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Abstract—In this paper, a bit-level decoder is presented for
soft-input soft-output iterative decoding of Reed-Solomon (RS)
codes. The main aim for the development of the proposed
algorithm is to reduce the complexity of the decoding process,
while yielding a relatively good error correction performance, for
the efficient use of RS codes. The decoder utilises information set
decoding techniques to reduce the computational complexity cost
by lowering the iterative convergence rate during the decoding
process. As opposed to most iterative bit-level soft-decision
decoders for RS codes, the proposed algorithm is also able to
avoid the use of belief propagation in the iterative decoding of
the soft bit information, which also contributes to the reduction
in the computational complexity cost of the decoding process.
The performance of the proposed decoder is investigated when
applied to short RS codes. The error correction simulations show
the proposed algorithm is able to yield a similar performance to
that of the Adaptive Belief Propagation (ABP) algorithm, while
being a less complex decoder.

Index Terms—Reed-Solomon codes, Bit-level decoding, Itera-
tive decoding, Soft-decision decoding, Information set decoding,
Decoding complexity.

I. INTRODUCTION

REED-Solomon (RS) codes belong to a class of high
performing error correction codes that were developed

by Irving S.Reed and Gustave Solomon [1]. Due to the strong 
algebraic properties and good error detection and correction 
performance, a lot of research has been applied to the devel-
opment of high performing decoding schemes for this class of 
codes.
Soft-decision decoders for RS codes working in the field,
specifically the ones based in the Galois Field GF(2b) (where 
b is any positive integer), can be divided into two categories.
They can either be symbol-level decoders or bit-level decoders.
Most soft-decision decoders for RS codes work on a symbol-
level. Examples of symbol-level decoders include the widely
used Koetter and Vardy (KV) algorithm [2] and the parity 
check transformation algorithm (PTA) [3] [4]. Previous re-
search works on soft-decision decoders have shown gains in
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terms of error correcting performance attained when working
on a bit-level compared to the symbol-level [5], [6], [7], [8],
[9]. Based on this, implementation of bit-level soft-decision
decoding algorithms for RS codes has been an area of active
research for a long time [5], [6], [7], [10], [11], [12], [13],
[14], [15].
The adaptive belief propagation (ABP) algorithm [5] is a
widely used bit-level decoder for linear block codes due to
its good error correcting capability [5], [6], [12], [13], [16].
The ABP algorithm was devised with the aim of applying
belief propagation techniques on codes defined by a parity
check matrix with a dense structure [5]. The belief propagation
decoding algorithm is designed to take advantage of the
sparse structure presented by the parity check matrix of a
Low Density Parity Check (LDPC) code so as to decode the
received vector efficiently [17]. Due to the dense nature of
RS code, a binary image expansion [18] is performed on the
parity check matrix (H) so as to make it sparse. This is done
to enable the use of the belief propagation algorithm during
the decoding process. The generic form of the ABP decoder
presented in [5] works by first converting the bit reliabilities
of the codeword into their corresponding log likelihood ratios
(LLR). The binary image form of the H is then adapted based
on these LLR values using Gaussian row reduction techniques.
The belief propagation is then applied to the adapted binary
image of the H matrix so as to decode the received vector.
In [5], the ABP has been shown to yield a significant gain
when compared to widely used RS decoders including the
KV algorithm, Berlekamp-Massey (BM) algorithm and the
Algebraic hard-decision decoder. However, the gains achieved
by the ABP algorithm come at the cost of a high computational
complexity [5], [13]. Further modifications have been made
to the generic form of the decoder [5], [6], [12], [13], [14],
[16], [19]. However, these changes either add to or do not
significantly reduce the complexity cost of iteratively applying
belief propagation during decoding [5], [13], [20].
The parity check transformation algorithm (PTA) [4] is a
symbol level RS decoder that, just like the ABP, utilises row
reduction techniques on the H matrix based on the symbol
reliability. The PTA works by sorting the maximum symbol
reliabilities obtained from each column of a reliability matrix
and using them to transform the H matrix. The H matrix
is transformed using the row reduction technique shown in
[21] [22] to match the corresponding reliability information
with the columns of H. Once the H matrix is transformed,
the reliabilities are then corrected based on the values of the
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syndrome vector obtained from the scalar product of the hard
decision vector and each row of the transformed H matrix.
The PTA has been shown to outperform the KV decoder and
the BM algorithm, in terms of error correction performance
[3] [4]. In [9], the PTA was modified to allow for a bit-level
implementation. The bit-level PTA is shown in [9] to yield a
comparable error correction performance to the ABP algorithm
for a (15,7) and a (15,11) RS code transmitted using a 16-
QAM modulation scheme. The PTA is able to achieve gains
in terms of error correction, in both symbol and bit-level, at
the cost of running numerous iterations.
Information set decoding (ISD) was first presented by Prange
[23] for the decoding of Cyclic codes. Since then, the algo-
rithm has had different modifications for application in error
correction of linear block codes [24], [25], [26], [27] and
Cryptography [28], [29]. In all its forms, ISD uses k linearly
independent bits or symbols from the received vector to re-
encode a unique codeword during the decoding process [24].
The k symbols or bits used to obtain the unique codeword
are referred to as the information set. The most widely used
implementations of ISD in the error correction of linear block
codes have been applied to binary codes. ISD algorithms often
utilise ordered statistics decoding (OSD) and list decoding
techniques to obtain the decoded vector of the binary code
[25], [30], [31], [32]. In [27] a Field Programmable Gate
Array (FPGA) implementation for ISD is presented when
applied to RS codes. Besides the FPGA implementation, part
of the novelty of the approach proposed in [27] is that ISD is
applied to a class of nonbinary codes. However it is important
to note that the decoding method presented in [27] is not
applied at the symbol-level, but instead implemented at a bit-
level. Similar to the ABP, the decoder is able to work at
a bit-level by performing a binary image expansion on the
H matrix and converting the RS code into its bit form. The
proposed decoding method in [27] is based on a modified OSD
implementation of the ISD technique used in [33]. The list of
candidate codewords from the OSD are obtained using order-1
reprocessing [30] to apply bit flipping based decoding on the
syndrome weights from the list of subvectors. The subvectors
are then used in the re-encoding of the candidate codewords.
ISD decoders have the advantage of being generally less
complex than other decoding techniques [24] [34]. However,
the use of OSD and list decoding techniques ensure ISD
decoders that utilise soft information are soft-input hard-output
algorithms. This prohibits the use of such decoding algorithms
for situations where the RS decoders are required to make full
use of bit based soft information, like in the case of satellite
transmission[10] or for iterative decoding [35].

