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 
Abstract—In radio propagation, modelling of rainfall rate, 

rain attenuation and drop size distribution is highly 
location-dependent and thus requires availability of reliable 
data from various locations. Models and mathematical 
predictions obtained based on data from one location often 
prove inadequate when applied to another location with 
either slightly or radically different rainfall pattern. In this 
paper, the focus is to develop a new rainfall drop size 
distribution model for equatorial Africa using disdrometer 
data obtained in Butare, Rwanda (2°35’53.88”S and 29° 44’ 
31.5” E). Rainfall data was classified into annual, monthly 
and rainfall regimes which are drizzle, widespread, shower 
and thunderstorm, based on their rainfall rates. The 
maximum likelihood estimation technique was applied to 
construct estimates of input Drop Size Distribution (DSD) 
fit parameters of the developed statistical distribution for 
rainfall DSD in Butare. The newly obtained distribution 
was compared to the existing rainfall DSD models, namely, 
Lognormal, Gamma, Marshall- Palmer and Weibull 
distributions, and found to be an improvement over the 
existing ones. The Mie Scattering technique is employed to 
derive the scattering parameters. Thereafter, the derived 
scattering parameters with DSD models are used for the 
estimation of rainfall attenuation for the Central African 
region.  
 

Index Terms—Rainfall Rate and Drop Size Distribution, DSD 
Modelling for Central Africa, Improved Rainfall DSD Model, 
Radio climatic Modelling, Rainfall Specific Attenuation. 
 

I. INTRODUCTION 
HE problem of data availability for location-specific 
modelling has been tackled with good results in various 
regions of the world. The earliest of such models were 

based on data from temperate regions [1]. Other regions such as 
the subtropical regions of Southern Africa [2-3], the tropical 
regions of West Africa [4] and Ethiopia [5] have also amassed 
extensive data and have developed and tested fitting models 
based on their data. The primary motivation is to develop a 
reliable database of rainfall measurements and to utilize it to 
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provide an empirical basis for modelling of rain drop size 
distribution fitted specifically to the equatorial region of Central 
Africa and its unique rainfall pattern. This work aims to explore 
the specific peculiarities that might appear when rain data from 
the Central Africa region is applied to implement the well-
known models which were developed based on measurements 
carried out elsewhere, and to develop mathematical tools and 
methods that factor these peculiarities into the key radio 
propagation expressions employed in communication planning. 

II. DATA MEASUREMENTS AND PROCESSING 
Rainfall measurement data was acquired using the JW RD-

80 disdrometer installed at the roof of MSc-In-ICT building, 
University of Rwanda, Butare (2°35’53.88”S, 29°44’31.53”E 
at 1769 m a.s.l) over a period of 32 months between 2012 and 
2015. The equipment has two main components: a sensor and a 
processor, as shown in Figure1. The sensor is an outdoor 
equipment exposed to the rain drops to be measured, while the 
processor processes the signal pulses caused by drops hitting 
the sensor. The drop size measurements from the processor are 
recorded and evaluated on a personal computer by using 
disdrodata software. This software enables the user to record 
and evaluate drop size measurements with a windows-based 
personal computer or notebook [6]. The accuracy of this 
disdrometer is ±5%, and it can process the rainfall rate and rain 
drop statistics data into 20 different channels via the indoor unit. 
Each of the channels is related to rain drops with diameter, D, 
in the range 0.313 mm ≤ D ≤ 5.373 mm.  
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Fig. 1. Joss-Waldvogel RD-80 impact disdrometer system connected to a 
personal computer [6]  



Vol.111 (1) March 2020 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 23

In the entire period of measurement, 1113707 rainfall 
samples were recorded and those with total sum of drops less 
than 10 were excluded from the data samples to compensate for 
the dead-time errors as they are considered to be within the 
noise level [7]. The maximum number of rain drops per sample 
in the measurement period is 3643 drops with a maximum 
rainfall rate of 118.5 mm/h, and a minimum of 0.0029 mm/h for 
a total of 56620 filtered rainfall samples. Then, the filtered 
samples were considered and regrouped based on monthly, 
annual and regime variations.  
In a yearly cycle, Rwanda has four seasons which are 
determined by the variability of rainfall- two rainy seasons 
interspersed between two dry seasons as follows: the Short dry 
season (From January to February); the Long rainy season 
(March to the beginning of June); the Long dry season (from 
June to mid-September); and the Short rainy season (mid-
September to December) [8]. 

The data was arranged and categorized into different rainfall 
regimes based on rainfall rates [3] as follows: drizzle (0 mm/h 
≤ R < 5mm/h); widespread (5 mm/h ≤ R < 10 mm/h); shower 
(10 mm/h ≤ R < 40 mm/h); and thunderstorm (R > 40 mm/h). 
For the RD-80 distrometer, the rain rate, R and the rain DSD, 
N(Di), are related to the mean drop diameter, Di, and are given 
by [6, 9]: 

 
𝑅𝑅 = 6𝜋𝜋𝜋𝜋10−4

𝐴𝐴𝐴𝐴𝐴𝐴 ∑ 𝑛𝑛𝑖𝑖𝐷𝐷𝑖𝑖
320

𝑖𝑖=1      (𝑚𝑚𝑚𝑚 ℎ⁄ )                               (1) 
 
𝑁𝑁(𝐷𝐷𝑖𝑖) = 𝑛𝑛𝑖𝑖

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐷𝐷𝑖𝑖)𝛥𝛥𝐷𝐷𝑖𝑖
         (𝑚𝑚−3                                   (2) 

 
Where ni represents the number of drops measured in the class 

i, T is the sampling time (one-minute sampling time) and A is 
the sampling area (0:005 m2); v(Di) is the terminal velocity and 
ΔDi is the diameter interval of the rain drops at the ith channel 
of the disdrometer. TABLE I gives the summary of rainfall data 
recorded for the period of measurement between 2012 and 
2015. 

