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Abstract—This paper proposes an improved Q-learning method 

to obtain near-optimal schedules for grid and battery power in a 
grid-connected electric vehicle charging station for a 24-hour 
horizon. The charging station is supplied by a solar PV generator 
with a backup from the utility grid. The grid tariff model is 
dynamic in line with the smart grid paradigm. First, the 
mathematical formulation of the problem is developed 
highlighting each of the cost components considered including 
battery degradation cost and the real-time tariff for grid power 
purchase cost. The problem is then formulated as a Markov 
Decision Process (MDP), i.e., defining each of the parts of a 
reinforcement learning environment for the charging station’s 
operation. The MDP is solved using the improved Q-learning 
algorithm proposed in this paper and the results are compared 
with the conventional Q-learning method. Specifically, the paper 
proposes to modify the action-space of a Q-learning algorithm so 
that each state has just the list of actions that meet a power balance 
constraint. The Q-table updates are done asynchronously, i.e., the 
agent does not sweep through the entire state-space in each 
episode. Simulation results show that the improved Q-learning 
algorithm returns a 14% lower global cost and achieves higher 
total rewards than the conventional Q-learning method. 
Furthermore, it is shown that the improved Q-learning method is 
more stable in terms of the sensitivity to the learning rate than the 
conventional Q-learning. 
 

Index Terms—Electric vehicle, energy management, microgrid, 
reinforcement learning, Q-Learning 
 

NOMENCLATURE 
Abbreviations  
 

BSS   Battery storage system 
CS Charging station 
DG Distributed generator 
DGBMS Distributed generator behind the 

meter system 
EV Electric vehicle 
EVSE Electric vehicle supply equipment 
GA Genetic algorithm 
MDP Markov Decision Process 
PSO Particle swarm optimization 
PV Photovoltaic 
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RES Renewable energy source 
TD Temporal difference 

 
Notations  
𝑎𝑎 Action 
𝐶𝐶𝑏𝑏𝑏𝑏 Battery degradation cost 
𝐶𝐶𝑏𝑏𝑏𝑏 Battery capital cost 
𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 Degradation cost due to depth of discharge 
𝐶𝐶𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏  Battery power cost 
𝐶𝐶𝑃𝑃𝑔𝑔  Grid power cost 
𝐶𝐶𝑇𝑇 Cost of degradation due to temperature 
𝐷𝐷𝐷𝐷𝐷𝐷 Depth of discharge 
𝐸𝐸𝑏𝑏  Battery energy capacity 
𝐺𝐺𝑏𝑏 Grid tariff 
j Depth of discharge index 
k Timestep/state index 
𝐿𝐿𝑏𝑏(𝑇𝑇) Battery lifetime as a function of ambient 

temperature 
𝐿𝐿(𝐷𝐷𝐷𝐷𝐷𝐷) Battery lifetime as a function of depth of 

discharge 
n Iteration index 
P Probability 
Pcl Load at the charging station 
Pg Grid power 
Ppv PV power 
Pbss Battery charge/discharge power 
Q Q-value 
Qfade Battery capacity fade 
Rt Battery thermal resistance 
SoC State of charge 
SoCav Average state of charge 
SoE State of energy (battery energy level) 
T Ambient temperature 
t Time 
x State 
𝒜𝒜 Action space 
𝛼𝛼 Learning rate 
𝛾𝛾 Discount Factor 
𝓇𝓇 Reward 
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π Policy 
𝜒𝜒 State space 

I. INTRODUCTION 
RID-TIED renewable energy sources (RES) based electric 
vehicle (EV) charging stations are an example of a 

distributed generator behind meter systems (DGBMS). 
DGBMS is an electricity supply scheme where a renewable 
energy generator produces electrical power for on-site use [1]. 
This architecture is enabled by the application of smart 
metering systems, distributed generation technologies, 
bidirectional power conversion infrastructure and smart energy 
storage schemes that characterize the smart grid paradigm [2], 
[3], [4]. DGBMS are associated with several stochastic 
variables to be considered in each decision step when 
performing a day-ahead power scheduling [2]. These variables 
include the charging station’s load profile, the RES generator’s 
day-ahead output profile and the utility grid’s tariff profile. This 
high level of randomness in a DGBMS setting makes energy 
scheduling and management a challenging task. The role of an 
energy management algorithm in such a setting is to perform an 
optimal temporal arrangement of the system’s resources to 
achieve the system’s objectives and maintain its overall health 
[4].  Specifically, the algorithm is designed to decide which of 
the system’s energy resources should produce power, how 
much power they should produce and when in order to meet the 
system’s load at minimum cost. 

Various algorithms have been developed in the past to 
manage energy in DGBMS setups. Linear algorithms such as 
linear programming and mix-integer linear programming have 
been used to obtain solutions efficiently in less complicated 
spaces, but are limited in handling stochasticity [5], [6]. Also, 
global search techniques such as genetic algorithm (GA),  
particle swarm optimization (PSO), etc., have been used in 
literature for microgrid energy management [7], [8]. These 
methods perform better than linear optimization algorithms due 
to their ability to handle stochastic system variables. However, 
they are generally slow and are incapable of handling online 
dynamic operation.  

Reinforcement learning is a reward-motivated solution 
mechanism. Due to their learning component and the ability to 
generalize solutions, reinforcement learning techniques are 
known to have the capability to deal with dynamic stochastic 
problems more easily than most optimization methods [9], [10].   

Q-learning is one of the most popular reinforcement learning 
methods due to its simplicity, versatility and guarantee of 
convergence [2], [11]. It employs off-policy temporal (TD) 
difference update rule, i.e., updating an estimated value with 
another estimated value that is a step ahead of the current 
estimate. While this kind of recursion creates instabilities with 
deep reinforcement learning models, it imposes less taxing 
computational burden than on-policy methods such as Monte 
Carlo and dynamic programming based algorithms [11], [12]. 
In [9], Q-learning was applied to perform the main utility grid 
scheduling problems such as economic dispatch, automatic 
generation control and unit commitment.  