Motivation and Objectives

Soft-decision decoders used for RS codes give a good
error correction performance, but at the cost of some form
of complexity. The ABP algorithm gives a significant gain
compared to hard decision decoders and the widely used KV
algorithm, but this comes at the cost of a higher computational
complexity [5][6]. The PTA has also been shown to be
a good decoder while outperforming the KV algorithm in

terms of symbol error rate [4]. This is at the cost of the
algorithm running numerous iterations [36], therefore making
the PTA a computationally intensive algorithm. The ‘algorithm
complexity vs error correction performance’ tradeoff is quite
common in the field of telecommunications when it comes to
the selection of appropriate decoding algorithms. The main
objective of this research is the presentation of a decoding
technique that iteratively utilizes the soft information outputted
from the noisy channel to yield a high error correction
performance at a reduced computational complexity cost.
Work in this paper focuses on the development of a low
complexity iterative soft-input soft-output decoding approach
for RS codes that is able to yield a good error correction
performance.
The proposed decoding approach is able to take advantage of
the reduced complexity that comes with an ISD implementa-
tion [24] in the error correction process. Except for the bit-
level PTA, all iterative soft-input soft-output decoders for RS
codes are in some way a modification of the ABP decoder.
In addition to the development of an iterative soft-input
soft-output ISD based bit-level decoder, part of the novelty
of the decoding technique presented in this research is the
implementation of a bit-level iterative soft-decision decoder
for RS codes without the use of the belief propagation algo-
rithm. Implementation of belief propagation is avoided in the
proposed decoding technique due to the high computational
complexity cost presented when using the ABP algorithm [5],
[11], [13], [37]. The decoder proposed in this research is a
message passing algorithm, that takes advantage of the sparse
structure presented by the binary image of the H matrix to
iteratively decode the received vector. ISD is implemented, as
part of the stopping criteria in the proposed iterative bit-level
decoding approach, with the aim of improving the iterative
convergence rate during the decoding process. An improved
iterative convergence rate contributes to a reduction in the
computational complexity cost as it reduces the total number
of operations carried out during the entire decoding process
of the received vector.
The rest of the paper is structured as follows: a detailed
description of how the proposed decoder works is given in
Section III, thereafter an analysis of the proposed algorithm
and simulation results are presented in Section IV, then a
complexity analysis of the proposed decoder is investigated in
Section V and Section VI gives the conclusion to the findings
obtained in this paper.

II. INFORMATION SET DECODING: IMPORTANCE OF THE
SYSTEMATIC STRUCTURE TO THE DECODING PROCESS

Assume a (n, k) RS code C, in the field GF(2b), is defined
by a systematic parity check matrix H having the dimensions
m× n, where m = (n− k).

H = [I Q], (1)

where I = m × m identity submatrix and Q = (n − m) ×
m parity submatrix. The syndrome S = 0 can be found by
multiplying a valid codeword c from C

S = c× H�, (2)
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where H� is the transpose of the H matrix. We can rewrite
(2) in the form shown in (3)

S = (cI × I�) + (cQ × Q�) (3)

where the cI and cQ represent subvectors of the codeword c
that correspond to the identity and parity submatrix respec-
tively. As a result of the syndrome S = 0, the additive inverse
property of the field GF(2b) [38] can be applied to (3) to give

(cI × I�) = (cQ × Q�) (4)

Based on the systematic structure of I�, we can further reduce
(4) to (5)

cI = (cQ × Q�) (5)

From (5), it can be seen the subvector cI of the codeword
c can be correctly obtained using the the subvector cQ. This
is the information set decoding principle behind the proposed
decoding approach presented in this research.

III. THE PROPOSED DECODING SCHEME

To understand how the proposed decoder works, the relevant
notation is first established. The decoder works on a bit-level,
this means a binary image expansion is performed on H. In
what follows, the binary image expansion of the H matrix
for the RS code is obtained as described. Each element αz

of the field GF(2b), where 0 ≤ z ≤ (2b − 2), is replaced
by a corresponding b × b binary matrix Bz , where B is the
companion matrix of a primitive polynomial which creates the
field F2b [16][18]. The binary image expansion of H is denoted
as H and has the dimensions M ×N , where M = (nb− kb)
and N = nb.
We now consider an RS codeword c in the extension field. The
codeword c is transmitted using a selected modulation scheme
through a noisy channel. The soft information received at the
output of the channel is then used to create the reliability
matrix β. The matrix β has the dimensions 2×N , where the
1st and 2nd row of β represent the reliability of the selected
bit index being a “0” and a “1” respectively.
The techniques used to create β depend on the channel and the
selected modulation scheme. For instance when transmitting
through an Additive White Gaussian Noise (AWGN) chan-
nel using a Binary Phase Shift Keying (BPSK) modulation
scheme, the codeword c is first converted into its bit form
by representing each element αz with the respective binary
polynomial a0+a1α+ ...+ab−1α

