relationship
recognition we have not yet come across approaches dealing
with the long-tailed nature of training data distributions.

Overall, significant efforts are also being made to con-
struct richer datasets that allow for better learning of vi-
sual relationships. The first major dataset released is called
VRD [4]. It contains 5,000 images with instances of around
15,000 unique visual relationships. A much larger dataset
called Visual Genome, containing 108,077 images with 40,480
unique relationships, was later introduced by Krishna ez al.
[5]. The number of images in Visual Genome is greater than
in VRD, and the total number of visual relationship classes
have also increased. The long-tailed distribution seems to be
inherent in the problem of visual relationship recognition,
and can be exacerbated with more data. The Google Open
Images Challenge [21] attempts to find a middle ground by
considering only 329 possible visual relationship triplets with
375,000 visual relationship instances.

III. METHODOLOGY

The aim of visual relationship recognition within the context
of this paper is to train a neural network model that takes an
image cropped around a pair of objects as input, and generates
scores over possible (subject, predicate, object) triplets as
output. Training labels are used to define fixed vocabularies
for each of the three elements of a triplet. Visual relation-
ship recognition may therefore be treated as a classification
problem, and models can be set up to output normalised
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class scores over triplets. It should be noted that subjects and
objects often share the same vocabulary, but this is not a strict
requirement.

Instead of attempting to train a convolutional neural network
to output one massive vector of scores over all possible
triplets, three separate tasks can be considered: predicting the
subject label, predicting the predicate label, and predicting
the object label. Each of these tasks has far fewer possible
classes, and under the simplifying assumption that the tasks
are conditionally independent given an image, the normalised
output scores can be combined through multiplication. In this
way the top scoring triplet can be obtained by combining
the top scoring elements from each of the three separate
predictions.

As mentioned in section I, typical datasets for training and
evaluating visual relationship recognition models exhibit a
long tail not only in the distribution over all triplets, but also in
each of the marginal distributions over subjects, predicates and
objects. A visualisation of this behaviour in the VRD dataset
follows in section I'V-B.

A. Single-task learning with standard mini-batching

A first approach can be to create three separate neural
network models to predict the subject, the predicate and the
object from the same image crop. Each network may consist
of the convolutional base of a pre-trained network (in our
experiments ResNet-18 [22] is chosen for its good balance
between size and performance), followed by three trainable,
2,048-dimensional fully-connected layers and a softmax output
layer. Refer to Fig. 2 for an illustration.

In order to train each model a cross-entropy loss function
can be minimised with mini-batch gradient descent [23]. For
each training iteration a mini-batch of some prespecified size

ResNet-18

conv. base

FC layer (2,048)
| FC layer (2,048) |
| FC layer (2.048) |

output scores
over subjects

input image
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output scores
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| FC layer (2,048) |

ResNet-18
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over objects
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Fig. 2. In the single-task learning setting, three separate models learn to
predict respectively the subject, predicate and object from a given image crop.

SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS

is sampled, without replacement, uniformly across all samples
in the training set.

In the case of visual relationship recognition, where the data
is often heavily skewed and exhibits a long-tailed distribution
over labels, this “standard” approach to mini-batch selection
is likely to pick samples mostly from a small number of
frequently occurring classes. The networks may thus learn
these dominant classes very well, but would be unable to
recognise the vast majority of classes in the long tail of the
data distribution.

B. Class-selective mini-batch construction

In an effort to mitigate the potential problem with standard
mini-batch selection mentioned above, and expose the network
to more classes in the tail of the dataset, the following mini-
batch construction strategy is proposed. For a particular task
(which can be to predict either the subject, the predicate, or the
object) we sample at every training iteration n classes from
the vocabulary of that task, uniformly at random. We then
randomly select m samples from each of those n classes, for
a mini-batch of size mn. Fig. 3 illustrates this strategy on a
small example.

Constructing mini-batches in this manner would allow a
network to learn from all the classes in a particular task, in
roughly equal measure. The hypothesis is that this construction
may lead to better performance on the many rare classes in
the long tail of the data, potentially at the expense of reduced
performance on the small number of dominant classes. Of
course, there is now a risk of biasing the network against the
true distribution of the data and impede its ability to gener-
alise properly. These issues are investigated experimentally in
section V.

| truck | shirt | sky

{_)

instances containing shirt

= O B

| building | table | person |

{_) {_)

instances containing building instances containing person

I I | I
[ L] B [

Fig. 3. For a vocabulary of size N = 6, we randomly select n = 3 classes.
From each of these, m = 2 instances are randomly selected to form a single
mini-batch (green boxes).