In grid-connected microgrid energy scheduling, Q-learning 
has been used to obtain optimal day-ahead battery schedules. 
Kuznetsova et al. [13] implemented a two-step ahead Q-
learning algorithm with a deterministic exploration method to  

 
schedule energy storage in a grid-tied microgrid with a wind- 
powered distributed generator (DG), but with large 
discretization in both the battery energy and the wind power 
generation. A similar model is used with a 3-step ahead learning 
by Leo et al. [14] to schedule a BSS in a grid-tied PV/battery 
system, where the authors reported an improvement in the 
utilization of the PV and the BSS. Foruzan et al. [15] developed 
a multi-agent scheme to manage energy trading between 
customers and energy suppliers including the utility grid, diesel 
and wind generators. In [16], a Q-learning is used to schedule a 
shared battery storage system for a community supplied from a 
microgrid. The study in [17] investigates the application of Q-
learning in managing energy cooperation between a PV power 
EV charging station with the utility grid. Despite their 
popularity in microgrid energy management, Q-learning 
techniques applied to DGBMS setups have issues of poor 
convergence and general instability due to their high sensitivity 
to the learning rate.  Also, defining a reward function that 
achieves the objective of the learning algorithm is a challenging 
task as there is no conventional way of arriving at the best 
reward function for the purpose of the optimization task. In this 
paper, we developed an improved Q-learning method to obtain 
optimal schedules for grid and battery power in a grid-
connected electric vehicle (EV) charging station in a 24-hour 
horizon discretized in steps of 1hour. The charging station is 
supplied by a solar PV generator with a backup from the utility 
grid. The grid tariff model is dynamic in line with the smart grid 
paradigm. First, the mathematical formulation of the problem is 
developed highlighting each of the cost components considered 
including a battery degradation cost model. The problem is then 
formulated as a Markov Decision Process (MDP), i.e., by 
defining each of the parts of a reinforcement learning 
environment for the charging station’s operation. In the MDP 
development, different reward functions that can be found in 
the literature were considered and the behaviors of the Q-
learning methods with respect to the various reward functions 
were investigated. The MDP is then solved using an improved 
Q-learning algorithm.  

Specifically, this paper proposes to modify the action-space 
so that each state has just the list of actions that meet the power 
balance constraint. By properly constraining the agent’s 
actions, it is shown in this paper that the improved Q-learning 
algorithm was able to return a 14% lower global cost with better 
use of the battery storage system than the conventional Q-
learning procedure. Also, the proposed method achieves higher 
total rewards and displays a more stable learning behavior in 
terms of the sensitivity to the learning rate than the conventional 
Q-learning. 

G 
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II. MATHEMATICAL FORMULATION 

A. Model of the Charging Station  
A grid-tied solar-powered EV fast CS with a battery storage 

system (BSS) is considered. A common DC bus is used to 
facilitate power-sharing among the electric vehicle supply 
equipment (EVSE). The DC bus is linked to the grid through an 
AC-DC converter and the BSS through a DC-DC converter as 
shown in Fig. 1.  The DC bus system is preferred over the AC 
bus system because it requires fewer power conversion stages 
needed to deliver power to the electric vehicle [17]. The station 
supplies an electric vehicle load at the CS. It is assumed that the 
EV load at the CS has been forecasted and the day-ahead load 
profile is given. 

B. Objective Function 
The controller that is shown in Fig. 1 performs the scheduling 

of power from the various sources, namely the grid, the PV, the 
BSS. The station supplies an EV charging load. It is assumed 
that the load at the CS has been forecasted and the day-ahead 
load profile are known. 

 
Fig. 1.  An illustration of the charging station’s model showing the PV 
generator, the grid and the BSS linked to the EVSE via a system controller. 

 
The purpose of this system controller is to decide, at each 

discrete time step, what amount of power is to be drawn from 
or supplied to the grid and the battery so that, in addition to the 
power from the PV generator, the total power is enough to 
supply the station’s load at minimum cost. In this paper, the cost 
of power from the grid and the cost of battery degradation as a 
result of charge or discharge have been taken into 
consideration. The main assumptions in the development of the 
cost function are as follows: 
1) No power is lost in the power electronic interfaces; thus, 

the efficiency factor for all power conversion operations is 
1.  

2) Both the battery charge and discharge efficiency factors are 
1, thus, the two processes are lossless.  

3) Power electronic conversion is instant, therefore, there is 
no delay between the time a power value is recommended 
by the system controller and the time the power is delivered 
to the required component. 

The above assumptions are a result of practical inefficiencies of 
the power electronic interface. The efficiency of the power 
electronic interface is a function of the charging current. The 
study in [18] describes a practical implementation of a 75 kW 
EV charging equipment. The authors demonstrated that at this 

power level, the efficiency of the convertors implemented was 
99.33%. Therefore, the above assumptions do not create a 
significant departure from reality. 

The initial battery state of charge (SoC) may be estimated 
using open-circuit voltage measurement. During the rest of the 
operational time, the SoC dynamics are described according to 
(1). 

            𝑆𝑆𝑆𝑆𝐶𝐶(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝐶𝐶(𝑡𝑡 − ∆𝑡𝑡) − 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡). ∆𝑡𝑡
𝐸𝐸𝑏𝑏

                          (1)  
Where 𝑆𝑆𝑆𝑆𝐶𝐶(𝑡𝑡), 𝑡𝑡,  ∆𝑡𝑡,  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) and 𝐸𝐸𝑏𝑏  are the instantaneous state 
of charge, time, size of the time discretization step, battery 
power and the battery energy at full charge, respectively. The 
state of energy (SoE) of the BSS at any time t is given by: 

               𝑆𝑆𝑆𝑆𝐸𝐸(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝐶𝐶(𝑡𝑡)𝐸𝐸𝑏𝑏                                                      (2)  
The instantaneous power balance equation that guarantees that 
the load demand is met is given by: 

               𝑃𝑃𝑐𝑐𝑐𝑐(𝑡𝑡) = 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) + 𝑃𝑃𝑔𝑔(𝑡𝑡) + 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡)                            (3) 

where 𝑃𝑃𝑐𝑐𝑐𝑐(𝑡𝑡), 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡), 𝑃𝑃𝑔𝑔(𝑡𝑡), 𝑃𝑃𝑝𝑝𝑝𝑝(𝑡𝑡) are the instantaneous values 
of the load, the BSS power, the grid power, and the PV 
generator output respectively.  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) and 𝑃𝑃𝑔𝑔(𝑡𝑡) are taken to be 
positive when injecting power to the common DC bus and 
negative when drawing power from the bus.  

The total operational cost (𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡) is the sum of the cost of 
power purchase from the grid, 𝐶𝐶𝑃𝑃𝑔𝑔(𝑡𝑡), and battery degradation 
cost, 𝐶𝐶𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) throughout the 24-hour optimization horizon, T. 
The objective function is, therefore, given as:  

         𝑀𝑀𝑀𝑀𝑀𝑀. (𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑀𝑀 ∑ [𝐶𝐶𝑃𝑃𝑔𝑔(𝑡𝑡) + 𝐶𝐶𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)]
𝑇𝑇

𝑡𝑡=0
.                  (4) 

Equation (4) is subject to the constraints of power balance at 
the DC link given by (3), state of charge boundaries, 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≤
𝑆𝑆𝑆𝑆𝐶𝐶(𝑡𝑡) ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, where 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 are the upper 
and lower state of charge boundaries respectively; grid power 
limits, 𝑃𝑃𝑔𝑔

𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑃𝑃𝑔𝑔(𝑡𝑡) ≤ 𝑃𝑃𝑔𝑔
𝑚𝑚𝑚𝑚𝑚𝑚 , where 𝑃𝑃𝑔𝑔

𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑔𝑔
𝑚𝑚𝑚𝑚𝑚𝑚, are 

minimum and maximum instantaneous grid power. The grid 
power limits are subject to a contract signed by the charging 
station owners and the grid operators.  

