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Ear-based biometric authentication through the 
detection of prominent contours

Aviwe Kohlakala and Johannes Coetzer

Abstract—In this paper novel semi-automated and fully auto-
mated ear-based biometric authentication systems are proposed.
The region of interest (ROI) is manually specified and auto-
matically detected within the context of the semi-automated and
fully automated systems, respectively. The automatic detection
of the ROI is facilitated by a convolutional neural network
(CNN) and morphological postprocessing. The CNN classifies
sub-images of the ear in question as either foreground (part
of the ear shell) or background (homogeneous skin, hair or
jewellery). Prominent contours associated with the folds of the ear
shell are detected within the ROI. The discrete Radon transform
(DRT) is subsequently applied to the resulting binary contour
image for the purpose of feature extraction. Feature matching
is achieved by implementing an Euclidean distance measure. A
ranking verifier is constructed for the purpose of authentication.
In this study experiments are conducted on two independent
ear databases, that is (1) the Mathematical Analysis of Images
(AMI) ear database and (2) the Indian Institute of Technology
(IIT) Delhi ear database. The results are encouraging. Within
the context of the proposed semi-automated system, accuracies
of 99.20% and 96.06% are reported for the AMI and IIT Delhi
ear databases respectively.

Index Terms—ear shell, biometric authentication, convolu-
tional neural network

I. INTRODUCTION

ABiometric system performs personal authentication based
on a specific physiological or behavioural characteristic

on an improved Adaboost algorithm and an active shape
model (ASM) was proposed by Yuan and Mu [1], while an
automated ear detection technique based on the combined
use of the circular Hough transform and anthropometric ear
proportions was presented by Vélez, Sánchez, Moreno and
Sural [2].

A variety of algorithms have been proposed for extracting
discriminative features from ear images. The extracted hand-
crafted features are generally categorised into the following
three types: geometrical features, local appearance-based fea-
tures, and global features.

A number of geometrical feature extraction techniques that
characterise the shape of the ear have been presented. Othman,
Alizadeh and Sutherland [3] proposed a novel ear description
technique based on a shape context descriptor. Annapurani,
Sadiq and Malathy [4] proposed a technique that fuses the
shape of the ear shell and tragus in such a way that a feature
template is obtained. Omara, Zhang and Zuo [5] proposed a
technique that uses the lines of minimum and maximum height
associated with the ear’s contour image to describe the outer
helix.

Extensive techniques have been suggested to extract local
appearance-based features from ear images. The scale invariant
feature transform (SIFT) algorithm was employed by Anwar,
Ghany and ElMahdy [6] and a robust algorithm for local
similarity invariant extraction was proposed by Galdámez,
Arrieta and Ramón [7]. A feature extraction technique based
on the fusion of texture-based features (through local binary
patterns) and geometric features (through the Laplacian filter)
was proposed by Jiddah and Yurtkan [8].

Within the context of global feature extraction, tech-
niques such as principal component analysis as proposed
by Querencias-Uceta, Rı́os-Sánchez and Sánchez-Ávila [9],
and a technique based on a combination of the wavelet and
discrete cosine transforms as proposed by Ying, Debin and
Baihuan [10] have been investigated.

A number of feature matching protocols for quantifying
the difference between two ears have been proposed, which
include the utilisation of the Euclidean distance ([4], [7]), and
the Hamming distance [4], as well as a minimum distance
classifier [6], a k-nearest neighbour (KNN) classifier [8] and
a nearest neighbour classifier that is based on a weighted
distance [10].

As previously mentioned, the extraction of deep features
from ear images has been investigated more recently. A num-
ber of deep learning techniques have been proposed. Dodge,

of the individual. Biometric systems are increasingly utilised 
for security purposes, as they are more reliable and secure 
than most traditional modes of personal authentication, such as 
access cards, personal identification numbers and passwords. 
The human ear is one of the most distinctive human biometric 
traits that can be employed to establish or verify an individual’s 
identity. Furthermore, the human ear constitutes a relatively 
stable structure that evolves very little with aging and may be 
acquired in a non-intrusive manner.