III. RAINFALL RATE ANALYSIS FOR BUTARE 
While designing a microwave link, it is recommended by the 

International Telecommunication Union (ITU-R) to target 
99.99 % system availability; therefore the rainfall rate (R0.01) 
exceeded for 0.01% of the time in the region of interest has to 
be determined. The statistical information obtained is based on 
the cumulative distribution function (CDF) for rainfall rates in 
Butare, Rwanda. The analysis is done based on annual, monthly 
and regime rainfall rate using the above disdrometer data 
between 2012 and 2015.  

 

A. Monthly Distribution of Rainfall Rate 
Fig. 2(a) shows the monthly cumulative distribution of 

rainfall rate distributions for each of the months in Butare, 
Rwanda. The rainfall rate percentage exceedences at 10%, 1%, 
0.1% and 0.01% taken from Figure 2(a) are presented in 
TABLE II.  

The month of the highest point rainfall rate is October with 
R0.01 = 116 mm/h, while July has the lowest point rainfall rate 
in the year. Generally, as shown in TABLE II, the monthly 
point rainfall rate values R0.01 are observed to be high from 
October to December and February to May in the short and long 
rainy season in Rwanda. A decrease in the values of R0.01 from 

TABLE I 
STATISTICAL SUMMARY OF THE RD-80 DISDROMETER FOR BUTARE, RWANDA BETWEEN 2012 AND 2015 

 
Category Number 

of 
samples 

Total 
number of 
rain drop 

Observed 
max. number 
of drops per 

sample 

Maximum 
Rainfall 

rate 
(mm/h) 

Total 
Rainfall 

time 
(hours) 

Data 
Percentage 

(%) 

Annual 56620 8737205 3643 118.516 943.67 100 
Monthly 

January      4445 985191 3643 74.46 74.08 7.85 

February 5899 733729       2833 103.08 104.1 10.42 

March 5517 1004567       2718 81.43 91.95 9.74 
April 5922 816618       2074 78.5 98.7 10.46 
May 5393 834825       2071 83.4 89.88 9.52 
June 3271 478807       912 71.84 54.52 5.78 
July 386 15548       543 2.9 6.43 0.68 
August 2687 286503       744 74.91 44.78 4.75 
September 3355 575219       3570 72.13 55.92 5.93 
October 8517 1297547       2716 118.516 141.95 15.04 

November 5917 839773       1685 111.97 98.62 10.45 
December 5311 868878       1178 98.56 88.52 9.38 

Regime 
Drizzle 50920 6640982 3643 4.99 848.67 89.93 
Widespread 2713 868738       1293 9.99 45.22 4.79 
Shower 2536 990540 1870 39.98 42.27 4.48 
Thunderstorm 451 236945 1487 118.516 7.52 0.8 
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December to January in the short rainy season and other low 
R0.01 values are observed from June to September in the long 
dry season, noting that the point rainfall rate is close to zero in 
July because there is almost no rain in that period of the year. 
From the above analysis, it is evident that October to December 
and February to May are the wettest periods, hence intense 
microwave attenuation due to rainfall in Butare, Rwanda. 

 

B. Regime Distribution of Rainfall Rate 
In this section, the standard four rainfall regimes (drizzle, 

widespread, shower and thunderstorm) are analyzed. As shown 
in Table 1, in Butare 89.93 % of the total rainfall event in the 
period of measurement are in the drizzle band; followed by 
widespread, shower and thunderstorm at 4.79 %, 4.48 % and 
0.8 %, respectively. Results are presented in Figure 2(b) and 
Therefore, it is found that the rainfall rate exceedences for 
drizzle events is R0.01 =4.9 mm/h, widespread events at R0.01 = 
9.9 mm/h; shower events at R0.01 = 39.1 mm/h and thunderstorm 
events at R0.01 = 93 mm/h. Since microwave and millimeter 
wave links are mostly attenuated by rainfall droplets at high 
rainfall rate, therefore, Shower and Thunderstorm events are 
given highest consideration in rainfall design. 

 

C. Annual Distribution of Rainfall Rate 
The annual cumulative distribution of rainfall rate, exceeded 

for different percentages of time using measurements obtained 
from Butare, Rwanda between 2012 and 2015 is shown in 
Figure 2. From this plot, results show that, the measured value 
of the rainfall rate exceeded at 0.01% (R0.01 = 96 mm/h) for the 
entire period of measurement is much higher than the 
recommended value from ITU-R P.837 (R0.01 = 70 mm/h). 

IV. RAIN DROP SIZE DISTRIBUTION MODELS 
The raindrop size distribution (DSD), denoted by N(D), is the 

number of raindrops at a given diameter per unit volume. It 
varies with respect to the region, season, year and depends on 
factors such as rainfall rate wind and rainfall types [10]. 
Generally, according to Afullo [3], Marzuki et al. [11], 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 2. Cumulative distribution of rainfall rate in Butare, Rwanda. (a) Monthly 
(b) Regime (c) Annual distribution between 2012 and 2015 
  
 

TABLE II 
STATISTICS OF RAINFALL RATE EXCEEDANCE FOR BUTARE, 2012 

TO 2015 
 

Category % of time rain rate is exceeded  
10% 1% 0.1% 0.01% 

Annual 4 20 65 96 
Monthly 

January     2 17 56 73 

February 3 18 68 103 

March 2 23 56 81 
April 4 20 66 78 
May 2 19 55 78 
June 2 14 55 71 
July - 1.75 2.25 - 
August 2 7 31 65 
September 2 17 44 67 
October 4 32 71 116 

November 3 28 59 103 
December 3 27 86 98 

Regime 
Drizzle 2 4 4.5 4.9 
Widespread - 7.5 9.2 9.9 
Shower - 19.5 36 39.1 
Thunderstorm - - 66 93 
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Owolawi [12], the measured rainfall DSD can be estimated as: 
 