The cost of power from the grid is given by 𝐶𝐶𝑃𝑃𝑔𝑔(𝑡𝑡) =
𝐺𝐺𝑡𝑡(𝑡𝑡) 𝑃𝑃𝑔𝑔(𝑡𝑡)∆𝑡𝑡, where 𝐺𝐺𝑡𝑡(𝑡𝑡) is the instantaneous grid tariff. The 
cost of drawing power from or storing power in the BSS is 
assumed to be the same and is given by 𝐶𝐶𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) =
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)𝐶𝐶𝑏𝑏𝑏𝑏(𝑡𝑡)∆𝑡𝑡, where 𝐶𝐶𝑏𝑏𝑏𝑏(𝑡𝑡) is the cost of degradation of 
BSS per kWh given in equation (5).  

To model the cost of battery degradation, the cost 
contributions of temperature (T), 𝐶𝐶𝑇𝑇, depth of discharge (DoD), 
𝐶𝐶𝐷𝐷𝑡𝑡𝐷𝐷 and the average SoC (𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑝𝑝), 𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆  were taken into 
account. The degradation cost is given by, 𝐶𝐶𝑏𝑏𝑏𝑏(𝑡𝑡) =
𝑚𝑚𝑚𝑚𝑚𝑚{𝐶𝐶𝑇𝑇, 𝐶𝐶𝐷𝐷𝑡𝑡𝐷𝐷, 𝐶𝐶𝑆𝑆𝑡𝑡𝑆𝑆}. The equations for each contribution have 
been derived in [19] and [20] as shown in equation (5). In 
Equation (5), 𝐶𝐶𝑏𝑏𝑡𝑡 is the battery capital cost per kWh, 𝑡𝑡𝑡𝑡 and 𝑡𝑡𝑓𝑓 
are initial and final battery operation time for charge or 
discharge operations, respectively, 𝑌𝑌ℎ is the number of hours in 
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a year, 𝐿𝐿(𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗) is the cycle life of the battery at 𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗 ,  𝐿𝐿𝑡𝑡(𝑇𝑇) 
is the battery life as a function of battery ambient temperature 
[21], 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the capacity fade at battery end of life, 𝑆𝑆𝐷𝐷𝑆𝑆𝑓𝑓𝑎𝑎 is 
the average SoC and 𝑚𝑚, 𝑛𝑛 and 𝑑𝑑 are curve fitting constants. The 
degradation equation has been derived in [19]. The max 
operation returns the highest value in a set of values 

𝑆𝑆𝑏𝑏𝑓𝑓(𝑡𝑡) = 𝑆𝑆𝑏𝑏𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚 {( ∫ 𝑑𝑑𝑡𝑡
𝑌𝑌ℎ𝐿𝐿𝑡𝑡(𝑇𝑇)

𝑡𝑡𝑓𝑓

𝑡𝑡𝑜𝑜

) , ([( 1
𝐿𝐿(𝐷𝐷𝐷𝐷𝐷𝐷2))

−  ( 1
𝐿𝐿(𝐷𝐷𝐷𝐷𝐷𝐷1))]) , (𝑚𝑚𝑆𝑆𝐷𝐷𝑆𝑆𝑓𝑓𝑎𝑎 − 𝑑𝑑

𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑌𝑌ℎ
)}          (5) 

III. MARKOV DECISION PROCESS MODEL 
An MDP consists of a set of states within a predefined state 

space and a set of actions defined for each state and is normally 
used to formalize chronological decision making. For every 
state, there is a known stationary state transition function (or 
probability) that leads the agent to the next state once it takes 
an action in the current state [22]. Also, for every action, there 
is a defined reward (reinforcement) function that measures the 
immediate value of the action taken. The reward function holds 
the objective of the agent at every state [2], [17]. In this case, 
the reward is related to the cost minimization function of the 
EV charging operation.  

A. State and State Space 
The state, 𝑚𝑚𝑘𝑘 of the system is the set {𝑘𝑘, 𝑃𝑃𝑐𝑐𝑐𝑐

𝑘𝑘 , 𝑃𝑃𝑝𝑝𝑎𝑎
𝑘𝑘 , 𝐺𝐺𝑡𝑡

𝑘𝑘, 𝐸𝐸𝑏𝑏
𝑘𝑘}, 

where 𝑘𝑘 is the time component: 𝑘𝑘 = 0,1, … , 𝑇𝑇 − 1, where T is 
the optimization horizon, 𝑃𝑃𝑐𝑐𝑐𝑐

𝑘𝑘  is the EV load at the CS at time 𝑘𝑘, 
𝑃𝑃𝑝𝑝𝑎𝑎

𝑘𝑘  is the forecasted solar PV generation at time 𝑘𝑘, 𝐺𝐺𝑡𝑡
𝑘𝑘 is the 

forecasted grid tariff at time 𝑘𝑘, while 𝐸𝐸𝑏𝑏
𝑘𝑘 is the SoE of the BSS. 

The state space is therefore given by a union of all the individual 
state sets in the optimization horizon: 𝜒𝜒 = 𝑚𝑚0 ∪ 𝑚𝑚1 ∪, … ,∪
𝑚𝑚𝑇𝑇−1. 

B. Action and Action Space 
An action represents the decision that the agent is supposed 

to make at any given state. Every state has a list of allowed 
decisions that define the action space for that state. 
Conventionally, battery scheduling using the Q-learning 
approach defines action space in two major ways.  
1) The battery can be modelled to only have three possible 

control actions, namely, charge, discharge and idle [23], 
[24]. If the recommended action is a charge or a discharge 
operation, the battery charges or discharges at full rate, 
otherwise if the endorsed action is to idle, then the battery 
power is set to zero. This reduces the action space 
considerably and makes the learning process simple and 
efficient. However, the results returned may be sub-
optimal if the choice of charging rate is not properly done. 
This battery model is most applicable for the backing 
storage (main storage) in a two-level storage system as 
demonstrated in the studies in [23] and [25].  

2) The battery energy levels (state of energy) or state of 
charge may be discretized from a minimum value to a 

maximum value in defined steps [19]. An arbitrary choice 
of the initial battery energy is made, then the next values of 
the battery energy are selected by the learning agent at 
every time step. The choice of the next state of energy of 
the battery determines the amount of power to be supplied 
to or drawn from the within the time step to ensure the 
battery reaches the selected level.  