(b−1). The binary codeword
is denoted as cb, and has the length nb. After transmission,
the vector rb is received at the output of the noisy channel.
The soft information in the vector rb is then used to find the
bit reliabilities of either being a “0” or a “1” using the method
presented in [39][40]. When the symbols of the codeword c
are transmitted using a 16-QAM modulation scheme with Gray
mapping through an AWGN channel, the reliabilities used to
fill the rows in the matrix β are obtained using the technique
presented in [41] from the soft information received at the
output of the channel.
Once the matrix β is created, each of the columns is then
scaled using the approach presented in [9]. This is carried out
to ensure that the reliabilities in each column of β add up to

1 before being fed into the decoder.
For each iteration of the proposed algorithm, the decoding
process can be summarised by the following steps:

1) Finding the maximum bit reliabilities: The maximum
reliabilities in each column of β are identified and
arranged in the vector A as shown in (6)

A = [A1, A2, ..., AN ] (6)

where Aj = argmax(βj), 0 ≤ j ≤ N and βj represents
each column of the matrix β. These reliabilities are then
sorted in ascending order. The original indices of the
reliabilities are identified as well and stored in terms of
their ascending order in the vector Y

Y = [ Y1 , Y2 , ... , YN ]. (7)

For K = kb, the K highest values of the vector A are
considered to be the most reliable. An approach similar
to the information set decoding technique presented in
[27] is then applied. This ensures, after row reduction
is performed, the indices of the K highest reliabilities
match the parity submatrix of the now quasi-systematic
structure of H. For ease of notation, the matrix obtained
from the row reduction of the rearranged columns of
H is represented as H⊥.
It is important to note that the matrix H has a full
row rank. This means that there exists a total of M
independent columns present in H. However, as noted
in [5], there is no guarantee that the M least reliable
indices found in Y will match these columns during
row reduction. This means that not all the most reliable
K indices will match the parity submatrix for every
row reduction operation performed on H. When this
happens, any M indexes that matches an identity
submatrix of H⊥ are considered to be unreliable, and
any K bit indexes that match the parity submatrix of
H⊥ are considered to be reliable.

2) Hard-decision detection and the Syndrome check: Hard-
decision detection, similar to [4], is then performed on β
to obtain the vector ĉb. The syndrome is then calculated
by getting the scalar product of the vector ĉb and each
row of H⊥ as shown in (8)

Si = ĉb ·H⊥
i , (8)

where 1 ≤ i ≤ M is used to denote each row of H⊥

and each value of the syndrome vector, S. Due to the
decoder working on a bit-level, the syndrome calculation
in (8) can be rewritten in the form shown in (9)

Si =
∑

ĉbti , (9)

where ti represents all the indices of the participating
bits of ĉb in the ith syndrome check equation and is
expressed as

t = {N : H⊥
i,N = 1}. (10)

3) Obtaining the votes: During the syndrome calculation,
votes are cast for each bit. Each bit gets a vote of either
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being a “0” or a “1” based on the extrinsic information.
This means, for each row, all the participating bits except
the one being investigated take part in the vote. Based
on the vote, The syndrome calculation in (9) is rewritten
as

Si = ĉby +
∑

ĉbt′ , (11)

where y ∈ ti represents the index of the bit being voted
for. The subvector t′ represents the set of indices in ti
without the bit index y. Assuming the set of bits ĉbt′
are all correct and Si = 0, the calculation of votes can
be derived from the additive inverse property of the field
GF(2b) [38] and is represented as

ĉby =
∑

ĉbt′ . (12)

From (12), ĉby is found to be either a “0” or “1”. This
counts as a vote for the bit ĉby . This process is repeated
for all participating bits of ĉb in every row of H⊥, with
the votes being stored in the matrix V as seen in (13)

V =

[
V0,1, V0,2, ... V0,N

V1,1, V1,2, ... V1,N

]
, (13)

where V0,j and V1,j represents the total votes each bit
index gets for being a “0” and a “1” respectively, for all
the rows of H⊥,

4) Obtaining the confidence rating: The first step to obtain-
ing the confidence rating of each bit is to get the voting
ratios, ϑ, as shown in (14)

ϑ =




V0,1

VT,0
,

V0,1

VT,1
, ...

V0,N

VT,N

V1,1

VT,1
,

V1,2

VT,2
, ...

V1,N

VT,N


 , (14)

where each VT,j represents the total number of votes
each bit index gets and it is computed as

VT,j = V0,j + V1,j . (15)

The confidence rating, Γ, for each bit is then calculated
by dividing the voting ratios in ϑ by a value of ρ as
shown in (16)

Γ =
ϑ

ρ
, (16)

where ρ represents the divisor which is a constant
predefined value input during the initialisation of the
algorithm. The values in the matrix Γ can be represented
as

Γ =

[
Γ0,1, Γ0,2, ... Γ0,N

Γ1,0, Γ1,2, ... Γ1,N

]
, (17)

5) Updating β: The values in Γ represent the level of
confidence that a bit is correct and should be updated in
β. The update works by adding the indexed confidence
ratio to the corresponding reliability in β, based on the
vote in (12) for being either a “0” or “1”. The update
can be summarized as follows

β
(f+1)

(ĉby,j)
= β

f

(ĉby,j)
+ Γ(ĉby,j)

, (18)

where f is used to denote the current iteration number
of the decoder. The value of ĉby is either a “0” or a
“1”. This value is used to identify which column in
β, with the reliability indexed by j, to update with
the corresponding confidence rating. The notation y
represents the index of the bit considered during (12).
All the reliabilities in β are updated based on their
participation in each row of the matrix H⊥. After all
the N indices are updated, β

(f+1)

is scaled to ensure
all the columns add up to 1 in preparation for the next
iteration.

A. The Decoding Condition and Thresholds

The proposed algorithm works iteratively and has two
stopping conditions. The first is when S = 0. The second is
when the decoding condition is met. The decoding condition
is based on ISD. That is, it makes use of a set of K bits
to re-encode the decoded codeword based on the rearranged
systematic structure of H⊥.
The decoding condition is met if the algorithm can ascertain
that the information set of K bits with indices matching the
parity submatrix is correct. If the information set is determined
to be correct, then the remaining M bits that match the identity
matrix can be decoded.
In order to understand how this works, consider the syndrome
equation between ĉb and the rearranged systematic matrix H⊥

in the form shown in (19).