𝑁𝑁(𝐷𝐷) = 𝑁𝑁𝑇𝑇𝑓𝑓(𝐷𝐷)                                                               (3) 

where NT (m-3) is the raindrop concentration and f (D) is the 
probability density function of the raindrop distribution in mm-

1. Many researchers such as Marshall and Palmer [13], Atlas 

TABLE III 
MODEL PARAMETERS FOR DIFFERENT RAINFALL DSD STATISTICAL MODELS ANALYSIS IN BUTARE, RWANDA BASED ON 

RAINFALL REGIMES [18] 
 

Input parameter 
Lognormal DSD model 

𝑁𝑁𝑇𝑇 = 𝑎𝑎𝑜𝑜𝑅𝑅𝑏𝑏𝑜𝑜 𝜇𝜇 = 𝐴𝐴𝜇𝜇 + 𝐵𝐵𝜇𝜇ln (𝑅𝑅) 𝜎𝜎2 = 𝐴𝐴𝜎𝜎 + 𝐵𝐵𝜎𝜎 ln(𝑅𝑅) 
𝑎𝑎𝑜𝑜 𝑏𝑏𝑜𝑜 𝐴𝐴𝜇𝜇 𝐵𝐵𝜇𝜇 𝐴𝐴𝜎𝜎 𝐵𝐵𝜎𝜎  

Drizzle 116.1 0.2144 -0.103 0.1798 0.0778 0.0113 
Widespread 143.61 0.0936 -0.2125 0.28 0.1007 -0.017 

Shower 209.69 -0.046 -0.2405 0.2874 0.0471 0.0048 
Thunderstorm 11.605 0.7502 0.5709 0.0635 0.0475 0.0053 

Input parameter Modified Gamma DSD Model  
𝞵𝞵 𝑁𝑁𝑚𝑚 = 𝑎𝑎𝑚𝑚(𝑅𝑅)𝑏𝑏𝑚𝑚  𝛬𝛬 = 𝑎𝑎𝛬𝛬(𝑅𝑅)𝑏𝑏𝛬𝛬 

𝑎𝑎𝑚𝑚 𝑏𝑏𝑚𝑚 𝑎𝑎𝛬𝛬 𝑏𝑏𝛬𝛬 
Drizzle 2 17066 -0.508 5.0671 -0.219 

Widespread 2 20144 -0.47 5.2187 -0.221 
Shower 2 68953 -0.952 6.357 -0.299 

Thunderstorm 2 167.37 0.6449 2.534 -0.055 
 

Input parameter 
Negative Exponential DSD model (MP)  

𝞵𝞵 𝑁𝑁0 = 𝑎𝑎𝑜𝑜𝑅𝑅𝑏𝑏𝑜𝑜 𝛬𝛬 = 𝑎𝑎𝛬𝛬𝑅𝑅𝑏𝑏𝛬𝛬 
𝑎𝑎𝑜𝑜 𝑏𝑏𝑜𝑜 𝑎𝑎𝛬𝛬 𝑏𝑏𝛬𝛬 

Drizzle 0 2625.9 -0.071 3.378 -0.219 
Widespread 0 2922.1 -0.028 3.4792 -0.221 

Shower 0 6740.8 -0.299 4.238 -0.299 
Thunderstorm 0 102.92 -0.055 1.689 -0.055 

 
Input parameter 

Weibull DSD model  
𝛽𝛽 = 𝑎𝑎𝛽𝛽𝑅𝑅𝑏𝑏𝛽𝛽 𝑁𝑁𝛾𝛾 = 𝑎𝑎𝛾𝛾𝑅𝑅𝑏𝑏𝛾𝛾 𝑁𝑁𝑤𝑤 = 𝑎𝑎𝑤𝑤𝑅𝑅𝑏𝑏𝑤𝑤  

𝑎𝑎𝛽𝛽 𝑏𝑏𝛽𝛽 𝑎𝑎𝛾𝛾 𝑏𝑏𝛾𝛾 𝑎𝑎𝑤𝑤 𝑏𝑏𝑤𝑤 
Drizzle 2.3231 -0.168 0.8181 -0.1668 186.63 -0.2299 

Widespread 1.857 0.1595 0.6987 -0.32 248.24 0.0331 
Shower 3.0432 0.044 0.7571 -0.2846 300.59 -0.032 

Thunderstorm 3.1356 0.062 2.0294 0.0194 10.431 0.8681 
  

TABLE IV 
MODEL PARAMETERS FOR DIFFERENT RAINFALL DSD STATISTICAL MODELS BASED ON ANNUAL RAINFALL ANALYSIS 

FOR BUTARE, RWANDA 
Lognormal DSD model 

𝑁𝑁𝑇𝑇 = 𝑎𝑎𝑜𝑜𝑅𝑅𝑏𝑏𝑜𝑜 𝜇𝜇 = 𝐴𝐴𝜇𝜇 + 𝐵𝐵𝜇𝜇ln (𝑅𝑅) 𝜎𝜎2 = 𝐴𝐴𝜎𝜎 + 𝐵𝐵𝜎𝜎 ln(𝑅𝑅) 
𝑎𝑎𝑜𝑜 𝑏𝑏𝑜𝑜 𝐴𝐴𝜇𝜇 𝐵𝐵𝜇𝜇 𝐴𝐴𝜎𝜎 𝐵𝐵𝜎𝜎  

113.7 0.2057 -0.0753 0.1908 0.0695 0.0695 
Modified Gamma DSD Model  

𝞵𝞵 𝑁𝑁𝑚𝑚 = 𝑎𝑎𝑚𝑚(𝑅𝑅)𝑏𝑏𝑚𝑚 𝛬𝛬 = 𝑎𝑎𝛬𝛬(𝑅𝑅)𝑏𝑏𝛬𝛬 
𝑎𝑎𝑚𝑚 𝑏𝑏𝑚𝑚 𝑎𝑎𝛬𝛬 𝑏𝑏𝛬𝛬 

2 17605 -0.497 5.0726 -0.219 
Negative Exponential DSD model (MP)  