This paper proposes an action space model that varies from 
state to state depending on the station’s available power 
resources and the deficit that needs to be purchased from the 
grid or the excess power that is to be supplied to the grid. The 
objective is to improve the convergence and stability of the Q-
learning algorithm. The action, in this case, is defined as the 
decision on what amount of power is to be drawn from or 
absorbed by the stationary battery and the amount of power to 
be imported from the grid. Consequently, the action at any time 
step k is defined as the set 

           𝑚𝑚𝑘𝑘 = {𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏
𝑘𝑘 , 𝑃𝑃𝑔𝑔

𝑘𝑘 }                                                                   (6) 

where 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏
𝑘𝑘  and 𝑃𝑃𝑔𝑔

𝑘𝑘  are the battery power and the grid power for 
the time step k respectively. The action space for each state is, 
therefore, dependent on the state variables: 𝒜𝒜𝑘𝑘 = 𝑓𝑓(𝑚𝑚𝑘𝑘). Thus, 
possible actions are limited by the grid power and battery 
energy level according to: 𝑃𝑃𝑔𝑔

𝑚𝑚𝑚𝑚𝑛𝑛 ≤ 𝑃𝑃𝑔𝑔
𝑘𝑘 ≤ 𝑃𝑃𝑔𝑔

𝑚𝑚𝑚𝑚𝑚𝑚 as well as 
𝐸𝐸𝑏𝑏

𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐸𝐸𝑏𝑏
𝑘𝑘 − 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏

𝑘𝑘 ∆𝑡𝑡 ≤ 𝐸𝐸𝑏𝑏
𝑚𝑚𝑓𝑓𝑚𝑚, where 𝑃𝑃𝑔𝑔

𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑔𝑔
𝑚𝑚𝑓𝑓𝑚𝑚 are the 

minimum and maximum grid power respectively, and 𝐸𝐸𝑏𝑏
𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝐸𝐸𝑏𝑏
𝑚𝑚𝑓𝑓𝑚𝑚  are the minimum and maximum battery energy, 

respectively. Therefore, to define the action space for every 
state, the power deficit is computed using the following 
equation. 

∆𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑐𝑐𝑐𝑐(𝑘𝑘) − 𝑃𝑃𝑝𝑝𝑝𝑝(𝑘𝑘)                                                (7) 

If ∆Pk in Equation (7) is negative, then there is excess PV 
generated, thus the battery or the grid or both will have negative 
power to maintain the power balance at the DC link. Otherwise, 
if ∆Pk is positive, then there is insufficient PV power, therefore, 
the battery or grid power will have to be positive to sustain the 
power equilibrium at the common DC bus.  

Given the value of the power discrepancy above, the 
algorithm computes all possible combinations of 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏

𝑘𝑘  𝑚𝑚𝑛𝑛𝑑𝑑 𝑃𝑃𝑔𝑔
𝑘𝑘  

such:  

        ∆𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏
𝑘𝑘  + 𝑃𝑃𝑔𝑔

𝑘𝑘                                                            (8) 

The restriction of the control action space to a set of viable 
solutions within the boundaries of the optimization process 
helps the agent to avoid exploring decisions that are not 
candidate solutions according to the system constraints. This 
reduces the problem to that of looking for optimal actions 
within an action space that is within the boundaries and 
improves the convergence and stability of the learning 
algorithm. The overall action space is a union of the individual 
state-action spaces, i.e., = 𝒜𝒜0 ∪ 𝒜𝒜1 ∪, … ,∪ 𝒜𝒜𝑇𝑇−1. 
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C. State Transition 
After the learning agent takes an action, there is a need for a 

state transition function that takes the agent to the next state. As 
stated before, in an MDP with Markovian property, the next 
state is dependent on the current state and not the sequence of 
actions that led to the current state. In partially observable 
MDPs, the agent does not have full access to states but just 
observations that relay limited information of the states, and the 
agent’s experience of these observations form the agent state 
[26]. The next agent state may then be derived from the 
experience of the next observations. In this case, the MDP is 
fully observable. For every state, the next state is defined by the 
forecasted system inputs for the next time step, the current state, 
and action taken in the current state. The state transition is 
defined as: 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑎𝑎𝑘𝑘), where 𝑥𝑥𝑘𝑘+1 is the vector 
consisting of the system inputs for the next state with elements 
of load 𝑃𝑃𝑐𝑐𝑐𝑐

𝑘𝑘+1, solar PV generation 𝑃𝑃𝑝𝑝𝑝𝑝
𝑘𝑘+1, and the grid tariff 𝐺𝐺𝑡𝑡

𝑘𝑘+1 
as well as updated state of energy (SoE) of the BSS given by 
𝐸𝐸𝑏𝑏

𝑘𝑘+1 = 𝐸𝐸𝑏𝑏
𝑘𝑘 ± 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏

𝑘𝑘 ∆𝑡𝑡. The state transition is hence 
deterministic, i.e., the same action in the same state will always 
lead to the same next state. The next state 𝑥𝑥𝑘𝑘+1 is given by (9). 

    𝑥𝑥𝑘𝑘+1 = {𝑘𝑘 + 1, 𝑃𝑃𝑐𝑐𝑐𝑐
𝑘𝑘+1, 𝑃𝑃𝑝𝑝𝑝𝑝𝑘𝑘+1, 𝐺𝐺𝑡𝑡

𝑘𝑘+1, 𝐸𝐸𝑏𝑏
𝑘𝑘+1}                           (9) 

D. Reward 
A reward is any scalar quantity that is meant to relay the 
purpose of the learning algorithm to the agent. Suitable “reward 
engineering” is essential to link the agent’s actions with the 
objective of the algorithm [27]. The reward is defined as 
𝓇𝓇(𝑘𝑘) = 𝑔𝑔(𝑥𝑥𝑘𝑘, 𝑎𝑎𝑘𝑘, 𝑥𝑥𝑘𝑘+1). 
An RL algorithm does not directly learn the cost minimization 
policy. The policy of cost minimization is inferred using a 
reward function, which the agent aims to maximize. The 
rewards are associated with the actions that the agent chooses 
in the action-space (search space). Reward engineering is, 
therefore, a significant part of a reinforcement learning 
algorithm design process 

The learning process in this study intends to minimize the 
cost of power purchase from the utility grid and lessen the strain 
on the BSS by reducing the degradation unlike the previous 
study in [17] where the agent was learning to both minimize 
cost and maximize revenue from power purchase from the grid, 
thus, it was rewarded for selling power to the grid. Intuitively, 
the agent learns to minimize cost by minimizing the power 
import from the grid and maximizing the self-consumption of 
the station’s PV generated power. Therefore, rewarding the 
agent for selling power to the grid counteracts the agent’s 
learning trajectory.  

Since in the literature there is no agreed conventional way of 
designing the reward function, in this paper, we investigated 
various rewards functions and selected the reward function that 
best led to cost minimization. The reward functions investigated 
are as follows: 
1) Exponential reward function (referred to as “inverse 

exponential reward”) used in [17]. The function has been 
slightly modified to represent the objective of this study. 
The inverse exponential cost function is given by: 

                  1
𝑒𝑒𝑥𝑥𝑒𝑒 {𝐶𝐶𝑃𝑃𝑔𝑔(𝑡𝑡) + 𝐶𝐶𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)}

                                        (10) 

2) Negative reward function, i.e., reward expressed as 
negative of the cost as used in [28] and is given by. 
           − (𝐶𝐶𝑃𝑃𝑔𝑔(𝑡𝑡) + 𝐶𝐶𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡))                                           (11) 

3) Inverse reward function, i.e., reward as the inverse of the 
cost as used in [29] and is given by. 