The concept of ear-based biometric authentication emerged 
relatively recently as an active field of research. Traditional 
systems rely on the extraction of hand-crafted features, while 
modern systems are able to learn so-called deep features by 
employing neural networks. A traditional ear-based biometric 
authentication system typically involves (1) segmentation of 
the ear or the detection of the region of interest (ROI), followed 
by (2) feature extraction and (3) feature matching (recognition 
or verification).

Different types of ear segmentation techniques, that is the 
localisation of the ear shell within an ear image have been 
investigated. A semi-automated ear detection technique based
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Mounsef and Karam [11] used deep neural networks for the
explicit purpose of feature extraction. Kacar and Kirci [12]
introduced a novel architecture called ScoreNet for uncon-
strained ear recognition; the architecture fuses a modality
pool with a learning approach based on deep cascaded score-
level fusion. Hansley, Segundo and Sarkar [13] proposed an
unconstrained ear recognition framework based on a convo-
lutional neural network (CNN) model for ear normalisation
and description, which is subsequently fused with hand-crafted
features.

In this paper novel semi-automated and fully automated ear-
based biometric authentication systems are developed. Within
the context of the fully automated system, a CNN is designed
for the purpose of facilitating the automatic detection of a
suitable ROI which contains the entire ear shell. Within the
context of the semi-automated system, the ROI is manually se-
lected. Robust prominent contours that correspond to the folds
of the ear shell are subsequently isolated within the ROI. These
contours serve as input for a hand-crafted feature extraction
protocol that is based on the calculation of the discrete Radon
transform (DRT). A template matching protocol is employed
that quantifies the difference between corresponding feature
vectors through the calculation of the Euclidean distance. A
rank-based verifier is finally constructed for the purpose of
establishing the authenticity of a questioned ear image. The
aforementioned steps are discussed in more detail in Section II.

The systems proposed in this paper are evaluated on the
Mathematical Analysis of Images (AMI) and Indian Institute
of Technology (IIT) Delhi databases. A detailed description
of these databases is provided in Section III. In Table VII,
the proficiency of existing systems also evaluated on the
above-mentioned databases are compared to that of the semi-
automated system proposed in this paper.

The paper is structured as follows. Section II details the
design of the proposed systems. Section III introduces the data,
outlines the experimental protocol, and analyses the results.
Possible avenues for future research are laid out in Section IV.

II. SYSTEM DESIGN

An overview of the enrollment and authentication stages
of the proposed semi-automated and fully automated ear-
based biometric authentication systems are conceptualised in
Figure 1.

A. Image segmentation

In the case of the semi-automated system a suitable ROI that
contains the ear shell is manually selected, while for the fully
automated system a suitable ROI is automatically detected.
A CNN-based model (see Figure 2) is proposed to facilitate
automatic ROI detection. The proposed CNN consists of four
convolutional layers, where each of these layers is followed by
a batch normalisation (BN), rectified linear unit (ReLU) and/or
max pooling layer. The final pooling layer is followed by two
fully connected (FC) layers. A detailed description pertaining

to the mathematical underpinning of the CNN can be found
in ([14], [15]).

For each database, ear images from different individuals
are used for training, validation and evaluation purposes.
The training set (seen data) is used to learn the parameters
(weights) for the CNN in question, the validation set is used for
avoiding overfitting by enforcing a stopping condition, while
the evaluation set is used to measure the performance of the
CNN on unseen data.

Each ear image (see Figure 3 (a)) is subdivided into
overlapping regions by sliding a 82×82 square window across
the image in question (see Figure 3 (b)). Each sub-image in
the training and validation set is manually annotated as either
positive (foreground) or negative (background). The positive
training sub-images (see Figure 4) are representative of the
foreground and typically forms part of the ear shell, while the
negative sub-images (see Figure 5) represent the background
and typically contains homogeneous skin, hair or jewellery.
The objective of the CNN is to classify each patch within a
test image as either foreground or background (see Figure 6).

The CNN is trained by employing stochastic gradient de-
scent with momentum (SGDM) [16]. The weights of the first
convolutional layer are initialised using normally distributed
random numbers. The proposed CNN is trained from scratch.
No fine-tuning of an existing pre-trained network (transfer
learning) is conducted. After each epoch, the accuracy of the
network is gauged by employing a validation set in order to
avoid overfitting [17]. Morphological closing is subsequently
applied to the resulting binary image (see Figure 6 (b) and (d))
in order to reduce noise and render the detected foreground
boundaries more regular (see Figure 7).