𝞵𝞵 𝑁𝑁0 = 𝑎𝑎𝑜𝑜𝑅𝑅𝑏𝑏𝑜𝑜 𝛬𝛬 = 𝑎𝑎𝛬𝛬𝑅𝑅𝑏𝑏𝛬𝛬 
𝑎𝑎𝑜𝑜 𝑏𝑏𝑜𝑜 𝑎𝑎𝛬𝛬 𝑏𝑏𝛬𝛬 

0 2703 -0.06 3.3817 -0.219 
Weibull DSD model  

𝛽𝛽 = 𝑎𝑎𝛽𝛽𝑅𝑅𝛽𝛽 𝑁𝑁𝛾𝛾 = 𝑎𝑎𝛾𝛾𝑅𝑅𝑏𝑏𝛾𝛾 𝑁𝑁𝑤𝑤 = 𝑎𝑎𝑤𝑤𝑅𝑅𝑏𝑏𝑤𝑤  
𝑎𝑎𝛽𝛽 𝑏𝑏𝛽𝛽 𝑎𝑎𝛾𝛾 𝑏𝑏𝛾𝛾 𝑎𝑎𝑤𝑤 𝑏𝑏𝑤𝑤 

2.5873 -0.127 0.8538 -0.1835 179.25 -0.2139 
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and Ulbrich [14], Sekine and Lind [15], Ajayi and Olsen [1], 
Jiang et al. [16], have developed several DSD models in 
different climatic regions and their corresponding input fit-
parameters are estimated by the method of moments and 
maximum likelihood estimation techniques [3,10]. Several 
DSD models have thus been proposed. These comprise the 
Negative exponential (Marshall-Palmer), Lognormal, Weibull 
and the modified Gamma drop size distributions. 
 

The Lognormal rainfall DSD model is given in [1] as:  
 

𝑁𝑁(𝐷𝐷) = 𝑁𝑁𝑇𝑇
𝜎𝜎𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 {− 1

2 [ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2
}                                   (4) 

 
Where NT is the drop concentration, μ is the mean shape 
parameter, σ is the standard deviation of the drop sizes and D is 
the mean drop diameter which is obtained directly from rainfall 
data. The three lognormal parameters NT, μ and σ are derived 
from the observed spectrum for rain event and they are related 
to rainfall rate, R, as given by [1]: 
 

𝑁𝑁𝑇𝑇 = 𝑎𝑎𝑜𝑜𝑅𝑅𝑏𝑏𝑜𝑜                                                                     (4a) 
𝜇𝜇 = 𝐴𝐴𝜇𝜇 + 𝐵𝐵𝜇𝜇ln (𝑅𝑅)                                                          (4b) 
𝜎𝜎2 = 𝐴𝐴𝜇𝜇𝜇𝜇 + 𝐵𝐵𝜎𝜎 ln(𝑅𝑅)                                                      (4c) 

 
Where R is the rainfall rate, ao, bo, Aμ,Bμ, Aσ and Bσ are 
regression coefficients which depend on the region of interest. 
 
The modified Gamma rainfall DSD model is given in [14, 
17] as: 
 

𝑁𝑁(𝐷𝐷) = 𝑁𝑁𝑚𝑚(𝐷𝐷)𝜇𝜇 exp(−𝛬𝛬𝛬𝛬)    ( 𝑚𝑚−3𝑚𝑚𝑚𝑚−1)                  (5) 
 
Where D is the mean drop diameter, Nm is the scaling parameter, 
μ is the shape parameter, and Λ is the slope parameter of the 
distribution. μ is fixed to 2 or 3 in most cases and Λ and Nm, are 
fitted against measured rainfall rate, R as: 
 

𝑁𝑁𝑚𝑚 = 𝑎𝑎𝑚𝑚(𝑅𝑅)𝑏𝑏𝑚𝑚                                                               (5a) 
𝛬𝛬 = 𝑎𝑎𝛬𝛬(𝑅𝑅)𝑏𝑏𝛬𝛬                                                                  (5b) 

 
Where am, bm, aΛ and bΛ are regression coefficients to be 
determined. 
 

The Negative exponential rainfall DSD model given by 
[13]: 

 
𝑁𝑁(𝐷𝐷) = 𝑁𝑁𝑜𝑜 exp(−𝛬𝛬𝛬𝛬)   (𝑚𝑚−3𝑚𝑚𝑚𝑚−1)                           (6) 

 
Where the inputs parameters for the Negative exponential 
rainfall DSD model are similar to those of the modified Gamma 
rainfall DSD model in (5) with μ fixed to zero. 

The Weibull distribution is expressed as proposed by Sekine 
et al. [15, 16] by: 

 

𝑁𝑁(𝐷𝐷𝑖𝑖) = 𝑁𝑁𝑤𝑤 (𝛽𝛽
𝛾𝛾) (𝐷𝐷

𝛾𝛾)
𝛽𝛽−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝐷𝐷
𝛾𝛾)

𝛽𝛽
]                            (7) 

Where D (mm) is drop diameter, β is the shape parameter; γ is 
the scale parameter and Nw, the modified parameter. The power 
law regression coefficients of the Weibull DSD Model in (7) 
are given by: 
 

𝑁𝑁𝑤𝑤 = 𝑎𝑎𝑤𝑤𝑅𝑅𝑏𝑏𝑤𝑤                                                                    (7a) 
𝛽𝛽 = 𝑎𝑎𝛽𝛽𝑅𝑅𝛽𝛽                                                                        (7b) 
𝑁𝑁𝛾𝛾 = 𝑎𝑎𝛾𝛾𝑅𝑅𝑏𝑏𝛾𝛾                                                                     (7c) 

 
Where aw, bw, a β, bβ, aγ and bγ are regression coefficients 
of the model parameters. 
  