C. Multitask learning

We also explore the efficacy of multitask learning, which
can be thought of as an inductive form of transfer learning
where knowledge is transferred across the three visual rela-
tionship recognition tasks.

Multitask learning makes the assumption that the predictive
model should have an ability to explain multiple tasks. This
assumption is also referred to as an inductive or learning bias
[24]. The premise is that it may lead to a more robust model,
capable of better generalisation [6]. Three arguments support
this premise.
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1) Data amplification: Even though the separate tasks
share the same input features, there are more training
signals when compared to the single-task setting. Train-
ing signals in this context refer to the loss induced by
the prediction of each task.

2) Representation bias: Multitask learning introduces an
inductive bias that favours a hypothesis (or model)
explaining multiple tasks. By using a shared representa-
tion trained on all three visual relationship recognition
tasks, we anticipate improved recognition of relationship
triplets.

3) Regularisation: Training signals for different tasks have

different noise patterns [6]. As a result, the learning

procedure is likely to be regularised by the aggregation
of multiple noise patterns.

In the case of visual relationship recognition a single
network with multiple output vectors can be used, instead
of multiple networks each performing a single task. For our
experiments we use the convolutional base of ResNet-18, add
two trainable, 2,048-dimensional fully-connected layers, and
then split the network into three parts. Each part has its
own additional 2,048-dimensional layer and a softmax output
over the subjects, predicates and objects, respectively. Fig.
4 illustrates this multitask architecture. The first two fully-
connected layers are thus shared and may learn effectively
from the training signals of the three different tasks. The
network can be trained to minimise the sum of cross-entropy
losses over the three output vectors, by means of mini-batch
gradient descent.

In multitask learning it is common to define a main task
together with less important auxiliary tasks. For visual re-
lationship recognition one may want to regard each of the
three tasks equally important. However, when using mini-batch
construction as described in section III-B, we have to sample
the n classes from a single task’s vocabulary, at every training

:
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output scores
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Fig. 4. In the multitask setting, a single model learns to output three score
vectors over the subject labels, predicate labels and object labels.

iteration, and then use the triplets from the complete labels of
the training samples in the mini-batch. In section V we explore
how performance of the multitask model changes depending
on which task’s vocabulary is used for class-selective mini-
batch construction.

IV. IMPLEMENTATION

This section provides a description of how the various
models introduced in the previous section were implemented
and trained. The dataset and evaluation metrics used in the
experiments are also discussed.

A. Model training

All models are implemented in the PyTorch framework [25].
For standard mini-batching a batch size of 300 is used. For
class-selective mini-batch construction we choose n = 50 (the
number of classes to select per mini-batch) and m = 6 (the
number of instances to sample per selected class).

There could be a trade-off in performance between the num-
ber of classes and sampled instances per class, but informal
experimentation showed no significant difference in perfor-
mance (which is somewhat surprising, although it is possible
that effects average out over multiple mini-batches). Gradient
descent optimisation is performed by using Adam [26] with a
learning rate scheduler that decreases the learning rate every
8 training iterations. The parameter that controls the rate of
this decrease is left as the default value. All model training is
performed on a single NVIDIA GeForce RTX 2070.

B. Dataset

Models are trained and evaluated on the VRD dataset
of Lu et al. [4]. It contains 5,000 images and a total of
37,987 visual relationship instances (triplets). Each predicate
is an action verb (e.g. kick), a non-action verb (e.g. wear),
a spatial relationship (e.g. on top of), a preposition (e.g.
with), or comparative (e.g. taller than). Example images
are given in Fig. 5. The semantic ambiguity in ground truth
labels mentioned earlier is apparent in some of these. For
instance, taller than in the fourth example can be replaced
by next to and still be semantically correct.

The data is split into a training set and a test set. In an
effort to ensure representativeness in both sets we consider
each predicate label 7 and split the subset of triplet instances
that contain ¢ as a predicate into 80% training data and 20%
test data. We base the split on the predicates, since there are
fewer samples per class in the tail of the distribution over
predicates (as demonstrated below). If the split is based on
another element, there is a risk that some predicates may be
underrepresented in either the training set or the test set.