B. Contour detection

After a Gaussian filter is applied to an input ear image (see
Figure 8 (a)), a smoothed version (see Figure 8 (b)) is
obtained. Canny edge detection is subsequently performed on
the preprocessed image in Figure 8 (b), which results in a
binary edge image (see Figure 9 (a)). Morphological dilation is
applied in order to connect disconnected contours and remove
noise (see Figure 9 (b)). Finally, the manually selected or
automatically detected ROI is employed as a mask for the
purpose of removing all of the edges not associated with ear
contours, followed by the removal of the remaining small
connected components (see Figure 10).

In the case of the IIT Delhi ear database, the same protocol
(as the one for the AMI ear database) has been followed,
except for the fact that the image borders are also cleared
during the ROI-masking. In Figure 11 the detected prominent
contours are presented for the IIT Delhi ear database.

C. Feature extraction and normalisation

Feature vectors are extracted from the prominent contours
by applying the DRT to the binary edge image. The DRT
is obtained when projections of an image are calculated
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Fig. 1: Schematic representation of the system design.

Fig. 2: The proposed CNN architecture for the purpose of automati-
cally detecting a suitable ROI within an ear image.

from equally distributed angles within the interval θ ∈
[0◦, 180◦) [18]. The DRT of the binary image I(m,n) of size
M × N pixels containing the prominent contours associated

(a) (b)

Fig. 3: (a) An example of a grey-scale image of size 702×492 pixels
from the AMI ear database. (b) Example of the image depicted in
(a) after being partitioned into 126 overlapping 82×82 sub-images.

with the ear shell can be expressed as follows

Rj =
MN∑

i=1

δijIi, for j = 1, 2, . . . , βΘ, (1)

where Rj denotes the jth beam-sum which constitutes the
cumulative intensity of the pixels that overlap with the jth
beam, β denotes the number of non-overlapping beams per
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(a) (b) (c)

Fig. 4: Examples of positively labelled sub-images of size 82×82
pixels.

(a) (b) (c)

Fig. 5: Examples of negatively labelled sub-images of size 82×82
pixels.
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Fig. 6: (Left) The probability that a sub-image belongs to the
foreground (contains contours associated with the shell of an ear)
is represented by a shade of blue. (Right) Binary versions of the
corresponding images on the left, after a suitable threshold has been
applied.

angle, Θ represents the total number of angles and δij denotes
the weight indicative of the contribution of the ith pixel
towards the jth beam-sum. A detailed description of the theory
and implementation of the DRT can be found in [18].

Examples of contour images and their corresponding DRTs
within the context of the AMI and IIT Delhi ear databases are
depicted in Figures 12 and 13 respectively. In order to ensure
translation and scale invariance, the zero-valued components
are removed from each projection profile, after which the

(a) (b)

Fig. 7: The automatically detected ROIs after a morphological closing
operation has been applied to the binary images on the right of
Figure 6.
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Fig. 8: (a) Input image from the AMI ear database. (b) Smoothed
version of the image on the left after the application of a Gaussian
filter.
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Fig. 9: (a) Original edge map within the context of the AMI ear
database. (b) Dilated edge image corresponding to the map on the
left.
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Fig. 10: AMI ear database. (a) The ROI, which is automatically
detected through deep learning, is enclosed by the red boundary.
(b) Prominent contours after ROI-masking and the removal of small
connected components.
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Fig. 11: IIT Delhi ear database. (Left) These images are associated
with three different individuals. The boundaries of the respective
automatically detected ROIs are indicated in red. (Right) Detected
prominent contours associated with the images on the left after the
border has been cleared and small connected components have been
removed.
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Fig. 12: AMI ear database. (a) Prominent contours. (b) DRT image
(where each column represents a projection profile) corresponding to
the contour image on the left.

dimension of each projection profile is adjusted to a predefined
value of 160 through linear interpolation. The DRT image
intensities are also normalised in such a way that the standard
deviation across all features equals one (see Figure 14).