A. Variability of Drop Size Distribution Modelling for 
Butare, Rwanda 

In this section, by using the method of moments estimation 
technique as explained [9], various input parameters for the four 
different rainfall DSD models applied in this work are estimated 
and results are presented in TABLE III and IV. By using the 
estimated parameters in TABLE III, different drop size 
distribution models for Butare are developed, and the results are 
presented in Figures 3 (a)-(d) at rainfall rates of 4.95 mm/h, 9.54 
mm/h, 26.86 mm/h and 60.08 mm/h respectively. DSD models 
are fitted to the rain DSD as spectra observed from the 
disdrometer at Butare station. The rain drop diameters, the 
modelled drop size distribution and the measured data are 
compared for different models. From Figures 3 (a)-(d), one 
observes a progressive change in the shape of the DSD as 
rainfall rate increases. This means that as the rain rate increases, 
the diameter region of the DSD gets wider.  

At the rainfall rate of 4.95 mm/h, in Figure 3(a), the 
lognormal model takes the shape of the measured DSD even 
though it underestimates it at drop size diameter region less than 
1 mm. It is observed that the Gamma and Weibull models seem 
to coincide with the measured DSD, even though they 
overestimate it at drop size diameter regions less than 0.656 
mm. Figure 3(b) shows that, at 9.54 mm/h, weibull, Gamma and 
the Negative Exponential (M-P) models overestimate the 
measured DSD in the diameter range of 0.359 to about 1 mm. 
At this rainfall rate, the lognormal model performs best because 
it takes the shape of the measurement data even if it slightly 
overestimates it between 1.331 and 2.259 mm. At the rainfall 
rate of 26.86 mm/h as shown on the graph of Figure 3(c), the 
lognormal model is seen as a good fit to the measured DSD 
compared to other models. The Gamma, M-P and Weibull 
models overestimate the measurement at drop diameter region 
below 1.665 mm. At high rainfall rates of 60.08 mm/h as shown 
in Figure 3(d), the lognormal model takes the shape of the 
measured DSD but neither it nor other statistical models fits 
measurements well. 
 

B. Development of a New Rainfall Drop Size 
Distribution 

From plots of Figures 3 (a)-(d), it is seen that the diameter 
rain drop of the DSD gets wider as the rainfall rate increases 
and the Lognormal model tends to fit the measurement 
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particularly at high rainfall rate. By analysing the results, the 

drizzle rainfall regime DSD reaches its peak at drop diameter  
of Dp = 0.913 mm, the widespread, shower and the 
thunderstorm reach their peaks at drop diameters of 1.116 mm, 
1.665 mm and 1.912 mm, respectively. When D = Dp, the 
measured DSD is at its maximum and its variation with respect 
to the drop diameter is equal to zero. When D ≤ Dp, the 
Lognormal model performs best because it takes the shape of 
the measurements even if it also slightly underestimates. When 
D > Dp, the Gamma model best coincides with the measured 
DSD. Therefore, there is need to develop a new rainfall DSD 
model to improve on the existing ones.  

By modifying the Lognormal distribution for N(D), we 
propose the DSD model formulated as follows: 

 

𝑁𝑁(𝐷𝐷) = 𝑁𝑁𝑇𝑇
𝜎𝜎𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 {− 1

2 [ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2
}                                   (8) 

𝑥𝑥{1 + exp (−(𝐷𝐷 + 𝐷𝐷𝑝𝑝))} 
 
Where N(D) is the rain drop size distribution, NT is the drop 

concentration (inm-3), Dp is the peak diameter in(mm), D is the 
mean drop diameter (in mm), μ is the shape parameter, NT , and 
σ is the scale parameter. As discussed in section 4, the measured 
rainfall drop size distribution can be estimated by (3); therefore, 

 

f(𝐷𝐷) = 𝑁𝑁(𝐷𝐷)
𝑁𝑁𝑇𝑇

) = 1
𝜎𝜎𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 {− 1

2 [ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2
} 

𝑥𝑥{1 + exp (−(𝐷𝐷 + 𝐷𝐷𝑝𝑝))} 
  

f(𝐷𝐷) = 𝑁𝑁(𝐷𝐷)
𝑁𝑁𝑇𝑇

) = 1
𝜎𝜎𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 {− 1

2 [ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2
}                      (9) 

. {1 + e−D. eDp} 
 

Let 𝑒𝑒𝐷𝐷𝑝𝑝 = 𝛼𝛼 ; then (9) can be rewritten as: 
 

f(𝐷𝐷) = 𝑁𝑁(𝐷𝐷)
𝑁𝑁𝑇𝑇

) = 1
𝜎𝜎𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 {− 1

2 [ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2
}                    (10) 

. {1 + α. e−D} 
 
0 < 𝐷𝐷 < ∞      − ∞ < 𝞵𝞵 < +∞    𝜎𝜎 > 0    𝛼𝛼 > 0  
 
But according to [19], for f(D) to be a valid probability density 
function of a random variable D, the following two conditions 
given in equations (11) and (12) have to be satisfied: 
 

𝑓𝑓(𝐷𝐷) ≥ 0      𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷                                                    (11) 
 

∑ 𝑓𝑓(𝐷𝐷) = 1     𝑜𝑜𝑜𝑜    ∫ 𝑓𝑓(𝐷𝐷)𝑑𝑑𝑑𝑑+∞
−∞𝐷𝐷                                  (12) 

 
From a purely mathematical perspective, any non-negative 

function with a finite positive integral (sum) can be converted 
to a legitimate pdf. As an example, let the function h(x) be a 
non-negative function that is positive on the interval L ≤ x ≤ U, 
zero elsewhere, and C, a positive constant given by [19]: 
 