S = (ĉbY M
× I�H⊥) + (ĉbY K

× Q�
H⊥), (19)

where I�H⊥ and Q�
H⊥ match the transpose of the column

indices of identity and parity submatrices of H⊥, while
ĉbY M

and ĉbY K
match the indices of ĉb that correspond

to the columns of the identity and parity submatrices of H⊥

respectively. Due to IH⊥ being an identity matrix, (19) can
be reduced further as shown in (20).

S = ĉbY M
+ (ĉbY K

× Q�
H⊥), (20)

If the ĉbY K
indices are correct, the bit values of ĉbY M

can be
obtained by assuming S = 0 and applying the additive inverse
property of the field GF(2b) to give

ĉbY M
= ĉbY K

× Q�
H⊥ . (21)

Similar to (12), the bit-level expression in (21) can be reduced
further by considering only the indices of the participating bits
to give

ĉbYMi
=

∑
ĉbtKi

(22)

where ĉbYMi
and ĉbtKi

are the participating bits of ĉbYM
and

ĉbYK
in the ith row of H⊥ respectively.

The algorithm is able to determine if the bits in the subvector
ĉbYK

, referred to as the information set, are correct by setting
a threshold. The threshold, τ , is defined as the minimum
number of syndrome check equations each of the K bits in
the information set should satisfy for (22) to be applied in the
decoding of the received vector. The higher the value of τ ,
the more confidence the algorithm has that the most reliable
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K indices are correct. However, this comes at the expense of
the algorithm running more iterations.
The main advantage of using the decoding condition as a
stopping criteria is that the algorithm is able to use K
bits to decode an entire received vector of length N . This
assists in reducing the number of iterations required to decode
the received vector, because the algorithm does not have to
confirm if every single bit is correct before it can break the
iterative decoding process.
A detailed summary of the proposed decoding approach is
presented in Algorithm 1. Also, a flow diagram that follows
the stages involved in the decoding process is represented in
Fig. 1. For purpose of notation in the summaries presented in
Algorithm 1 and Fig. 1, the decoded vector is denoted using
Ĉ and S

ĉbY K

is used to represent the minimum number of
syndrome checks satisfied by the each of the K bits in the
vector ĉbY K

.

Algorithm 1: Summary of the proposed Bit-level Decoder.
Input: The received vector, r
Output: The decoded vector Ĉ.

1 Initialize: Obtain β from r. Set the values of τ and ρ.
2 repeat
3 •Obtaining the Informational set:
4 Obtain the vector A from β.
5 Row reduce H based on the sorted reliability indexes

stored in vector Y to form the matrix H⊥.

6 •Syndrome check and Decoding condition:
7 Hard-decision detection is applied to β to obtain ĉb.
8 Calculate the syndrome S using (9) and note the

values of S
ĉbY K

9 •Voting for the bits
10 Apply (12) for the participating bits in each row of

H⊥ and store the vote tally for each bit in V.

11 •Obtaining the bit Confidence ratings
12 Obtain the voting ratios, ϑ, using (14) and (15).
13 Apply (16) to get the confidence rating for each bit

and store the values in the vector Γ.

14 •Update β
15 Update β using the respective confidence rating as

shown in (18)
16 until S = 0 or S

ĉbY K

= τ

17 if S
ĉbY K

= τ then
18 compute (22) to re-encode the decoded vector Ĉ

from the information set ĉbY K
.

19 else
20 Ĉ = ĉb

IV. RESULTS AND ANALYSIS

In this section, simulation results for the proposed iterative
decoder and its variants are presented. For ease of notation,

the proposed decoder is referred to as the k Bit Decoding
algorithm and is denoted as the kBD algorithm.

A. Analysis of the Proposed Bit-Level Decoding Algorithm

Simulations are run to find the optimum performance
conditions for the kBD algorithm using different values of τ
and ρ. The performance of the kBD algorithm using different
values of τ is first investigated. A nearly half rate (15, 7)
RS code is used in this simulation, with the symbols being
transmitted through an AWGN channel using a 16-QAM
modulation scheme with Gray mapping. The value of ρ = 50
is used for these simulations. Results for the simulations are
measured in terms of Bit Error Rate (BER) and the average
number of iterations. These results are presented in Fig. 2
and Fig. 3 respectively.

From Fig. 2 it can be seen that the error correction
performance of the kBD algorithm works best when τ ≥ 7.
It can also be seen from Fig. 3 that working with τ = 7
presents a more efficient kBD algorithm. This is because it
requires less than half of the average number of iterations
used by kBD algorithm with τ = 10 during the decoding
process, to achieve a similar BER performance.
Tests to determine the optimum value of ρ are also carried
out. Similar conditions are used for transmission of the
(15, 7) RS code. The kBD algorithm is implemented with
a τ = 7. The results for these simulations are presented in
Fig. 4 and Fig. 5.
The kBD algorithm with values of ρ ≥ 50 are able to achieve

a slightly higher gain in terms of BER when compared to
the kBD algorithm with values of ρ ≤ 30 as seen in Fig. 4.
The kBD algorithm with ρ = 50 is shown to be an efficient
decoder as it requires less iterations to yield a comparable
BER performance to the other versions of the algorithm, with
values of ρ > 50, as seen in Fig. 5. Based on this, the kBD
algorithm with ρ = 50 and τ = 7 is used to benchmark the
performance of the proposed algorithm with other iterative
soft-input soft-output bit-level decoders.