There are 100 labels shared between subjects and objects,
and 70 labels for predicates, for a total of 700,000 possible
(subject, predicate, object) triplet labels. We note that our
training set contains only 15,448 unique triplets. However,
the manner in which the models are set up to output subject,
predicate and object labels separately, potentially enables the
recognition of triplets never seen during training.
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Fig. 5. Examples of the five categories of predicates in the VRD dataset.
Green and red bounding boxes are around subjects and objects, respectively.

The long-tailed nature alluded to previously exists in this
dataset not only at the relationship triplet level, but also at the
level of subjects, predicates and objects, as shown in Fig. 6.

C. Evaluation metrics

Performance of the various models are evaluated first in
terms of predicting each of the three elements of a visual
relationship, and then in terms of predicting the triplet as a
whole (when prediction scores from the three separate tasks
are combined).

A standard metric for visual relationship recognition is the
recall at k, abbreviated as R@k and sometimes called the top-
k accuracy. It measures the percentage of times the correct
label occurs in the top k predictions (if ordered by output
scores). For the tasks of predicting individual elements, i.e.
looking only at the output over subjects, or over predicates or
over objects, R@1 and R@3 will be measured on the test set.
For the task of predicting the full (subject, predicate, object)
triplet, we will measure R@50 and R@100 which seem to
be standard practice for a label set of this size [4], [7], [9],
[11]. It should be kept in mind that there are 700,000 possible
triplets that can be predicted. We found that a random classifier
yields an R@100 of approximately 0.026% on this particular
non-uniform test set.

In order to evaluate how effectively each model deals with
the many rare classes in the tail of the data distribution, the
mean per-class accuracy (MPCA) will also be measured on
the test set. This metric effectively ignores class imbalance. It
will be used only to evaluate the prediction of single elements
(subjects, predicates or objects), and not the prediction of full
triplets. The large number of possible triplets and the fact that
relatively few of them appear in the test set make MPCA less
informative in that setting.

For an indication of how the models fare on the rare classes
only, a subset of the test set is constructed by keeping only
those triplets for which the subject, predicate and object each
has fewer than 1,000 instances across the full dataset (refer to
Fig. 6). We use counts over the full dataset merely as a proxy
for rarity, and remind the reader that elements in the training
set are distributed similarly to those in the full set.

V. EXPERIMENTAL RESULTS

This section consists of four parts: (A) quantitative results
where the performance metrics mentioned above are reported
for various versions of the model; (B) a behaviour analysis

where a richer investigation into the performance of visual
relationship recognition models is introduced; (C) qualitative
results where a few example outputs are discussed; and (D)
a sensitivity analysis of the assumption that bounding boxes
around object pairs are available.

A. Quantitative evaluation

Results from the various models for the three tasks of
predicting the subject, the predicate and the object over all
the samples in the test set are presented in Table I.

The MPCA values show that class-selective mini-batch
construction offers a significant improvement in performance
on the long tail-end of each individual task, but only if mini-
batches are constructed according to those same tasks. Fig. 7
demonstrates this, in that models with mini-batch construction
(the orange bars) perform consistently better across all models
than their standard mini-batch counterparts. Class-selective
mini-batch construction ensures a roughly uniform label distri-
bution for a particular task and as a result, MPCA is improved.
However, mini-batch construction based on a different task
seems to reduce MPCA for the subject and object tasks. It is
not clear how mini-batch construction based on labels from
one task influences the distribution of other tasks, making it
difficult to explain the poorer performance.

Relatively lower accuracies from all models for the pre-
diction of predicates verify the suspicion that predicates are
harder to recognise visually, possibly due to the greater di-
versity in their visual representation. The interaction between
objects is also in a sense abstract, and the manner in which pre-
trained models have been fitted to object classification datasets
may prevent effective transfer learning for predicates. Models
can be trained from scratch to test this hypothesis, but it will
require a dataset larger than VRD.

The results in Table I also indicate higher R@1 and
R@3 scores for models trained with standard mini-batching
compared to those that implement class-selective mini-batch
construction. This can be seen clearly in Fig. 7 where the
bars corresponding to standard mini-batching are consistently
higher. There seems to be a trade-off: class-selective mini-
batch construction contributes to better generalisation on the
many rare classes at a cost of accuracy on the small number
of dominant classes. Moreover, mini-batch construction with
respect to the object labels deals with this trade-off better
than in other tasks, as is evident from the smaller difference
between standard mini-batching and mini-batch construction
in Fig. 7. This could be due to the fact that objects are easier
to recognise than predicates, and suffer from a less severe long-
tailed distribution than the subjects. The severity of that long
tail in the distribution of the subject labels induces interesting
behaviour that will be discussed in section V-B.