∫ 𝑓𝑓(𝐷𝐷)𝑑𝑑𝑑𝑑+𝑈𝑈
𝐿𝐿 = 𝐶𝐶 < ∞                                                    (13) 

 
Therefore, the probability density function of a random variable 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Rainfall drop size distribution models in Butare, Rwanda. (a) Drizzle 
at 4.95 mm/h. (b) Widespread at 9.54 mm/h (c) Shower at 26.86 mm/h (d) 
Thunderstorm at 60.08 mm/h 
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x taking values on the interval L ≤ x ≤ U, will be given by: 
 

𝑓𝑓(𝑥𝑥) = ℎ(𝑥𝑥)
𝐶𝐶                                                                       (14) 

 
By applying the approach in (13) and (14) from [19], the 

equation (10) has to be normalized so as to satisfy the two 
important conditions stated in (11) and (12) for a valid pdf. 
Therefore, the normalized form of (10) is given by: 
 

f(𝐷𝐷) = 1
𝐶𝐶𝐶𝐶𝐶𝐶√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 {− 1

2 [ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2
}                                 (15) 

. {1 + α. e−D} 
 
Where C is a normalizing constant given by: 
 

𝐶𝐶 = ∫ 1
𝜎𝜎𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 {− 1

2 [ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2
}𝑈𝑈

𝐿𝐿                                   (16) 

. {1 + α. e−D} 𝑑𝑑𝑑𝑑 
 
Where L and U are the lower and upper diameter ranges of the 
mean rain drop. Therefore, the mathematical expression of the 
proposed DSD model is: 
 

𝑁𝑁(𝐷𝐷) = 𝑁𝑁𝑇𝑇
𝐶𝐶𝐶𝐶𝐶𝐶√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 {− 1

2 [ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2
}                               (17) 

𝑥𝑥{1 + 𝛼𝛼. exp −(𝐷𝐷)} 
 

C. Optimization using the Method of Maximum 
Likelihood Technique 
 

To determine the input fit parameters for the proposed model, 
the maximum likelihood estimation technique has been used. 
This method, developed by R.A. Fisher in 1922, is the most 
popular technique for deriving estimators [21]. Remember that 
if D1, D2, D, ;…, Dn are an independent and identically 
distributed random sample from a population with probability 
density function f denoted as f ((D1, D2, D3, ;…, Dn /μ, σ2, α), 
the likelihood function is defined by [21]: 

 
𝐿𝐿(𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3, … , 𝐷𝐷𝑛𝑛 𝜇𝜇, 𝜎𝜎2, 𝛼𝛼) = ∏ [𝑓𝑓(𝐷𝐷)𝑖𝑖 𝜇𝜇, 𝜎𝜎2, 𝛼𝛼⁄ ]𝑛𝑛

𝑖𝑖=1⁄   (18) 
 
The maximum likelihood estimate of parameter 𝜇̂𝜇(𝜎̂𝜎2, 𝑜𝑜𝑜𝑜 𝛼̂𝛼) is 
that value of 𝜇𝜇(𝜎𝜎2 𝑜𝑜𝑜𝑜 𝛼𝛼) which maximises the likelihood 
function in (18): it is the value that makes the observed data the 
“most probable”. Substituting (15) in (18), the likelihood 
function will be expressed as: 
 

𝐿𝐿(𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3, … , 𝐷𝐷𝑛𝑛 𝜇𝜇, 𝜎𝜎2, 𝛼𝛼) = ∏ [ 1
𝐶𝐶𝐶𝐶𝐶𝐶√2𝜋𝜋

𝑛𝑛
𝑖𝑖=1⁄                 (19) 

. 𝑒𝑒−1
2[ln(𝐷𝐷)−𝜇𝜇

𝜎𝜎 ]
2

(1 + 𝛼𝛼. e−Di)] 

 
𝐿𝐿(𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3, … , 𝐷𝐷𝑛𝑛 𝜇𝜇, 𝜎𝜎2, 𝛼𝛼) = 1

(2𝜋𝜋𝜎𝜎2𝐶𝐶2)
𝑛𝑛
2

⁄                    (19a) 

𝑥𝑥 ∏[𝐷𝐷𝑖𝑖
−1

𝑛𝑛

𝑖𝑖=1
. 𝑒𝑒−1

2[ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2

(1 + 𝛼𝛼. e−Di)] 

 
𝐿𝐿(𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3, … , 𝐷𝐷𝑛𝑛 𝜇𝜇, 𝜎𝜎2, 𝛼𝛼) = (2𝜋𝜋𝜎𝜎2𝐶𝐶2)

−𝑛𝑛
2⁄               (19b) 

𝑥𝑥 ∏[𝐷𝐷𝑖𝑖
−1

𝑛𝑛

𝑖𝑖=1
𝑒𝑒−1

2[ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2

(1 + 𝛼𝛼. e−Di)] 

 

𝐿𝐿 = (2𝜋𝜋𝜎𝜎2𝐶𝐶2)
−𝑛𝑛
2 ∏ [𝐷𝐷𝑖𝑖

−1𝑛𝑛
𝑖𝑖=1 𝑒𝑒−1

2[ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2

(1 + 𝛼𝛼. e−Di)] (19c) 

 

𝐿𝐿 = (2𝜋𝜋𝜎𝜎2𝐶𝐶2)
−𝑛𝑛
2 ∏ [𝑒𝑒−1

2[ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2

(1+𝛼𝛼.e−Di

𝐷𝐷𝑖𝑖
)]𝑛𝑛

𝑖𝑖=1           (19d) 

 