D. Feature matching and verification

The dissimilarity between two feature sets is quantified
by the average Euclidean distance between the corresponding
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Fig. 13: IIT Delhi ear database. (a) Prominent contours. (b) DRT
image (where each column represents a projection profile) corre-
sponding to the contour image on the left.
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Fig. 14: (a) Normalised feature set that corresponds to the DRT image
in Figure 12 (b). (b) Normalised feature set that corresponds to the
DRT image in Figure 13 (b).

normalised feature vectors. The Euclidean distance between a
normalised questioned and training feature vector, denoted by
x and y respectively, is calculated as follows

DEucl(x, y) =
√

(x− y)′(x, y)

=
√
(x1 − y1)2 + · · ·+ (xd − yd)2

. (2)

In order to ensure rotational invariance, the normalised feature
vectors associated with a questioned sample are iteratively
shifted (with wrap-around) with respect to those belonging to
a template. The alignment is deemed optimal when the average
Euclidean distance is a minimum.

A questioned sample is compared to a reference sample
(known to belong to the claimed individual), as well as
to samples belonging to other (ranking) individuals. The
dissimilarity between a questioned ear and the reference ear,
as well as the respective dissimilarities between the questioned
ear and those belonging to the ranking individuals are placed
in a list, with the smallest dissimilarity at the top of the list and
the largest dissimilarity at the bottom of the list. Verification
is subsequently based on the relative position (ranking) of the
dissimilarity associated with the reference ear in the list.

III. EXPERIMENTS

A. Data

Experiments are conducted on (1) the AMI ear dataset
and (2) the IIT Delhi ear dataset. The AMI ear database con-
sists of 700 images from 100 individuals. For each individual,
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six images of the right and one image of the left ear are
available and each ear image was captured at a resolution
of 702×492 pixels. The IIT Delhi ear database consists of 375
images that belong to 125 individuals, i.e. three images per
individual. Each of these images has a resolution of 272×204
pixels. Figures 15 and 16 depict samples of ear images from
both databases.

(a) (b) (c)

Fig. 15: Examples of images from the AMI ear database [19].

(a) (b) (c)

Fig. 16: Examples of images from the IIT Delhi ear database [20].

B. Protocol
In this study three main experiments are conducted to

investigate the proficiency of the proposed semi-automated
and fully automated ear-based authentication systems. The
experimental protocols are dichotomized as follows:

• Experiment 1. This experiment investigates the profi-
ciency of the proposed semi-automated ear-based authen-
tication system where the ROI is manually specified.
This experiment is further dichotomized into two sub-
experiments, i.e. Experiment 1A and Experiment 1B,
which respectively considers so-called ”Rank-1” and
”Optimal ranking” scenarios as explained later in this
section.

• Experiment 2. This experiment investigates the profi-
ciency of the proposed automated ROI detection algo-
rithm.

• Experiment 3. This experiment investigates the profi-
ciency of the proposed fully automated ear-based authen-
tication system, in which case the ROI is automatically
detected through deep learning. Similar to Experiment 1,
this experiment is further dichotomized into two sub-
experiments, i.e. Experiment 3A and Experiment 3B.

It is assumed that only one positive sample is available for
each individual enrolled into the system which serves as a
reference sample for the corresponding individual during tem-
plate matching. A k-fold cross-validation protocol is employed
for each experiment as outlined below:

Fig. 17: Conceptualisation of the data partitioning protocol within the
context of Experiment 1A, for the AMI ear database. Within each
fold, 49 templates associated with 49 ranking individuals constitute
the ranking set (dark gray), while three images associated with each
of the respective 51 evaluation individuals constitute the evaluation
set (light gray). One of the aforementioned evaluation individuals (⊕)
constitutes the claimed individual. Technically, one image associated
with the claimed individual is also employed for ranking purposes.

Fig. 18: Conceptualisation of the data partitioning protocol within the
context of Experiment 1A, for the AMI ear database. Within each
fold, 49 templates associated with 49 ranking individuals constitute
the ranking set (dark gray), while three images associated with each
of the respective 51 evaluation individuals constitute the evaluation
set (light gray). One of the aforementioned evaluation individuals (⊕)
constitutes the claimed individual. Technically, one image associated
with the claimed individual is also employed for ranking purposes.