Furthermore, it is noted that multitask learning does not
seem to significantly improve or worsen mean per-class ac-
curacy in the prediction of individual elements. Generally
speaking, it is not yet clear under which circumstances a
multitask model will improve performance but there are argu-
ments suggesting that more uniform label distributions in the
auxiliary tasks might be preferred for multitask learning to be
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Fig. 6. Plots of the number of relationship instances containing each subject label, predicate label and object label, across the entire VRD dataset.

TABLE I
QUANTITATIVE TEST RESULTS FROM VARIOUS VERSIONS OF OUR MODELS, ON PREDICTING SINGLE ELEMENTS OF VISUAL RELATIONSHIPS.

Model Description Predicting the subject Predicting the predicate Predicting the object

) MPCA R@I R@3 | MPCA R@I R@3 [ MPCA R@] R@3
ST-SB single-task, standard mini-batching 19.09 5329  73.63 4.51 3196 56.77 | 2892 4023  68.17
ST-BC-S single-task, batch construction from subject labels 3313  16.14  39.39 4.13 19.26 4136 | 2244 3820 63.74
ST-BC-P single-task, batch construction from predicate labels | 16.70  49.55  68.86 | 17.01 10.78  31.72 | 2520 3499 61.50
ST-BC-O single-task, batch construction from object labels 16.67  52.66  71.43 5.24 2793 5139 | 40.72  26.62  50.58
MT-SB multitask, standard mini-batching 1996  53.44  74.62 4.74 3224 5712 | 2834 40.03  68.94
MT-BC-S multitask, batch construction from subject labels 32.83 17.37 43.41 4.09 19.35 40.70 22.46 38.46 64.92
MT-BC-P multitask, batch construction from predicate labels 17.18 50.26  70.95 17.54 12.71 32.39 26.24 35.59 62.65
MT-BC-O | multitask, batch construction from object labels 17.52  53.05 72.08 6.27 2834  52.06 | 40.60 27.33 5191

effective [27]. In our case, the multitask models do provide
similar performance to the multiple single-task models, which
is useful if there are limitations on model size and complexity.
Reduced model capacity can also act as a form of regularisa-
tion.

Table II lists results from the different models predicting
full (subject, predicate, object) triplets. R@50 and R@100 on
the test set are reported, as is standard in the literature, and
we remind the reader that there are 700,000 possible classes in
this case and a random classifier would get an R@100 of about
0.026%. The results are quite similar to related work, but since
we focus only on the labelling of visual relationships, and not
on the localisation of individual objects, a direct comparison
would not mean much. Sensitivity to the tight bounding box
assumption is evaluated in section V-D.

As before, standard mini-batching produces better R@50
and R@100 compared to class selective mini-batch construc-
tion. However, when focusing only on the long tail-end of the
distribution (as explained at the end of section IV-C), we find

TABLE I
QUANTITATIVE TEST RESULTS FROM THE MODELS, ON PREDICTING FULL
VISUAL RELATIONSHIP TRIPLETS.

Model Predicting the full triplet
R@50 R@I00 [ Tail R@50 Tail R@100

ST-SB 49.18 58.18 13.10 17.74
ST-BC-S 23.87 30.84 20.96 27.82
ST-BC-P 31.79 42.10 16.93 23.58
ST-BC-O 40.66 48.58 18.95 24.59
MT-SB 50.27 59.69 12.50 18.95
MT-BC-S 24.95 32.37 19.35 27.21
MT-BC-P 33.56 44.08 17.94 26.41
MT-BC-O 41.83 49.47 20.76 26.20

that mini-batch construction does offer an improvement.

One may postulate that the predicate is most representative
of the visual relationship, but it appears that mini-batch con-
struction with the object labels is a better strategy. The ResNet-
18 layers might have an influence here, since they were pre-
trained for object classification and thus potentially less suited
for the more abstract concept of a predicate. With that in mind,
one may expect to gain a similar benefit from subject-based
mini-batch construction, but as before the severity of the long
tail over subject labels hinders learning.