𝐿𝐿 = (2𝜋𝜋𝜎𝜎2𝐶𝐶2)
−𝑛𝑛
2 ∏ (𝑒𝑒−1

2[ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2

)𝑛𝑛
𝑖𝑖=1 ∏ (1+𝛼𝛼.𝑒𝑒−𝐷𝐷𝑖𝑖

𝐷𝐷𝑖𝑖
)𝑛𝑛

𝑖𝑖=1  (19e) 

 

𝐿𝐿 = (2𝜋𝜋𝜎𝜎2𝐶𝐶2)
−𝑛𝑛
2 (𝑒𝑒−1

2[ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 ]

2

𝑒𝑒−1
2[ln(𝐷𝐷)−𝜇𝜇

𝜎𝜎 ]
2

                  (19f) 

. 𝑒𝑒−1
2[ln(𝐷𝐷)−𝜇𝜇

𝜎𝜎 ]
2

… 𝑒𝑒−1
2[𝑙𝑙𝑙𝑙(𝐷𝐷)−𝜇𝜇

𝜎𝜎 ]
2

) ∏ (1 + 𝛼𝛼. 𝑒𝑒−𝐷𝐷𝑖𝑖

𝐷𝐷𝑖𝑖
)

𝑛𝑛

𝑖𝑖=1
 

 

𝐿𝐿 = (2𝜋𝜋𝜎𝜎2𝐶𝐶2)
−𝑛𝑛
2 ∏ (1+𝛼𝛼.𝑒𝑒−𝐷𝐷𝑖𝑖

𝐷𝐷𝑖𝑖
)𝑛𝑛

𝑖𝑖=1                                  (19g) 

. [𝑒𝑒−1
2[ln(𝐷𝐷)−𝜇𝜇

𝜎𝜎 ]
2

−1
2[ln(𝐷𝐷)−𝜇𝜇

𝜎𝜎 ]
2

−⋯−1
2[ln(𝐷𝐷)−𝜇𝜇

𝜎𝜎 ]
2

] 

 

𝐿𝐿 = (2𝜋𝜋𝜎𝜎2𝐶𝐶2)
−𝑛𝑛
2 𝑒𝑒−1

2 ∑ (ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 )

2𝑛𝑛
𝑖𝑖=1 ∏ (1+𝛼𝛼.𝑒𝑒−𝐷𝐷𝑖𝑖

𝐷𝐷𝑖𝑖
)𝑛𝑛

𝑖𝑖=1       (19h) 

Then,  
 

𝐿𝐿 = (2𝜋𝜋𝜎𝜎2𝐶𝐶2)
−𝑛𝑛
2                                                                  (20) 

. 𝑒𝑒−1
2 ∑ (ln(𝐷𝐷)−𝜇𝜇

𝜎𝜎 )
2𝑛𝑛

𝑖𝑖=1 ∏(𝐷𝐷𝑖𝑖
−1)

𝑛𝑛

𝑖𝑖=1
∏(1 + 𝛼𝛼. 𝑒𝑒−𝐷𝐷𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 
By finding the natural logarithm of the likelihood function 
expressed in (20), the log likelihood of the probability 
distribution function is developed and is given by: 
 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙(2𝜋𝜋𝜎𝜎2𝐶𝐶2)
−𝑛𝑛
2 − 1

2 ∑ (ln(𝐷𝐷)−𝜇𝜇
𝜎𝜎 )

2𝑛𝑛
𝑖𝑖=1                    (21) 

+𝑙𝑙𝑙𝑙 ∏(𝐷𝐷𝑖𝑖
−1)

𝑛𝑛

𝑖𝑖=1
+ 𝑙𝑙𝑙𝑙 ∏(1 + 𝛼𝛼. 𝑒𝑒−𝐷𝐷𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
 

 
Adopting partial differential of equation (21) and equating to 
zero, results in the following maximum likelihood estimation 
equations: 
 

∂lnL
∂μ = 1

σ2 ∑ (ln (Di − μ)n
i=1 = 0                                     (22) 

 
∂lnL
∂σ2 = − n

2
∂

∂σ2 [ln(2𝜋𝜋𝜎𝜎2𝐶𝐶2)]                                           (23) 
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− 1
2 ∑(ln (Di − μ)2

n

i=1

∂
∂σ2 [σ−2] = 0 

 
∂lnL

∂α = ∂
∂α [ln[∏ (1 + 𝛼𝛼. e−Di) = 0n

i=1 ]]                            (24) 
 
Solution of equations (22), (23) and (24) represent the 
maximum likelihood estimators of the probability distribution 
function in (15). From equation (22), the parameter 𝜇̂𝜇 that 
maximizes the likelihood function can be determined as 
follows: 

∂lnL
∂μ = 1

σ2 ∑(ln (Di − μ)
n

i=1
= 0  

 
1

σ2 ∑(ln (Di)
n

i=1
= 1

σ2 ∑ μ
n

i=1
  

∑(ln (Di)
n

i=1
= ∑ μ

n

i=1
  

∑(ln (Di)
n

i=1
= nμ  

Therefore, 
 

μ̂ = 1
n ∑ (ln (Di)n

i=1                                                           (25) 
 
From (23), the parameter  𝜎̂𝜎2, is obtained as following: 
 

∂lnL
∂σ2 = − n

2
∂

∂σ2 [ln(2𝜋𝜋𝜎𝜎2𝐶𝐶2)]  

− 1
2 ∑(ln (Di − μ)2

n

i=1

∂
∂σ2 [σ−2] = 0 

 
Let σ2 = y, then, the above expression becomes: 
 

∂lnL
∂y = − n

2
∂

∂y
[ln(2𝜋𝜋𝜋𝜋𝐶𝐶2)]  

− 1
2 ∑(ln (Di − μ)2

n

i=1

∂
∂y [y−1] = 0 

∂lnL
∂y = − n

2y + 1
2y2 ∑(ln (Di − μ)2

n

i=1
 

 
For y = σ2, then we have: 
 