Experiment 1A (Rank-1 scenario): In this scenario a
questioned ear is only accepted as authentic when the distance
associated with the reference sample belonging to the claimed
individual is the smallest, in which case the questioned ear has
a ranking of one. This is referred to as the rank-1 scenario.
For this experiment both of the ear databases are partitioned
into two sets, that is the evaluation and ranking sets. For
the AMI ear database, a 100-fold cross-validation procedure
is conducted as depicted in Figure 17. A similar 125-fold
cross-validation protocol is employed within the context of
the IIT Delhi ear database (see Figure 18). The proposed data
partitioning protocol for the evaluation individuals, within the
context of the Rank-1 scenario and the AMI ear database is
depicted in Figure 19. A similar data partitioning protocol is
followed within the context of the evaluation individuals for
the IIT Delhi ear database.
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Fig. 19: Conceptualisation of the data partitioning protocol for the
evaluation individuals within the context of Experiment 1A and the
AMI ear database.

Experiment 1B (Optimal ranking scenario): In this
scenario, the system is rendered more lenient such that a
questioned ear is accepted when it has a ranking that is
better than or equal to a very specific optimal ranking, which
may be greater than one. The optimal ranking is estimated
by considering a suitable data partitioning protocol. This is
referred to as the optimal ranking scenario. Within the context
of this experiment both of the ear databases are partitioned
into a ranking set, an optimisation set and an evaluation set.
The data partitioning and cross-validation protocol for both
databases is presented in Figure 20.

As is the case for Experiment 1A, a 100-fold and 125-fold
cross validation procedure are conducted for the AMI and IIT
Delhi ear databases respectively. For a specific fold, cross-
validation is conducted across the respective optimisation
individuals according to the protocol depicted in Figure 19.
The estimated optimal ranking based on both the average error
rate (AER) and the equal error rate (ERR) is then employed to
authenticate the ears associated with the evaluation individuals.

(a)

(b)

Fig. 20: The first three (out of a total of 100 and 125) folds of
the proposed data partitioning and cross validation protocol within
context of Experiment 1B for (a) the AMI ear database and (b) the
IIT Delhi ear database.

Experiment 2 (Automated ROI detection): In this experi-
ment the manually selected (specified) ROI serves as a ground
truth for evaluating the proposed automated ROI-detection
protocol. For both of the databases, the data is partitioned
as depicted in Figure 21.

Fig. 21: Conceptualisation of the 4-fold cross validation protocol
within the context of Experiment 2 for both the AMI and IIT Delhi
ear databases.

Experiment 3 (Fully automated ear-based authenti-
cation): This experiment evaluates the proficiency of the
proposed fully automated ear-based authentication system,
where a suitable ROI is automatically detected through deep
learning. Both of the ear databases are partitioned into four
sets, that is a training set, a validation set, a ranking set and
an evaluation set. Within the context of this experiment both
the ”Rank-1” and ”Optimal ranking” scenarios are investigated
in Experiment 3A and Experiment 3B, respectively.

C. Results

In this section, the performance of the proposed systems
is reported and a comprehensive analysis of the results is
presented. Table I lists the statistical measures employed for
the purpose of quantifying the proficiency of the proposed
systems. The statistical measures employed in this study
constitute the most frequently utilised performance parameters
for the purpose of evaluating ear-based biometric systems and
include the accuracy (ACC), the false acceptance rate (FAR)
and the false rejection rate (FRR) [21]. The results presented
in Tables II, III, IV, V, and VI constitute averages across the
relevant folds.

TABLE I:
THE STATISTICAL PERFORMANCE MEASURES EMPLOYED.

THE NUMBER OF TRUE POSITIVES, FALSE POSITIVES,
TRUE NEGATIVES, AND FALSE NEGATIVES ARE DENOTED

BY TP, FP, TN, AND FN, RESPECTIVELY.