         𝓇𝓇(𝑘𝑘) = 1
(𝐶𝐶𝑃𝑃𝑔𝑔(𝑡𝑡) + 𝐶𝐶𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) + 1)

                                  (12)  

4) Inverse squared reward function, i.e., reward as the inverse 
of the square of cost. This is the first time this reward 
function is being used and it is given by: 

𝓇𝓇(𝑘𝑘) = 1

(𝐶𝐶𝑃𝑃𝑔𝑔(𝑡𝑡) + 𝐶𝐶𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) + 1)
2                                  (13) 

It should be noted that the addition of 1 in the inverse linear 
and the inverse squared reward functions (12) and (13) helps to 
avoid division by zero in situations where the immediate cost is 
zero which may occur when there is no charge or discharge 
power scheduled and no power is drawn from or supplied to the 
grid. Each of the above reward functions was used to obtain an 
episodic cost profile to select the best reward function for the 
optimization problem considered in this paper. Consequently, 
the inverse squared reward function given by (13) was selected 
because it returned a lower global cost compared to all the rest 
as will be discussed in section V part D. 

IV. Q-LEARNING SOLUTION FOR THE ENERGY MANAGEMENT 
PROBLEM 

A. A Brief Introduction 
The goal of any reinforcement learning algorithm is to enable 

an agent to learn a control policy that maximizes the total 
reward by iteratively interacting with the environment. Q-
learning algorithm enables this learning without the need for the 
agent to know the environment’s dynamics. This is because the 
update rule does not depend on the state transition probabilities 
like is the case with dynamic programming. The agent only 
needs the knowledge of the current state and the list of 
allowable actions in that state. Each state-action twin has a 
value associated with it called a Q-value. This Q-value is 
described using the Q-function given by (14): 

𝑄𝑄(𝑥𝑥𝑘𝑘, 𝑎𝑎𝑘𝑘) = 𝓇𝓇(𝑘𝑘) + 𝛾𝛾 ∑ [𝑃𝑃(𝑥𝑥𝑘𝑘+1|𝑥𝑥𝑘𝑘)[𝜋𝜋(𝑥𝑥)]𝑄𝑄𝜋𝜋(𝑥𝑥𝑘𝑘+1)]             (14)
𝑥𝑥𝑘𝑘+1

 

where 𝓇𝓇(𝑘𝑘) is the immediate reward of taking an action 𝑎𝑎𝑘𝑘 in 
a current state 𝑥𝑥𝑘𝑘, thus, following a policy 𝜋𝜋(𝑥𝑥) and transiting 
to the next state 𝑥𝑥𝑘𝑘+1, by a probability P. 𝛾𝛾 is the discount factor 
that informs how much value the expected future returns have 
in the present. In a model-free learning algorithm, the update 
rule does not need the transition probability, P. Q-learning, 
therefore, begins by assigning an arbitrary Q-value to every 
state-action pair. For each episode, if the agent visits a state and 
takes an action, the Q-value is updated as follows: 
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𝑄𝑄𝑛𝑛+1(𝑥𝑥𝑘𝑘, 𝑎𝑎𝑘𝑘) ← 𝑄𝑄𝑛𝑛(𝑥𝑥𝑘𝑘, 𝑎𝑎𝑘𝑘)
+ 𝛼𝛼[𝑔𝑔(𝑥𝑥𝑘𝑘, 𝑎𝑎𝑘𝑘, 𝑥𝑥𝑘𝑘+1) + 𝛾𝛾𝑚𝑚𝑎𝑎𝑥𝑥𝑎𝑎𝑘𝑘+1𝑄𝑄𝑛𝑛(𝑥𝑥𝑘𝑘+1, 𝑎𝑎𝑘𝑘+1)
− 𝑄𝑄𝑛𝑛(𝑥𝑥𝑘𝑘, 𝑎𝑎𝑘𝑘)]                                                       (15) 

where 𝛼𝛼 ∈ (0,1) is the learning rate which controls the extent 
of the modification of Q-values, 𝑄𝑄𝑛𝑛(𝑥𝑥𝑘𝑘, 𝑎𝑎𝑘𝑘) is the current Q-
value, 𝑄𝑄𝑛𝑛+1(𝑥𝑥𝑘𝑘, 𝑎𝑎𝑘𝑘) is the next Q-value while 𝛾𝛾 ∈ (0,1) is the 
discount factor. Equation (15) means that the next Q-value of a 
state-action twin is substituted by the current value plus the 
learning rate multiplied by an error in the new estimate, i.e., the 
temporal difference (TD) error. The new estimate is the current 
reward plus the best possible Q-value in the next state. If the 
process is episodic and the current state is terminal, then there 
are no more future states in the episode, thus, the term that is 
multiplied by 𝛾𝛾 in (15) collapses to zero during the update.  

B. Conventional Q-learning Approach 
In the conventional Q-learning, a Q-table is developed in as 

a number of states by number of possible actions matrix before 
learning begins and initialized by zeros (or arbitrary numbers). 
The action space is fixed to just one set of possible actions for 
all the states. The agent, thus, visits the states successively and 
synchronously. In each timestep, the agent visits a state and 
selects an action from a predefined action-space. Once an action 
is selected in a particular state, the Q-value for the state-action 
pair is updated according to equation (15). For this power 
scheduling problem, the possible actions are the battery states 
of energy from the minimum value of 10kWh to a maximum 
value of 100kWh in steps of 10kWh. The conventional Q-
learning algorithm implemented in this paper for comparison 
purposes is based on the studies in [9] and [11]. Its full 
implementation has been described in [29]. 

C.  Proposed Improved Q-learning Approach 
In this method, the Q-table is initialized as an empty hash 

table into which states are added as keys, with dictionaries of 
the allowable actions and their initial Q-values, as values. The 
Q-table, therefore, becomes a nested dictionary, with states 
indices as the main keys and an inner dictionary of possible 
actions as values. Each action has its Q-value initialized with 
zero. States are added as they occur during learning. Also, the 
states are not accessed sequentially as in the conventional 
approach. The agent does not sweep through the entire state 
space in each episode. Thus, the learning process occurs 
asynchronously. Asynchronous Q-learning enables the agent to 
have a delimited action space for every state. The improved Q-
learning algorithm is shown in Fig.2. 