A fundamental difference between the single- and multitask
settings is that the latter receives training signals from all
three elements of the visual relationship triplet simultaneously.
In some sense the multitask model learns to perceive the
full visual relationship, yet does not yield significantly better
scores compared to the single-task setting. This shows that it
is not immediately obvious that multitask learning will give
improved metrics, which again corroborates previous findings
[27].

A major limitation of these quantitative evaluations is that
they compare model predictions to a particular ground truth
label, despite the fact that visual relationships are often am-
biguous and a prediction different from the ground truth may
therefore not be completely wrong.

B. Behaviour analysis

The evaluations above were concerned with whether the
correct (ground truth) triplet occurs in the top 50 or top 100
predicted triplets. If this is not the case, there are a few specific
outcomes that may still be of interest. To gain deeper insights
into the behaviour of the models we consider five mutually
exclusive events, each predicated on all preceding events not
taking place. The following list describes each event, where
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the predicate element is coloured according to whether it is
correct (green) or incorrect (red).

1) subject, predicate, object: The correct visual relation-
ship triplet occurs in the top 50 predictions. This is what
is picked up when R@50 is determined.

2) subject, predicate, object: Event 1 does not occur, but
the correct subject and object appear together in the top
50 predictions with an incorrect predicate.

3) object, predicate, subject: Events 1 and 2 do not occur,
but the three correct elements appear together in the top
50 with the subject and object swapped.

4) object, predicate, subject: Events 1, 2 and 3 do not
occur, but the correct subject and object appear together
in the top 50, swapped and with an incorrect predicate.

5) other: Events 1, 2, 3 and 4 do not occur, that is, the
correct subject and object do not appear together (in
order or swapped) in the top 50 predictions.

Fig. 8 shows the percentages of these event occurring for
all the different models across the test set. Despite significant
differences in design, all models find the correct subject
and object with an incorrect predicate (event 2) at a similar
rate. This once again suggests that predicting the predicate is
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Fig. 7. MPCA (top) and R@1 (bottom) in predicting single relationship
elements, with standard mini-batching vs class-selective mini-batch construc-
tion with respect to the same element that is being predicted. Bars that are
connected can be compared directly.
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more challenging, even when mini-batch construction ensures
a uniform label distribution over the predicates. The same
happens when the subject and object labels are confused
(event 4): the correct predicate is not found in the top 50
predictions at a similar rate when compared to standard mini-
batching. Perhaps there is not enough visually discriminative
information in a predicate for a vision-based classifier to be
effective. Considering the many ambiguous predicate labels in
the VRD dataset, it is also likely that incorrect but semantically
sensible predicates are being predicted. Quantitatively eval-
uating semantic similarity would require significant manual
labour or the clever use of a language model. The latter could
make for fruitful future research.

Subject-based mini-batch construction seems to confuse the
object and subject labels at a consistently greater rate than
all other models. This may again be attributed to the severity
of the long tail in the distribution over subject labels. The
dominant subject class has around 15,000 samples, compared
to the dominant object and predicate labels that have around
6,000 each. Performing subject-based mini-batch construction
lessens the strong bias that exists in the subject labels, and as
a result the models may confuse the subjects and objects.

When a model confuses the subject and object, missing
the correct predicate (event 4) happens more frequently than
picking up the correct predicate (event 3). This might be an
indication that models can swap the subject and object labels
and reverse the predicate. For example, it is possible to have
(giraffe, taller than, person) as the ground truth but
have (person, shorter than, giraffe) as an acceptable
answer that would be regarded incorrect by a quantitative
evaluation. It remains difficult to say precisely what proportion
of outcomes that are categorised by the given events should
be classified as semantically correct predictions. An option
here would be to construct a mapping of semantically similar
predicates for event 2, predicates with a reflective property for
event 3, and a mapping of inverse predicates for event 4. The
construction of such mappings can potentially be automated
with the aid of a computational language model based on a
lexical database like WordNet [28].

The analysis in this section provides a means of measuring
specific kinds of misclassifications which can potentially be se-
mantically correct. Measuring performance with such semantic
ambiguities in mind can provide more reliable results and
comparisons, and more insight into model behaviour. More-
over, a single human-generated label may be unable to capture
the rich semantics necessary to describe visual relationships
and therefore be unable to provide an optimal training signal.
Again, it seems natural to incorporate a language model in
order to address this problem.