B. Performance Analysis of the Proposed Bit-Level Decoding
Algorithm

Half rate codes

In this section the performance of the kBD algorithm is
benchmarked against the bit-level implementation of the PTA
and the ABP algorithm. Simulations are run on a nearly half
rate (15, 7) RS code. The ABP is simulated with the value
of α = 0.05 and is set to run with a maximum number of
20 iterations [5]. The bit-level implementation of the PTA,
denoted as PTAbl, is run with a value of δ = 0.01 [9].
For these simulations, a version of the kBD algorithm with
a lower computational complexity cost than the original im-
plementation is presented. This version of the kBD algorithm
only performs Gaussian row reduction once on H, in the first
iteration, to obtain H⊥. The same H⊥ is then used throughout
the entire iterative decoding process of the received vector.
This version of the kBD algorithm is referred to as the none
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Input r .

Set value for τ

Create β from r.

Obtain vector A by computing,

Aj = argmax (βj).

Sort the indices of A in ascending

order and store in vector Y .

Row reduce H into H⊥

based on the vector Y .

Compute (4) to find S.

Note the values of S
ĉbYK

.

Obtain ĉb from β.

is S= 0 ? is S
ĉbYK

= τ ?

Output Ĉ.

Ĉ = ĉb

Re-encode ĉb by computing (17).

Compute votes using (7).

Store votes in V .

Compute (9) and (10) to get ϑ.

Apply (11) to calculate values
Update β using (13).

Yes

No

Yes

No

for Γ.

and ρ.

Fig. 1. Flow diagram representing the stages involved in the decoding process

transform version of the decoder and is denoted as kBDnt

algorithm. As a result of the reduced Gaussian row reduction
operations, the kBDnt algorithm has a lower computational
complexity cost than the original implementation of the kBD
algorithm. The same simulation parameters for encoding,
modulation and transmission used to obtain the results in
Fig. 2, are utilised for this set of simulations. The results for
these simulations are presented in Fig. 6 and Fig. 7.
It can be seen from Fig. 6 that the kBD algorithm experiences

a gain of 0.5dB when compared to the ABP algorithm with
α = 0.05 at a BER of 10−3. The kBD algorithm also
outperforms PTAbl decoder, but with a smaller gain of about

0.4dB for the BER value of BER of 10−4.
The kBDnt algorithm, being less complex due to its lack of
iterative H⊥ transformations, yields a similar performance to
that of the ABP algorithm with α = 0.05. However, the kBDnt

algorithm is outperformed by both the kBD algorithm and the
PTAbl by about 0.65dB and 0.55dB respectively for a BER of
10−3. It is important to note that the PTAbl has a significantly
higher computationally complexity cost when compared to all
the bit-level decoders used in the simulation. This is because
it performs Gaussian row reduction operations to transform
the matrix H for each of the iterations required during the
decoding process, as seen in Fig. 7. This provides justification
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Fig. 2. Performance comparison of the kBD algorithm based on different
values of τ in terms of BER for a (15,7) RS code.
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Fig. 3. Performance comparison of the kBD algorithm based on different
values of τ in terms of average number of iterations for a (15,7) RS code.

for the use of the kBDnt algorithm over the PTAbl whenever
a tradeoff is required between the algorithm complexity and
the decoding performance.
From Fig. 6 and Fig. 7, the kBD algorithm is seen to be
a better performing iterative bit-level soft-decision decoding
algorithm. This is because it is able to achieve gains in BER
performance, while running for fewer iterations than all other
bit-level soft-decision decoding algorithms used in the (15, 7)
RS code simulations.

High rate codes

Additional simulations are carried out to test the perfor-
mance of the proposed variations of the kBD algorithms under
high rate conditions. Working at a high rate means working
with a H matrix with less rows when compared to a half rate
code. That is, there are fewer syndrome check equations than
in the case for the (15, 7) RS code. This means that each of
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Fig. 4. Performance comparison of the kBD algorithm based on different
values of ρ in terms of BER for a (15, 7) RS code.
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Fig. 5. Performance comparison of the kBD algorithm based on different
values of ρ in terms of average number of iterations for a (15, 7) RS code.

the K bits in the information set participate in less syndrome
check equations.
With respect to this, a new set of simulations to determine an
optimum value for τ are carried out. For these simulation,
a (15, 11) RS code is once again transmitted through an
AWGN channel using a 16-QAM modulation scheme with
Gray mapping. The results for these simulations are displayed
in Fig. 8 and Fig. 9. It can be seen from Fig. 8 that the BER
performance of the algorithm is the same for values of τ ≥ 3.
The main difference in the performance of the algorithm can
be seen in Fig. 9. The kBD algorithm with τ = 3 requires
less than half of the average number of iterations to decode
the received vector, when compared to the kBD algorithm with
values of τ ≥ 5. As mentioned in section III-A, the reason why
the kBD algorithm with τ = 3 requires less iterations than
values of τ > 3, is because the algorithm only has to ensure
that each bit in the information set, ĉbYK

, satisfies 3 syndrome
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Fig. 6. Performance comparisons for bit-level decoders applied to a (15, 7)
RS code in terms of BER.
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Fig. 7. Performance comparisons for bit-level decoders applied to a (15, 7)
RS code in terms of average number of iterations.

check equations as opposed to the cases when τ > 3. This
enables the kBD algorithm to meet the decoding condition
with fewer iterations than when τ ≥ 5. Also, the value of
τ = 3 is sufficient to give an optimum BER performance as a
direct result of the (15, 11) RS code having a H matrix with
less syndrome check equations. Hence, the kBD algorithm
with ρ = 50 and τ = 3 is used when benchmarking the
performance of the decoder with the ABP and the PTAbl for
high rate codes.
No modifications are made to the implementations of the
PTAbl and the ABP algorithm from the case of the nearly
half rate code. All the algorithms are run under the same
conditions as the case for the (15,7) RS code. The results
for this set of simulations can be seen in Fig. 10 and Fig. 11.
From the results presented in Fig. 10, the performance of the
kBD algorithm matches the performance of the PTAbl. This
performance is achieved by the kBD algorithm while running
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Fig. 8. Performance comparison of the kBD algorithm based on different
values of τ in terms of BER for a (15, 11) RS code.
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Fig. 9. Performance comparison of the kBD algorithm based on different
values of τ in terms of average number of iterations for a (15, 11) RS code.