Therefore, to solve the scheduling problem using the 
improved Q-learning method, an empty hash table (or a 
dictionary data structure in Python programming) is first 
created. At the beginning of the learning, the algorithm reads 
the time and load forecast, PV generation forecast and grid tariff 
values for that time and returns an incomplete state vector. The 
initial battery energy is appended to the incomplete state vector 
to get a full state vector. The elements of the state vector are 
then joined to form a single state identity and added to the 
empty dictionary. If this state had not been in the table, all the 

possible actions associated with it are computed and all Q-
values initialized with zeros. An action is chosen using the ϵ-
greedy policy and executed. The next state is then found using 
the state transition function. The reward is then computed using 
equation (13) followed by a Q-value update according to (15).  

At the end of the learning process, the algorithm returns a Q-
table which now contains states, possible actions and their 
corresponding Q-values. The process of getting the optimal 
action for each state using this Q-table is called policy retrieval.  
It is accomplished by iterating through the states in the Q-table  
from k = 0 to T-1. In every state, the control action that 
maximizes the Q-value is retrieved. Then the following states 
are the ones to which the selected control action leads. The 
states with their corresponding optimal schedules of battery 
power and grid power are returned. 

 
Fig. 2. The Improved Q-learning algorithm. 

V. SIMULATION RESULTS AND DISCUSSIONS 

A. Input Data 
To validate the developed Q-learning method, a typical solar-

powered, EV fast-charging station with a maximum PV output 
of 70kW and a maximum demand of 80kW is considered as 
shown in Fig. 3 [17]. Level 3 DC fast charging analogous to an 
internal combustion engine vehicle filling process requires 
between 50kW to 100kW. Thus, the station is capable of 
limitedly supplying fast charging demands. The load, however, 
varies from time to time, with some vehicles demanding lower 
levels of charging rates such as level 1 (about 2kW) and level 2 
(8kW to 20kW) [30]. 
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Depending on the immediate charging station’s load, when 
the PV generation is deficient to supply the charging load, it is 
supplemented by the power bought from the grid and when the 
PV harvest is in excess, the extra energy is supplied to the utility 
grid. Also, as can be seen in Fig. 3, the grid tariff is dynamic. 
The real-time tariff profile is an effective indicator of the load 
demand in the grid as it rises and falls with the load demand. 
Therefore, the grid tariff is highest during peak load demand 
and lowest during off-peak hours. 

 

 

Fig. 3. Charging station's load, generation profile and the grid tariff profile. 

The table below shows the parameters of the charging station 

that are input to the algorithm. 

B. Learning Hyperparameters and System Constants 
Table I shows both the selected learning parameters for the Q-

learning algorithms and the system constants for the charging 
station’s operation. In the ϵ-greedy method, the greedy action 
is chosen by a probability, 1- ϵ, for ϵ ∈ (0,1), in any state 𝑥𝑥𝑘𝑘, 
while all other actions in the action space, 𝒜𝒜𝑘𝑘, are explored by 
a probability, ϵ. The exploration rate, ϵ, is typically initialized 
with a value close to 1 and as the learning proceeds, it is 
gradually decreased to a set minimum value, i.e., 0.1. 

C. Algorithm’s Learning Characteristics 
Reinforcement learning algorithms are very sensitive to the 

learning rate (alpha). At each transition, the previous Q-value 
approximation is updated with the error between a new estimate 
and the previous guess. The value of alpha determines what 
percentage of this temporal difference error that is added to the 
previous Q-value owing to the agent’s new experiences during 
learning. For the learning process to be stable and the 
convergence to be smooth, it is recommended that the value of 
alpha should be “sufficiently small” [9]. 

However, the choice of the value of the learning rate depends 
on the characteristics of the problem being solved such as the 
action space and the state space and the nature of the learning 
algorithm being employed. The stability of these Q-table based 
algorithms may be viewed from how sensitive they are to the 
learning rate. To test the effect of the learning rate on the Q-
learning algorithms, the learning rate was increased from a 
0.0001 to 0.1 in multiples of 10 while keeping all other factors 
such as the epsilon decay parameters and simulation variables 
constant.  

Fig. 4 shows the learning curves for the conventional Q-
learning method with different values of alpha. The horizontal 
axis presents the moving average rewards calculated after every 
100 episodes. The graph shows that for alpha = 0.1, the average 
reward is oscillating, and the agent does not acquire the 
intended policy to maximize the total rewards. Also, some 
instability can be observed for alpha = 0.01, though the 
convergence is much smoother. Lower values of alpha, i.e., 
0.001 and 0.0001 display smooth convergence with the alpha 
value of 0.001 converging smoothly at higher total average 
reward than all the rest. Thus, for this algorithm, a value of 
0.001 was selected for the learning rate.  

Fig. 5 shows the learning curves for the improved Q-learning 
algorithm for the same values of alpha as used above. An alpha 
value of 0.1 returned some oscillations on the average reward 
but the convergence was much more stable than that obtained 
by the conventional Q-learning. Fig. 5 reveals that the 
algorithm’s learning curve for an alpha of 0.001 achieved the 
highest total rewards followed closely by an alpha of 0.0001. 
Therefore, for this algorithm, a value of 0.001 was selected for 
the learning rate as in the conventional case. Also, the curves 
for the various values of alpha were much closer together 
despite the big differences in the values of alpha. Therefore, the 
proposed algorithm is less sensitive to the learning rate than the 
conventional Q-learning method. 

Fig. 6 shows a plot of the learning curves for both algorithms 
with the value of alpha set to 0.001. At this value of alpha, both 
algorithms converge at the highest average reward. It can be 
seen that the improved Q-learning method learns faster and 
achieves higher average episodic total rewards than the 
conventional Q-learning method. The proposed method 
converges at slightly above 6.0 while the conventional method 
converges at a value slightly above 5.0. This difference is as a 
result of the restriction imposed on the action space for each 
state in the proposed method. This causes it to only meet 
experiences that are within the power balance equation (3). 

The results of this test on the effect of learning rate imply that 
limiting the control actions of the agent to just those that the 
designer knows are within the system constraints improves 
stability with respect to the sensitivity to the learning rate. It can 
be noted that the sensitivity of the algorithms to the learning 
rate is indicative of the confidence there is in a new Q-value 
estimate compared to the previous one in the TD update rule 
given in equation (15). If the new Q-value estimate is more 
likely to be inaccurate due to the unconstrained action space, 
that is, there is a risk of the agent veering from the objective 
under the current policy, or being trapped in a local optimum, 
then a smaller learning rate is needed to limit the extent to which 
the new estimates modifies the Q-values. This is what is seen 

TABLE I 
LEARNING HYPERPARAMETERS AND SYSTEM CONSTANTS  

Symbol QUANTITY Selected Value 

𝛼𝛼 Actor learning rate 0.0001 
𝛽𝛽 Critic learning rate 0.0003 
𝛾𝛾 Discount Factor 1.0 
D Update step size 10 
𝑛𝑛 Number of episodes 5000 
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with the conventional Q-learning algorithm. However, if the 
action space is designed to include only those values that are 
within both the equality and the inequality constraints of the 
agent’s objective, then we can have more confidence that the 
new estimates would be more accurate, thus, a smaller learning 
rate may be used. 