In light of the ambiguities that exist in visual relationships,
comparing model predictions to a particular ground truth label
does not offer the complete picture. The next section provides
further insight into the behaviour of our various models by
means of a qualitative evaluation.

C. Qualitative evaluation

Fig. 9 shows a number of test image samples and the top
five predicted triplets from four of the models. The first three
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standard mini-batching - 49.2 I 18.2 I 5.9 |542 | 21.4%
é batch construction from subjects o 23.9 I 16.8 | 14.5 | 19.8 | 25.1% I:l object, predicate, subject
2
%ﬂ batch construction from predicates 31.8 | 19.9 | 5.2 | 6.8 | 36.2%
z
. . I:I subject, predicate, object
batch construction from objects 40.7 18.9 | 9.4 | 7.8 23.1%
I:I subject, predicate, object
standard mini-batching 4 M5 | 18'8| 0 | 4‘5| i I:I object, predicate, subject
%5 batch construction from subjects 25.0 | 18.0 | 13.7| 192 | 24.1%
E batch construction from predicates | 33.6 I 19.7 1 4.9 I 6.8 | 34.9% I:l other
batch construction from objects 41.8 I 19.6 I 9.0 | 8.0 | 21.5%

Fig. 8. Percentage of occurrences of the five events described in section V-B, over the test predictions of the various models. Green and red in the legend

indicate whether the predicate is correctly or incorrectly classified.

examples were chosen randomly from those for which the
ST-SB model returned the correct visual relationship in its
top five predictions. The other three were chosen randomly
from those for which the ST-SB model did not return the
correct relationship in its top five predictions. Here mini-batch
construction based only on the object labels is highlighted,
since it outperformed those based on subjects and predicates.

For the second example shown in Fig. 9, with ground
truth label (giraffe, taller than, giraffe), ST-BC-O
gets the subject and object right but confidently predicts
in front of as the predicate; perhaps a forgivable error.
Similarly sensible errors can be seen throughout the examples
in Fig. 9, and further demonstrate the ambiguities present in
visual relationships. It is interesting to note that the behind
and in front of predicates, although appearing in the top
five predictions for the giraffe example, have very different
confidence scores. This behaviour is undesirable and further
motivates the inclusion of multi-modal semantics in the mod-
elling process.

The entity person is the dominating subject class, and
is predicted correctly in almost all applicable cases shown
in Fig. 9. Some predicted relationships for the (person,
on, horse) example may seem nonsensical, like (person,
behind, horse) or (person, next to, person). There is
actually another person in the background of the image, and
the models may be recognising the overrepresented person
class despite a lack of sufficient visual cues.

Models trained with class-selective mini-batch construction
appear to make predictions with relatively high confidence
scores. There are 700,000 normalised confidence scores, so
high scores in the top five predictions imply exceptionally low
scores for the remaining 699,995 relationships. It is interesting
that the confidence scores are this heavily skewed under an
arguably more uniform training data distribution.

For the bottom three examples in Fig. 9 we see some
examples where the models swap the positions of the subject
and object labels and misclassify the predicate, as investigated

in section V-B. This is seen in the example where three of the
models predict (tree, next to, bear) instead of the ground
truth (bear, adjacent to, tree). These misclassifications
may again be forgivable, especially since adjacent to is one
of the more obscure predicates in the dataset.

In the first example in the bottom row of Fig. 9, the models
return predicates other than the ground truth on, despite on
being the dominating predicate in the dataset. This may be due
to the strong visual cues in favour of interactions between the
person and their items of clothing, rather than skateboard
which is less common in the dataset.

The predicates feed and adjacent to are rare tail-end
predicates that are misclassified even under the class-selective
mini-batch construction strategies. Nevertheless, for those ex-
amples many of the top predicted relationships do seem to
be in line with the content of the images. Perhaps this kind
of error can be mitigated with the inclusion of multi-modal
semantics in the training procedure.

D. Bounding box perturbation

All the models developed in this paper assume knowledge
of tight bounding boxes around object pairs in images. The
final experiment is to test the sensitivity of one of the models
to perturbations on the bounding box coordinates, for an
indication of how the model might respond in practice when
combined with an automatic object detector.