at a lower average number of iterations than the PTAbl, during
the decoding process, as seen in Fig. 11. The kBD algorithm
also compares favourably to the ABP algorithm by yielding
a slight BER performance gain of about 0.23dB at an BER
value of 10−5.
The kBDnt algorithm is only slightly outperformed by less
than 0.1dB at a BER of 10−5 when compared to the PTAbl

and achieves a similar BER performance to that of the ABP
algorithm, while running at an average number iterations that
is less than both algorithms. This justifies the use of the
kBDnt algorithm, when selecting a bit-level soft-input soft-
output decoder, in the case of a tradeoff between the algorithm
complexity and the decoding performance.
The algorithm is also run for a (31, 25) RS code so as to
benchmark the proposed decoder against the results presented
in [5]. For these simulations, the proposed algorithm is also
tested against one of the modifications of the ABP decoder
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Fig. 10. Performance comparisons for bit-level decoders applied to a (15, 11)
RS code in terms of BER.
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Fig. 11. Performance comparisons for bit-level decoders applied to a (15, 11)
RS code in terms of average number of iterations.

referred to as the ABP-HDD(20,1) algorithm. This version
of the ABP works alongside a ‘genie aided’ hard decision
decoder (HDD) [5]. This version of the ABP works iteratively,
however, it does not converge to a codeword. Instead it runs
for all the 20 iterations while outputting a codeword that is
fed into the HDD with a genie aided stopping condition. The
ABP only selects the most likely codeword if the HDD is not
able to obtain the decoded vector from the list of codewords
generated from each of the 20 iterations. The result of the
ABP-HDD(20,1) is described as ‘optimistic’ in [5] due to the
inclusion of the genie aided HDD. This is because the genie
aided stopping criteria already knows the correct codeword
and breaks the decoding process once the correct codeword is
obtained instead of letting the iterative algorithm converge to
the most likely codeword[5]. The genie aided HDD is added
to the algorithm to prevent the decoder from running all 20
iterations and therefore speeding up the decoding process.
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Fig. 12. Performance comparison of the ABP, PTAbl, kBD algorithm and
kBDnt algorithm for a (31, 25) RS code.

This is because the algorithm is a double decoder. This
means there is an increased complexity when compared to
the generic version of the ABP. This is especially due to
the algorithm running all 20 iterations during each decoding
process, even for higher SNR values when the decoder requires
less iterations to converge to a valid codeword.
The simulations are tested using BPSK modulation and the RS
code is transmitted through an AWGN channel so as to obtain
the results in a similar way to [5]. The Maximum Likelihood
(ML) lower bound is obtained using the technique presented
in [35] [42]. The results for these simulations are presented
in Fig. 12. From the results in Fig. 12 it can be seen that the
error correction performance of the kBD algorithm and kBDnt

algorithm are quite favourable when compared to the generic
ABP decoder. The kBD algorithm outperforms the generic
version of the ABP by about 0.5dB at an FER of 10−3. The
less complex kBDnt algorithm yields a gain of about 0.25dB
when compared to the generic form of the algorithm. However,
the kBD algorithm has a loss of about 0.6dB when compared
to the ML lower bound graph and a loss of less than 0.1dB
when compared to the ABP-HDD(20,1) [5], for the same FER
value.

V. COMPLEXITY ANALYSIS

A. Time Complexity

In this section, the computational complexity cost for the
kBD algorithm is compared to that of the ABP and the
PTAbl decoders. The complexity cost of the bit-level soft-
input soft-output decoders is measured in terms of the total
number of operations carried out for the average number of
iterations required in the entire decoding process. In order
to better represent the computation calculations, notation is
established. The average row weight and column weight of
the participating bits indexed by t are denoted as Wr and Wc

respectively. The average row weight of indices that match
the parity submatrix of H⊥ are denoted using Wk. The
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notation Wk is also used to denote the average row weight
for computations that obtain the extrinsic bit information. The
computational complexity cost for a single iteration of the
ABP, the PTAbl, kBD algorithm and the kBDnt algorithm are
all summarised in the Table I, Table II, Table III and Table IV
respectively.
For clarity, the complexity analysis of the ABP algorithm in
Table I follows the decoding process described in [5]. The
complexity analysis for the PTAbl in Table II follows the
decoding process described in [4].

TABLE I
SUMMARY OF THE OVERALL COMPLEXITY FOR THE ABP DECODER.

Decoding Stage Stage description Number of Operations
Obtaining the vec-
tor |L|

Finding absolute values for L N

Sorting of |L| |L| sorted in ascending order N

Adapting the H
matrix

Row reduction of H M2 × N

Obtaining the vec-
tor Le

Calculating the extrinsic in-
formation

(M×W 2
k )+(N×Wc)

[6]
Updating the vector
L

Adding Le(cbj) to L(cbj) N

Obtaining the hard-
decision vector ĉb

Assigning one of the binary
values to each L(cbj)

N

Syndrome Check Performing the calculation
represented in (9)

M × Wr

Overall Complexity of the ABP decoder

Total = N+N+(M2×N)+(M×W 2
k )+(N×Wc)+N+N+(M×Wr)

Time complexity = O(M × W 2
k ) [6]

TABLE II
SUMMARY OF THE OVERALL COMPLEXITY FOR PTAbl .

Decoding Stage Stage description Number of Operations
Finding the reliabil-
ity vector

Searching for maximum val-
ues in β

N

Sorting of reliabili-
ties

Reliabilities sorted in ascend-
ing order

N

Transforming
matrix H

Row reduction of H M2 × N

Obtaining the hard-
decision vector ĉb

Assigning one of the binary
values in β

N

Syndrome Check Performing the calculation
represented in (9)

M × Wr

Correction step Updating the β reliabilities
based on each Syndrome
check

M × Wr

Scaling reliabilities
in β

If S �= 0, reliabilities are
scaled such that they add up
to 1 in preparation for the next
iteration

(N + 2N)

Overall Complexity of the PTAbl

Total = N+N+(M2×N)+N+(M×Wr)+(M × Wr) + (N + 2N)︸ ︷︷ ︸
if S �= 0

Time complexity = O(M2 × N)

TABLE III
SUMMARY OF THE OVERALL COMPLEXITY FOR THE kBD ALGORITHM.