Performance measure Definition

False acceptance rate (FAR) FP/(FP+TN)
False rejection rate (FRR) FN/(FN+TP)
Average error rate (AER) (FAR+FRR)/2

Equal error rate (ERR) FAR ≈ FRR
Precision (PRE) TP/(TP+FP)

Recall (REC) TP/(TP+FN)
Accuracy (ACC) (TP+TN)/(TP+FN+FP+TN)

F1 score 2 * PRE * REC/(PRE+REC)
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Experiment 1A (Rank-1 scenario): The results are pre-
sented in Table II. It is clear that the proposed semi-automated
system is more proficient in the case of the AMI ear database.
This is presumably due to the fact that these images have a
higher resolution.

TABLE II:
THE RESULTS FOR THE PROPOSED SEMI-AUTOMATED
EAR-BASED AUTHENTICATION SYSTEM WITHIN THE

CONTEXT OF THE RANK-1 SCENARIO.

Performance measure AMI ear database IIT Delhi ear database
FAR 0.04% 0.18%
FRR 4.76% 13.00%
AER 2.40% 6.59%
ACC 95.24% 89.12%

Experiment 1B (Optimal ranking scenario): The AER
and EER were investigated as optimisation criteria for select-
ing the optimal ranking. The results are presented in Table III.
For the AMI and IIT Delhi ear databases, only questioned ear
images with a ranking of 5 (or better) and a ranking of 7 (or
better) are accepted respectively.

TABLE III:
THE RESULTS FOR THE PROPOSED OPTIMISED

SEMI-AUTOMATED EAR-BASED AUTHENTICATION SYSTEM
WITHIN THE CONTEXT OF (A) THE AMI DATABASE (WITH

AN OPTIMAL RANKING OF 5) AND (B) THE IIT DELHI
DATABASE (WITH AN OPTIMAL RANKING OF 7).

Performance measure Rank-5
FAR 1.75%
FRR 0.45%
AER 1.10%
ACC 99.20%

(a)

Performance measure Rank-7
FAR 5.40%
FRR 3.63%
AER 4.52%
ACC 96.06%

(b)

Experiment 2 (Automated ROI detection): In Table IV
the results for the AMI and IIT Delhi ear databases are
presented. The precision, recall, accuracy, and F1 score are
employed as performance measures. In order to visually com-
pare the manually selected and automatically detected ROIs,
a few examples within the context of the AMI and IIT Delhi
ear databases are presented in Figures 22 and 23 respectively.

Experiment 3A (Rank-1 scenario): The results for the
proposed fully automated system within the context of the
Rank-1 scenario are presented in Table V. The low FAR and
high FRR are not unexpected.

Experiment 3B (Optimal ranking scenario): When op-
timal rankings (which do not necessarily correspond to a
ranking of one) are investigated within the context of the
proposed fully automated system, a significant improvement
in proficiency is achieved (see Table VI). Only questioned ear
images with a ranking of 7 (or better) and a ranking of 10
(or better) are accepted within the context of the AMI and
IIT Delhi ear databases respectively. A similar improvement
in proficiency is evident when the results presented in Table III

TABLE IV:
RESULTS FOR THE PROPOSED AUTOMATED ROI

DETECTION PROTOCOL.

Performance measure AMI ear database IIT Delhi ear database
PRE 80.30% 70.26%
REC 90.88% 81.86%
ACC 91.01% 87.93%
F1 87.66% 73.40%

Fig. 22: Examples of ear images from the AMI ear database for
the purpose of comparing the manually selected and automatically
detected ROIs. The manually selected (specified) ROI serves as a
ground truth for evaluating the proposed automated ROI detection
protocol. The true positive, true negative, false positive and false
negative pixels are depicted in white, black, green and pink respec-
tively.

Fig. 23: Examples of ear images from the IIT Delhi ear database
for the purpose of comparing the manually selected and automatically
detected ROIs. The manually selected (specified) ROI serves as a
ground truth for evaluating the proposed automated ROI detection
protocol. The true positive, true negative, false positive and false
negative pixels are depicted in white, black, green and pink respec-
tively.
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are compared to those presented in Table II within the context
of the proposed semi-automated system.

TABLE V:
THE RESULTS FOR THE PROPOSED FULLY AUTOMATED

EAR-BASED AUTHENTICATION SYSTEM WITHIN THE
CONTEXT OF THE RANK-1 SCENARIO.