 

Fig. 4. Learning characteristics for conventional Q-learning. 

 
Fig. 5. Learning characteristics for the improved Q-learning. 

 

Fig. 6. Learning curves for the improved Q-learning and conventional Q-
learning for alpha = 0.001. 

D. Effects of Various Reward Functions 
A test was done to explore the behaviour of the improved Q-

learning algorithm and the conventional Q-learning method 
under different reward functions. A moving average episodic 
cost profile obtained using each of the four reward functions in 
section III part D was plotted on the same axis for both 

algorithms. The moving average cost profile is a better way to 
compare the reward functions than the reward profile because 
the same objective function is used to calculate the cost in all 
the cases under consideration.  

Fig. 7 shows the episodic cost profile for each of the reward 
functions for the conventional Q-learning algorithm plotted on 
the same axis. It can be seen that the negative reward function 
as given in (11) displays an unstable learning characteristic and 
converges at a lower average cost than all the other reward 
functions. This is because the Q-values were initialized by zeros 
while the new estimates are negative. Therefore, actions that 
have not been chosen always had higher Q-values than the ones 
that had been selected. As a result, the agent is forced to explore 
the search space even when the action selection algorithm (the 
epsilon greedy strategy) recommended exploitation. This 
results in unstable learning and leads to poor convergence. The 
other reward functions produced positive reward values, 
therefore, actions that have been selected had higher Q-values 
than those that had not been chosen. As a result, the algorithm’s 
learning is well guided by the exploration strategy employed. 

Noteworthy in Fig. 7 is the fact that the exponential reward 
and the inverse squared reward functions (10) and (13), 
respectively, converge to slightly lower global costs than the 
inverse linear reward function (12). This is because the inverse 
squared and the inverse exponential functions ensured that 
actions with very low costs returned very high rewards thus 
making the probability of them being selected much higher and 
effectively reducing the probability of selecting the higher cost 
actions. Therefore, the low-cost actions dominated the high cost 
actions in later episodes when more exploitation than 
exploration was done by the agent according to the study in 
[27]. The results on the global cost show that the inverse 
squared function produced a slightly lower reward than all the 
functions tested in this study.  Therefore, it was selected.   

Fig. 8 shows a comparative plot of the episodic cost profile 
for the reward functions under the improved Q-learning 
algorithm. It was also established that the proposed Q-learning 
algorithm’s response to the various reward functions displayed 
almost a similar pattern to those exhibited by the conventional 
Q-learning algorithm.  

However, the difference in the global cost convergence 
between the inverse linear and the inverse squared function was 
found to be reduced while the global cost convergence 
difference between the negative reward and the inverse linear 
reward function increased.  This is also attributed to the 
restriction of the action space in every state in the improved Q-
learning method which is not the case with the conventional Q-
learning algorithm.    

E. Cost Convergence Results and analysis 
Fig. 9 and Fig. 10 show the episodic cost profile for the 

conventional Q-learning and the improved Q-learning 
algorithms correspondingly, for 15000 learning episodes. The 
moving average values are calculated after every 100 episodes. 
It can be seen in both figures that the raw and average costs for 
both algorithms start at high values in earlier episodes between 
0 and 2000 and decrease to lower optimized values in the later 
episodes beyond 2000. This is because, in both algorithms, the 
initial exploration rate has been set to 1.0, i.e., all the possible 
actions have an equal probability of being selected, thus the 
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learning agent begins by exploring the action space because 
each action’s probability of being selected is 1.0.  

 

 
Fig. 7. Episodic moving average cost profiles for various reward function for 
the conventional Q-learning algorithm. 

 

Fig. 8. Episodic moving average cost profiles for inverse linear and inverse 
squared reward functions for the improved Q-learning method. 

As the learning proceeds and the value of epsilon is reduced, 
the actions that give higher rewards, and consequently, return 
lower costs in each time step are selected with higher 
probability. With the time-step action selection getting more 
inclined to the optimal actions, episodic global cost converges 
to the optimal value according to the temporal difference 
control theory. Both algorithms are shown to converge at their 
optimal values of the global cost. 

Fig. 11 shows the comparative plot of the moving average 
episodic cost profiles for the two algorithms during the learning 
phase. As can be seen in the figure, the proposed method starts 
at a lower initial average cost of about $320 and finishes at a 
value of between $200 and $150 compared to the conventional 
Q-learning that starts from a higher value of just above $350 
and finishes at a value between $250 and $200. This is because 
the proposed method has its action space constrained to just the 
set of values of grid power and battery power that meets the 
load demand according to the power balance equation. 
Therefore, the power balance constraint, given in equation (3), 
is imposed before the actions are taken. As a result, its learning 
is constrained, thus preventing it from losing track. That is 
unlike the conventional Q-learning approach that uses the 
battery scheduling method in which the power balance is 

imposed only after the agent takes the action. This leads to the 
collection of bad experiences that causes it to lose track. 

 

 

Fig. 9. Episodic cost profile for the conventional Q-learning method. 

 
Fig. 10. Episodic cost profile for the improved Q-learning method. 

 

Fig. 11. Comparative moving average cost profile for the improved and 
conventional Q-learning 

F. Optimized Power Schedule for the Improved Q-learning 
Algorithm 

At the end of the learning period, the optimal power schedule 
was retrieved from the Q-table using a greedy policy. The 
greedy policy returns the action with the highest Q-value in 
every state throughout the optimization horizon. In this 
subsection, the power schedule derived from the optimal 
episode obtained from the proposed method is discussed. The 
cost minimization actions recommended by the improved Q-
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learning algorithm at various times within the episode are 
identified and explained. Of interest in this section is the battery 
utilization exhibited by both algorithms that resulted in marked 
differences in the battery degradation cost and the returned 
global cost between the proposed algorithm and the 
conventional Q-learning method.  

In understanding the schedule, the signs of the scheduled 
power values of the battery and the grid should be taken into 
consideration. Any scheduled power is always positive when 
supplying the load through the common bus and negative when 
drawn from the bus. A negative battery power, therefore, 
represents a charge command while a positive battery power 
means a discharge command. Therefore, the algorithm ensures 
that a charge and a discharge operation cannot occur at the same 
time without the need for a secondary controller to enforce that 
constraint. Similarly, a negative grid power denotes a power 
supply to the grid whereas a positive grid power means a power 
purchase from the grid. Also, the battery energy transitions are 
occasioned by power schedule actions, thus the effect of a 
battery charge or discharge command in a time step is observed 
in the next time step.  

To minimize the cost of supplying the charging station’s 
load, the algorithm is designed to use the following strategies. 
1) The algorithm maximizes the self-consumption of the PV 

generated power. 
2) The algorithm utilizes less grid power when the tariff is 

high and more of it when the tariff is low. 
3) The algorithm performs short charge/discharge cycles to 

lower the battery degradation cost.  