Decoding Stage Stage description Number of Operations
Finding the vector
βmax

Searching for maximum val-
ues in β

N

Sorting the reliabil-
ities

Reliabilities sorted in ascend-
ing order

N

Transforming
matrix H

Row reduction of H M2 × N

Obtaining the hard-
decision vector ĉb

Assigning one of the binary
values in β

N

Syndrome Check
and vote tallying

Applying (9) and (12) (M × Wr) + (M ×
W 2

k )
Obtaining the bit
confidence rating

Applying (15),(14) and (16) (N + 2N + 2N)

Updating β Bit reliabilities are updated in
β

M × Wr

Checking for de-
coding condition

Checking if τ is met by the
informational set

K

Scaling reliabilities
in β

If S �= 0 or τ is not met, re-
liabilities are scaled such that
they add up to 1 in preparation
for the next iteration

(N + 2N)

Applying the De-
coding condition

Applying (22) M ×Wk - only applied
in the final iteration if
S �= 0 when the thresh-
old τ is met

Overall Complexity of the kBD algorithm

Total = N +N +(M2 ×N)+N +(M ×Wr)+ (M ×W 2
k )+ (N +2N +

2N) + (M × Wr) + K + (N + 2N)︸ ︷︷ ︸
if S �= 0 or τ is not met

+(M × Wk)︸ ︷︷ ︸
last iteration only

Time complexity = O(M × W 2
k )

TABLE IV
SUMMARY OF THE OVERALL COMPLEXITY OF THE kBDnt ALGORITHM.

Decoding Stage Stage description Number of Operations
Finding the vector
βmax

Searching for maximum val-
ues in β

N

Sorting the reliabil-
ities

Reliabilities sorted in ascend-
ing order

N

Transforming
matrix H

Row reduction of H M2 ×N - only applied
in the first iteration.

Obtaining the hard-
decision vector ĉb

Assigning one of the binary
values in β

N

Syndrome Check
and vote tallying

Applying (9) and (12) (M × Wr) + (M ×
W 2

k )
Obtaining the bit
confidence rating

Applying (15),(14) and (16) (N + 2N + 2N)

Updating β Bit reliabilities are updated in
β

(M × Wr)

Checking for de-
coding condition

Checking if the τ is met by
informational set

K

Scaling reliabilities
in β

If S �= 0 or τ is not met, re-
liabilities are scaled such that
they add up to 1 in preparation
for the next iteration

(N + 2N)

Applying the De-
coding condition

If τ is met, (22) is computed (M × Wk) - only ap-
plied in the final itera-
tion if S �= 0 when the
threshold τ is met

Overall Complexity of the kBDnt algorithm

Total = N + N +

1st iteration only︷ ︸︸ ︷
(M

2 × N) +N + (M × Wr) + (M × W 2
k ) + (N +

2N + 2N) + (N × Wr) + K + (N + 2N)︸ ︷︷ ︸
if S �= 0 or τ is not met

+ (M × Wk)︸ ︷︷ ︸
last iteration only

Time complexity = O(M × W 2
k )
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To create a clear perspective of the complexities of the
algorithms, additional tables that note the computations which
involve ‘additions/subtraction’, ‘multiplications/divisions’ and
‘other’ operations are created for each algorithm. The tables
only considers the operations that are unique to at least one
algorithm. For example, operations like Gaussian elimination
and the syndrome check are present in all algorithms and are
therefore ignored in this analysis. The tables with this analysis
are presented in Table V, Table VI, and Table VII respectively.

From Table. I, Table. III and Table. IV, it can be seen that
the ABP decoder and both versions of the kBD algorithm all
have the same time complexity. This is due both algorithms
calculating the extrinsic information. However from compu-
tational complexities presented in Table. V and Table. VII,
the extrinsic information computation for the ABP requires
(M ×W 2

k ) multiplications as seen in [5] while both version
of the kBD algorithm use (M ×W 2

k ) additions as shown in
(12).

B. Complexity measured in Terms of Number of Operations

The research carried out also attempted to visually represent
the complexities of the decoders. The complexity graphs
plotted are based on the of total number of operations as
a function of the average number of iterations run by the
decoders for each SNR value. This additional set of complexity
analysis simulations are carried out so as to investigate the
effect of the iterative performance on the complexity cost of

TABLE V
SUMMARY OF THE COMPUTATIONAL COMPLEXITY FOR THE ABP

DECODER.

Decoding Stage +/− ×/÷ other

Obtaining the vector |L| N
Obtaining the vector Le (N ×Wc) (M ×W 2

k )
Updating the vector L N N

TABLE VI
SUMMARY OF THE COMPUTATIONAL COMPLEXITY FOR PTAbl .

Decoding Stage +/− ×/÷ other

Finding the reliability vector N
Correction step M×Wr

Scaling reliabilities in β N 2N

TABLE VII
SUMMARY OF THE COMPUTATIONAL COMPLEXITY FOR THE kBD

ALGORITHM AND THE kBDnt ALGORITHM.