The intersection over union (IOU) can be used to measure
the degree of perturbation. For two bounding boxes B; and
Bs, the 10U is defined as
area(B1 N Bs)
area(B; U Bs)’
and gives the percentage overlap between the two bounding
boxes. IOU, also referred to as the Jaccard index, is a standard
metric used in the evaluation of object detectors.

We add varying levels of Gaussian noise to the four corners
of each bounding box in the VRD dataset. Specifically, we

10U = (1)
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person, on, horse giraffe, taller than, giraffe
Model
person, on, horse 12.0 | giraffe, taller than, giraffe 25.1 car, behind, car 20.6
person, ride, horse 7.0 | giraffe, in front of, giraffe 20.8 | car, in front of, car 13.1
ST-SB person, wear, horse 5.3 | giraffe, next to, giraffe 9.5 | car, next to, car 7.2
person, has, horse 5.2 | giraffe, above, giraffe 7.6 | car, on, car 4.7
person, on, person 3.1 giraffe, behind, giraffe 7.2 | car, near, car 4.3
person, on, horse 18.7 | giraffe, in front of, giraffe 98.6 | car, next to, car 8.5
person, has, horse 11.8 | giraffe, taller than, giraffe 0.4 | car, behind, car 7.8
ST-BC-O person, wear, horse 7.7 | giraffe, behind, giraffe 0.4 | car, in front of, car 5.0
person, in front of, horse 4.3 giraffe, next to, giraffe 0.1 car, next to, van 3.8
person, next to, person 3.7 | giraffe, beside, giraffe 0.1 car, has, car 3.7
person, wear, horse 9.3 giraffe, taller than, giraffe 45.4 | car, behind, car 14.1
person, on, horse 6.8 | giraffe, in front of, giraffe 18.9 | car, in front of, car 11.6
MT-SB person, wear, person 3.4 | giraffe, next to, giraffe 8.6 | car, next to, car 7.2
person, behind, horse 3.1 giraffe, behind, giraffe 7.3 | car, on, car 4.6
person, has, horse 2.6 | giraffe, under, giraffe 2.6 | car, near, car 3.4
person, on, horse 13.2 | giraffe, in front of, giraffe 92.5 | car, behind, car 8.7
person, above, horse 12.0 | giraffe, taller than, giraffe 6.0 | car, in front of, car 6.9
MT-BC-O | person, behind, horse 6.3 | giraffe, behind, giraffe 0.9 | car, behind, van 53
person, ride, horse 53 giraffe, next to, giraffe 0.3 car, in front of, van 4.3
person, has, horse 4.8 | giraffe, beside, giraffe 0.07 | car, on, car 4.2
person, on, skateboard bear, adjacent to, tree person, feed, elephant
g 1 1 L
Model
person, wear, person 11.8 bear, next to, grass 3.6 | person, above, street 4.3
person, wear, shirt 10.5 | bear, on, grass 3.3 | person, on, street 4.1
ST-SB person, wear, skateboard 10.0 | bear, next to, person 2.5 | person, under, street 3.0
person, wear, shoes 5.4 | bear, next to, tree 2.3 | sky, above, street 1.7
person, wear, pants 4.4 | bear, on, person 2.3 | sky, on, street 1.6
person, wear, skateboard ~ 25.6 | tree, next to, bear 78.7 | person, under, elephant 16.4
person, on, skateboard 10.0 | bear, next to, bear 11.2 | person, in front of, elephant  16.0
ST-BC-O person, has, skateboard 9.6 | tree, near, bear 2.7 | person, above, elephant 10.0
person, ride, skateboard 5.2 | person, next to, bear 0.7 | person, near, elephant 4.7
person, wear, shoes 3.5 | tree, right of, bear 0.6 | person, behind, elephant 4.1
person, wear, shirt 15.5 bear, next to, grass 4.3 | person, on, street 4.7
person, wear, person 9.6 | bear, next to, bear 3.5 | person, under, street 3.9
MT-SB person, wear, skateboard 6.9 | bear, on, grass 3.1 | person, above, street 34
person, wear, shoes 6.1 | bear, on, bear 2.6 | person, on, person 2.4
person, wear, pants 4.1 | bear, behind, grass 2.5 | person, under, person 1.9
person, wear, skateboard ~ 20.0 | tree, next to, bear 87.7 | person, in front of, elephant 7.4
person, wear, shoes 14.0 | bear, next to, bear 2.7 | person, near, elephant 6.9
MT-BC-O | person, wear, helmet 12.0 | tree, behind, bear 0.8 | person, under, elephant 5.1
person, has, skateboard 3.8 | tree, beside, bear 0.8 | person, on, elephant 34
person, wear, pants 3.7 | tree, next to, grass 0.7 | person, above, elephant 24