As shown in Table II, the two algorithms returned almost the 

same overall cost of power purchase from the grid, except for a 
small difference of $3. Therefore, the main difference is 
observed in the battery utilization, that is, the magnitude of the 
charge/discharge rates.  
 

Fig. 12 shows the power schedule for both the battery and the 
utility grid plotted alongside the input PV, grid tariff and the 
charging station’s load profiles. The battery energy values have 
been divided by the time-step constant to get kW values.  

The first strategy is implemented by charging the battery 
when the solar PV generation is high and using the stored 
energy when there is low PV and the grid tariff is high. The 
battery and grid power are positive when supplying power to 
meet the charging station’s load and negative when absorbing 

power from the station’s common DC bus. It can be seen in Fig. 
12 that the general trend shows a discharge from the 0 to 5th 
hour (i.e, the pink curve labeled “BSS”).  From the 5th to the 7th 
hour, the battery charges as PV generation rises. However, a 
discharge occurs from the 7th to the 8th hour to supply the load 
that peaks at around this time. From the 8th to the 15th hour, the 
battery continues to charge due to high PV generation, except 
for a small instability at the 12th hour, which is expected due to 
the stochasticity in the environment causing some suboptimal 
decisions to be made by the agent. From the 15th to the 20th hour, 
the battery shows a discharge trend due to the drop in PV power 
and an increasing load to be supplied. Again, there is a 
suboptimal decision to charge at the 17th hour. 

The second strategy is executed by scheduling high grid 
power intake when the tariff is low and reducing the purchase 
of grid power when the grid tariff is high. Also, cost savings are 
done by generally minimizing grid power intake since the grid 
power cost is mostly higher than the cost of battery degradation 
for small power values. This, however, depends on the existing 
load to be supplied and the availability of PV power and the 
energy level in the battery.  In Fig. 12, it can be seen that there 
is a high grid power intake between the 5th and the 7th hour 
despite the high grid tariff because, at this time, the battery 
energy is almost completely drained, there is low PV 
generation, thus the need to use the grid to supply the rising load 
(i.e, the black curve labeled “grid”). The grid power intake is 
generally low between the 9th and the 16th hour, even going to 
negative at the 10th hour when the grid absorbs power, due to 
high PV generation. At the 10th and 12th to 15th hour, the station 
supplies power back to the grid due to excess PV generation. 
However, power is not supplied to the grid in the 11th hour but 
is drawn from it due to low tariff, which implies that the utility 
grid has excess generation in relation to its load. 

 
Fig. 12. Optimized power schedule obtained using the improved Q-learning 
algorithm (BSS refers to battery energy while BSS_P refers to battery power). 

The third strategy is implemented by limiting the size of the 
charge/discharge steps. Although it is expected to be more cost 
effecting to use all the excess PV to charge the battery, the 
inclusion of battery degradation cost limits the charging rate. It 
is therefore costly to recommend high charge or discharge 
schedules since the cost of degradation due to depth of 
discharge grows exponentially with an increase in the 
magnitude of charge/discharge steps [24]. Therefore, the 
algorithm generally recommends shorter charge and discharge 

TABLE II 
SUMMARY GLOBAL COSTS AND BATTERY USAGE & COSTS  

Algorithm IMPROVED Q-
LEARNING 

Conventional Q-
learning 

Global cost $162 $188 

Battery Degradation 
Cost 

$9 $38 

Grid Power Purchase 
Cost 

$153 $150 

Average Absolute BSS 
Power 

10kW 20kW 
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cycles to protect the battery. It is in this regard that the two 
algorithms differ in their global costs.  

To investigate the difference in the battery charge/discharge 
cycles for the improved and the conventional Q-learning 
methods, a plot of the battery energy profiles for both 
algorithms was included.  

Fig. 13 shows the battery energy profiles for the 24 hours of 
operation for the two algorithms. 

 
Fig. 13. Battery energy profiles for both the improved and conventional Q-
learning algorithms. 

It can be seen that the improved Q-learning algorithm 
recommends shorter charge/discharge rates than the 
conventional Q-learning method. The absolute battery power 
recommended by the algorithm at any time is calculated by 
getting the difference between the next battery energy level and 
the current value. Some of the marked large battery power 
schedules recommended by the conventional Q-learning 
algorithm can be seen at the 3rd, 10th and 13th hours when the 
recommended absolute battery power values were 40kW (i.e., 
a battery discharge operation from 50kWh to 10kWh),  50kW 
(i.e., a battery charge operation from 30kWh to 80kWh) and 
40kW (i.e., a battery charge operation from 50kWh to 90kWh) 
respectively. The maximum absolute battery power 
recommended by the proposed algorithm is about 30kW (i.e., a 
battery charge operation from 25kWh to 55kWh) which occurs 
at the 6th hour. 

Furthermore, if the absolute power values recommended by 
the two algorithms throughout the 24-hour horizon were 
averaged, the average absolute power recommended by the 
improved Q-learning algorithm was found to be 10kW while 
that of the conventional Q-learning method was found to be 
20kW as shown in Table II. The battery degradation cost 
increases significantly with the increase in the absolute power 
recommended by the algorithms. Consequently, the battery 
degradation cost for the proposed method is more than 4 times 
lower than that of the conventional method as shown in Table 
II.  

When the policy was retrieved, the optimal episode for the 
improved Q-learning method returned about 14% lower global 
cost than the conventional Q-learning method as shown in 
Table II. This major difference is attributable to the higher cost 
of battery degradation resulting from the episode obtained using 
the conventional method than in the proposed method. There is 
higher degradation with the conventional method because the 

algorithm recommends much longer charge and discharge 
cycles than the proposed method.  

VI. CONCLUSION 
An improved Q-learning algorithm using an asynchronous 

update technique for energy management in a grid-connected 
solar-powered EV charging station with a battery energy 
storage system has been presented. In the Markov Decision 
Process model, the study has proposed the expression of the 
reward as the square of the reciprocal of the cost plus a constant. 
This reward function produced a slightly lower global cost than 
other reward functions in the literature. Also, the learning 
characteristics of the proposed method and the conventional Q-
learning method under different values of the learning rate have 
been investigated. Simulation results show that the improved 
Q-learning algorithm learns faster, is less sensitive to different 
values of learning rate and displays a more stable learning 
characteristic than the conventional Q-learning algorithm. 
Furthermore, analysis of the battery usage established that the 
restriction of the improved Q-learning algorithm’s action space 
to the set of actions that meet the power equilibrium condition 
at the common bus leads to better usage of the battery energy 
storage and is responsible for the improvement of its stability in 
the learning process as compared to the conventional Q-
learning. Moreover, the improved Q-learning algorithm 
returned 14% lower global cost than the conventional Q-
learning technique.  

Future studies on this problem should consider the 
application of deep reinforcement learning in dynamic energy 
scheduling to harness the full potential of reinforcement 
learning techniques that may not be achieved using static 
optimization methods such as Q-table-based reinforcement 
learning techniques. 
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