Performance measure AMI ear database IIT Delhi ear database
FAR 1.12% 2.45%
FRR 20.50% 39.25%
AER 10.81% 20.85%

TABLE VI:
THE RESULTS FOR THE PROPOSED OPTIMISED FULLY
AUTOMATED EAR-BASED AUTHENTICATION SYSTEM

WITHIN THE CONTEXT OF (A) THE AMI DATABASE (WITH
AN OPTIMAL RANKING OF 7) AND (B) THE IIT DELHI

DATABASE (WITH AN OPTIMAL RANKING OF 10).

Performance measure Rank-7
FAR 3.11%
FRR 10.23%
AER 6.67%

(a)

Performance measure Rank-10
FAR 5.38%
FRR 15.45%
AER 10.46%

(b)

Table VII places the proficiency of the proposed optimised
semi-automated ear-based authentication system into perspec-
tive by comparing it to a number of recently developed systems
that were also evaluated on either the AMI or IIT Delhi ear
databases.

TABLE VII:
A SUMMARY OF EXISTING FEATURE EXTRACTION AND
MATCHING TECHNIQUES FOR EAR-BASED BIOMETRIC

AUTHENTICATION, AND THE REPORTED PERFORMANCE
RATES WITHIN THE CONTEXT OF THE AMI AND IIT DELHI

EAR DATABASES.

Publication Feature extraction
technique

Feature matching
technique AMI (%) IIT Delhi (%)

Accuracies

This paper DRT Euclidean
distance 99.20 96.06

[8]

LBPs
and

Laplacian
filter

KNN
classifier 80 · · ·

[4]

Fusion of
features

describing
the shell

and tragus

Euclidean
distance 100 99.97

Recognition rates

[6] SIFT
A minimum

distance
classifier

100 95.20

[5]

Geometrical
features

describing
the outer helix

Euclidean
distance · · · 99.6

D. Software and hardware employed

The systems proposed in this paper were developed in
MATLABTM (versions R2017b and R2018a). The following
toolboxes were employed:

• Image Processing ToolboxTM (version R2017b);
• Neural Network ToolboxTM (version R2018a); and
• Statistics and Machine Learning ToolboxTM (ver-

sion R2018a).

The algorithms were implemented on an 8th Generation Intel®

CoreTM i5 workstation with 8 GB RAM.

E. Conclusion

In the case of the proposed semi-automated system AERs
of 2.4% and 6.59% are reported for the AMI and IIT Delhi
ear databases respectively within the context of the Rank-1
scenario. These AERs are reduced to 1.10% and 4.52% re-
spectively by employing optimal rankings. Accuracies of 91%
and 88% are reported for the proposed CNN-based ROI
detection protocol within the context of the AMI and IIT
Delhi ear databases respectively. Within the context of the
fully automated system AERs of 10.81% and 20.85% are
reported for the AMI and IIT Delhi ear databases respectively
within the context of the Rank-1 scenario. These AERs are
significantly improved upon to 6.67% and 10.46% respectively
by employing optimal rankings.

The proficiency of the proposed fully automated end-to-end
system, in which the ROI is automatically detected, followed
by feature extraction, feature matching, and verification is
significantly lower than that of the semi-automated system in
which case the ROI is manually specified for both the rank-1
and optimal ranking scenarios.

F. Contribution

The semi-automated and fully automated systems proposed
in this paper employ an ensemble of pattern recognition
techniques that has not been employed for the purpose of ear-
based biometric authentication on any previous occasion and
may therefore be considered novel. It is therefore reasonable
to assume that either of the aforementioned systems will be
complementary to any existing state-of-the-art system that
invariably extracts different features or employ different feature
matching techniques. It is therefore very likely that, when
any of the proposed systems is combined with an existing
system of comparable proficiency (see Table VII), a superior
combined performance will be attained.

IV. FUTURE WORK

Avenues for future research include an investigation into the
feasibility of an end-to-end deep learning-based approach for
ear-based biometric authentication, as well as an investigation
into the feasibility of another machine learning-based ap-
proach, like a suitable support vector machine, for the second
part of the fully automated system proposed in this paper. The
proposed semi-automated and fully automated systems should
also be evaluated on other databases that may become publicly
available in the near future.
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