Decoding Stage +/− ×/÷ other

Finding the vector βmax N
vote tallying (M×W 2

k )
Obtaining the bit confidence rating N (2N+2N)
Updating β M ×Wr

Checking for decoding condition
K

Scaling reliabilities in β N 2N
Applying the Decoding condition M ×Wk

the algorithms. The total number operations are obtained from
the equations given in Table I, Table II, Table III and Table IV
and multiplied by the average number of iterations run by each
algorithm for the different SNR values shown in Fig. 7 and
Fig. 11.
From the simulation performed for the (15,7) RS codes, it is
found that Wr = 14.74, Wc = 7.86, Wk = 13.74, M = 32
and N = 60. The results using these values can be seen in
Fig. 13.
It can be seen from Fig. 13 that both variants of the kBD
algorithm require less operations than the ABP with α = 0.05
and the PTAbl with δ = 0.01. As expected, the kBDnt

algorithm is the least complex of all the algorithms for the
(15, 7) RS code. It is important to note that the kBDnt

algorithm is able to exhibiting a comparable BER performance
to the high performance ABP algorithm, while being less
complex, as shown in Fig. 6 and Fig. 13 for the (15, 7) RS
code. The kBD algorithm is also shown to yield a tolerable
complexity when compared to both the ABP and the PTAbl.
For the low SNR values, the computational complexity cost
of the kBD algorithm is comparable to the ABP. However,
as the values of the SNR increase, the complexity cost of
the kBD algorithm reduces significantly faster than the ABP
decoder. From Table II, the PTAbl appears to be the least
complex bit-level decoder for operations carried out in a single
iteration. However, the numerous iterations required by the
PTAbl to decode the received vector, considerably add to the
computational complexity cost as seen from Fig. 13. This
makes the PTAbl significantly more complex than the other
bit-level decoders used in the simulations.
The low computational complexity cost of the kBD algorithm
and the kBDnt algorithm, when compared to the ABP and the
PTAbl, is largely attributed to the iterative convergence rate
of the decoder. The information set decoding based stopping
criteria ensures the algorithm is able to converge to a codeword
with less iterations. This is because the algorithm is only
required to decode K bits. This is not the case for the ABP
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Fig. 13. Complexity comparisons for the bit-level decoders applied to a (15,7)
RS code over an AWGN channel using a 16-QAM modulation scheme.
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and the PTAbl which have to decode the entire codeword of
N bits before the iterative decoding process can break.
Simulations are also run for the high rate (15,11) RS code
to compare the computational complexity cost for the bit-
level decoders. The results for these simulations can be seen
in Fig. 14. For these simulations Wr = 22.48, Wc = 5.99,
Wk = 21.48, M = 16 and N = 60.
Similar to the results in Fig. 13, the variants of the kBD
algorithm still perform less operations than the ABP and
the PTAbl during decoding of the received vector as seen in
Fig. 14. However, there is a larger performance difference in
the number of operations run between the kBD algorithm and
the ABP for the (15, 11) RS code, when compared to the
(15, 7) RS code. The main reason the kBD algorithm carries
out less operations when compared to the ABP for the (15, 11)
RS code than the (15, 7) RS code, is due to the use of a
smaller value of τ . The smaller value of τ ensures the decoding
condition is met much quicker. This reduces the number of
iterations used to correct the bits in the received vector, which
in turn reduces the number of operations required during the
decoding process. Also, it is important to note that the ABP
requires more iterations to decode the received vector for the
(15, 11) RS code when compared to the (15, 7) RS code. This
is because the high rate code has less rows and a larger parity
submatrix in H when compared to the identity submatrix.
This makes the matrix H more dense which affects the
iterative convergence rate of the belief propagation algorithm.
This is due to some of the unreliable bits saturating most
of the checks which causes iterative decoding to be stuck
at some pseudo-equilibrium points [5]. The results for the
kBDnt algorithm are again quite favourable as in the case
of the (15, 7) RS code. This is because the significantly more
complex PTAbl only outperforms kBDnt algorithm by less
than 0.1dB in terms of error correction. The kBDnt algorithm
also matches the error correction performance of the ABP,
which is also has a higher computational complex cost as seen
in Fig. 10. As highlighted in section IV-B, this justifies the use
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Fig. 14. Complexity comparisons for the bit-level decoders applied to a
(15,11) RS code over an AWGN channel using a 16-QAM modulation scheme.

of the algorithm whenever a tradeoff between the decoding
performance and the algorithm complexity is required.

VI. CONCLUSION

In this paper an iterative soft-input soft-output bit-level
decoder based on ISD is presented for RS codes. The algo-
rithm has the advantage of working at a lower computational
complexity cost while yielding a similar BER performance
to the ABP and the bit-level PTA. The algorithm is able to
perform at a lower complexity largely due to its low itera-
tive convergence rate. The convergence rate of the proposed
decoder is controlled by information set decoding techniques
applied through an additional stopping criteria, referred to as
the decoding condition, for the iterative decoding process. The
decoding condition reduces the number of iterations required
for decoding by enabling the decoder to output a decoded
codeword of length N based on an information set of K bits.
This approach reduces the iterative convergence rate because
the algorithm only has to decode the information set made up
of the most reliable bits.
The proposed decoder has two variants, the kBD algorithm and
the less complex kBDnt algorithm. The kBD algorithm is able
to match the error correction performance, and in some cases
yield a slight gain in decoding performance, when compared
to the ABP and the bit-level PTA. The kBDnt algorithm is
only slightly outperformed, and in some case able match the
performance, of the ABP and the bit-level PTA. However
kBDnt algorithm is significantly less complex, due to the
lack of row reduction operation being carried out iteratively,
and can be used whenever a tradeoff is required between the
algorithm complexity and the decoding performance.

VII. FUTURE RECOMMENDATIONS

Work in this research focused on the development of a
high performance decoding approach that runs at a relatively
low complexity. The decoding approach works well, however
improvements can still be made. Research can be carried out
to test the coding gain the proposed algorithm can attain from
using low weight parity check equations instead of the original
H matrix as in the case for the parity check matrix extensions
[43]. To further improve the error correction performance of
the proposed bit-level decoder, at the expense of an increased
computational complexity cost, double decoding techniques
can also be explored. The use of a hard-decision decoder,
in a similar way to the implementation with soft-decision
decoders presented in [5], [16], [44], can also be investigated
when applied to the proposed decoding approach.
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