Fig. 9. Top five visual relationship predictions on example test images, with confidence scores, as returned by four of the models. The ground truth label is

shown above each image.

fix the mean of a Gaussian distribution from which noise
is sampled at zero and use the following set of standard
deviations: {0, 5,10, 15, 20,45, 55, 65, 75}. These standard de-
viations result in intersection over union measures from 100%
down to around 50%, which is a standard threshold used in
the object detection literature.

When bounding boxes are perturbed, it is possible that
the resulting box is outside the image. If after 50 random
perturbations any pixels of the resulting bounding box are

not within image bounds, the ground truth bounding box for
that sample is left as is. We show the resulting mean IOU
between the original bounding boxes of the entire test set and
their random perturbations as percentages in Fig. 10. It may
happen that perturbed bounding boxes remain within the image
bounds but no longer contain the visual relationship at all,
so we expect R@50 scores to decrease with increased noise
levels.

Results are shown for the multitask standard mini-batching
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R@50

1000 95.0 90.0 85.0 780 700 64.0 60.0 56.0 52.0

mean intersection over union

Fig. 10. R@50 on the VRD test set with perturbed bounding boxes, from the
multitask with standard mini-batching model. Perturbation IOU ranges from
100% to 52%.

model, since in the previous experiments it performed best on
average. Note that the model tested previously is used here
without retraining it on the perturbed bounding boxes. As
expected there is a decline in R@50 scores, but the decline
occurs at a fairly low rate. Performance even remains roughly
constant over different noise levels, which indicates some
robustness under perturbations of the bounding boxes.

VI. CONCLUSION

We investigated the potential of class-selective mini-batch
construction and multitask learning for the task of visual
relationship recognition; a challenging task in computer vision
given the large number of possible relationships as well as a
typical long-tailed distribution over those relationships.

The proposed mini-batch construction strategy seems to
improve performance on the tail of the data distribution, but
at the cost of performance on the small number of dominating
classes. Multitask learning does not seem to improve or
impede performance when compared to single-task learning,
but provides other benefits such as a reduced model capacity.
Results also suggest that it can be more difficult to model
and recognise the predicate of a relationship, and that current
pre-trained models may not be suitable for that task.

A novel evaluation approach was introduced to analyse
the frequency at which three specific types of errors occur
in the top 50 predictions of a full relationship triplet. This
approach can be viewed as an extension to the existing recall-
at-k metric, and provides deeper insight into the behaviour
of models. Further analysis on those types of errors can
lead to more effective models. We demonstrated a number
of semantically sensible misclassifications through a few test
examples.

The sensitivity of the best performing model to perturba-
tions in the bounding boxes around pairs of interacting objects
was also investigated, and some level of robustness to such
perturbations was found.

It is also possible to further extend the evaluation methods.
R@50 is limited in that it relies strongly on hard comparison
with ground truth labels, but misclassifications can often be
semantically correct due to the ambiguities inherent in visual
relationships. It may therefore be useful to design additional
metrics that can measure semantic similarity. WordNet [28]
is a lexical database of so-called synsets that group nouns,

verbs, adjectives and adverbs that express the same concept.
Model outputs can then automatically be compared to synsets
for better evaluation. The Visual Genome dataset [5] already
contains mappings from class labels to WordNet synsets, but
this information is not yet commonly used in model evaluation.

Another extension of the work in this paper involves incor-
porating semantics directly into the modelling process. To this
end, a language model can be used to mitigate the inherent
ambiguity in visual relationship labels. Lu er al. [4] employ
a language model to obtain a visual relationship embedding
space, but there may be other ways to do so. For example,
a language model can be used to re-score the outputs of a
classifier and thus encode semantics (as is commonly done
in speech recognition). In this way, model confidence in
relationship triplets that would be unlikely from a semantic
point of view, such as (giraffe, drive on, umbrella), can
be suppressed. Techniques such as /NV-best list re-scoring [29],
[30], and lattice re-scoring [31], [32] can be considered as
potential re-scoring strategies.
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