∂lnL
∂σ2 = − n

2σ2 + 1
2σ4 ∑(ln (Di − μ)2

n

i=1
 

−𝑛𝑛 + 1
σ2 ∑(𝑙𝑙𝑙𝑙 (𝐷𝐷𝑖𝑖 − 𝜇𝜇)2

𝑛𝑛

𝑖𝑖=1
 

𝑛𝑛σ2 = ∑(𝑙𝑙𝑙𝑙 (𝐷𝐷𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛

𝑖𝑖=1
 

Therefore, 
 

𝜎̂𝜎2 = 1
n ∑ (ln( 𝐷𝐷𝑖𝑖) − 1

n ∑ ln (𝐷𝐷𝑖𝑖)𝑛𝑛
𝑖𝑖=1 )

2𝑛𝑛
𝑖𝑖=1                         (26) 

 
From (24), the parameter that maximizes the likelihood 
function can be determined as follows: 
 

∂lnL
∂α = ∂

∂α [ln [∏(1 + 𝛼𝛼. e−Di) = 0
n

i=1
]] 

 
But, for 1, 2, 3… n, 
 

∏ (1 + 𝛼𝛼. e−Di) =n
i=1   

(1 + 𝛼𝛼. e−D1)(1 + 𝛼𝛼. e−D2) … (1 + 𝛼𝛼. e−Dn) 
 

Then,  
 
ln ∏ (1 + 𝛼𝛼. e−Di) =n

i=1 𝑙𝑙𝑙𝑙(1 + 𝛼𝛼. e−D1)  
+ln(1 + 𝛼𝛼. e−D2) + ⋯ + ln(1 + 𝛼𝛼. e−Dn) 

Thus,  
∂lnL
∂α = ∂

∂α [ln[∏ (1 + 𝛼𝛼. e−Di)n
i=1 ]]  

 
∂lnL
∂α = ∂

∂α [𝑙𝑙𝑙𝑙(1 + 𝛼𝛼. e−D1)ln(1 + 𝛼𝛼. e−D2) +
+ ⋯ + ln(1 + 𝛼𝛼. e−Dn) ] 

 
∂lnL

∂α = 𝜕𝜕
𝜕𝜕𝜕𝜕 [𝑙𝑙𝑙𝑙(1 + 𝛼𝛼. e−D1)  

+ln(1 + 𝛼𝛼. e−D2) + ⋯ + ln(1 + 𝛼𝛼. e−Dn)] 
 
= 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑙𝑙𝑙𝑙(1 + 𝛼𝛼. e−D1)  

+ 𝜕𝜕
𝜕𝜕𝜕𝜕 ln(1 + 𝛼𝛼. e−D2) + ⋯ + 𝜕𝜕

𝜕𝜕𝜕𝜕 ln(1 + 𝛼𝛼. e−Dn)] 
 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = e−D1

(1 + 𝛼𝛼. e−D1) + e−D2

(1 + 𝛼𝛼. e−D2) + ⋯ + e−Dn

(1 + 𝛼𝛼. e−Dn)
 

 
∂lnL

∂α = 1
eD1(1+𝛼𝛼.e−D1)  

+ 1
eD2(1 + 𝛼𝛼. e−D2) + ⋯ + 1

eDn(1 + 𝛼𝛼. e−Dn)
 

 

= 1
(𝛼𝛼 + eD1) + 1

(𝛼𝛼 + eD2) + ⋯ + 1
(𝛼𝛼 + eDn) 

 

= ∑ 1
(𝛼𝛼 + eDn)

𝑛𝑛

𝑖𝑖=𝑛𝑛
 

 
Therefore, 
 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = ∑ 1

(𝛼𝛼 + eDi)

𝑛𝑛

𝑖𝑖=𝑛𝑛
 

For 
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0 
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∑ 1
(𝛼𝛼 + eDi) = 0

𝑛𝑛

𝑖𝑖=𝑛𝑛
 

∑ 1
(𝛼𝛼 + eDi)

(𝛼𝛼 − eDi)
(𝛼𝛼 − eDi) = 0

𝑛𝑛

𝑖𝑖=𝑛𝑛
 

 

∑
(𝛼𝛼 − eDi)

(𝛼𝛼2 − e2Di) = 0
𝑛𝑛

𝑖𝑖=𝑛𝑛
 

∑(𝛼𝛼 − eDi) = 0
𝑛𝑛

𝑖𝑖=𝑛𝑛
 

𝑛𝑛𝑛𝑛 = ∑ eDi

𝑛𝑛

𝑖𝑖=𝑛𝑛
 

Therefore, α, is given by: 
 
𝛼̂𝛼 = ∑ eDi𝑛𝑛

𝑖𝑖=𝑛𝑛                                                                        (27) 
 
The method of maximum likelihood estimation technique is 
thus used to estimate the fit parameters of the new model in (17) 
and parameters μ, σ2 and α from measured data are determined 
using estimators given in equations (25), (26) and (27). The last 
parameter, NT is optimized from the self-consistency rule of 
rainfall DSD such that: 
 
𝑁𝑁𝑇𝑇,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅

6𝜋𝜋𝜋𝜋10−4 ∑ 𝐷𝐷3𝑓𝑓(𝐷𝐷𝑖𝑖
𝑛𝑛
𝑖𝑖=1 )𝑣𝑣(𝐷𝐷𝑖𝑖)∆𝐷𝐷𝑖𝑖

                                     (28) 

 
where R, is the rainfall rate, f (Di) is the probability density 
function, v(Di) is the terminal velocity and f(Di) is the diameter 
interval of the rain drops at the ith channel of the disdrometer. 
From (25) to (27), estimation of fit parameters by the method 
of maximum likelihood are presented as follows: 
 
𝜇𝜇 = 𝐴𝐴𝜇𝜇 + 𝐵𝐵𝜇𝜇ln (𝑅𝑅)                                                              (29) 
𝜎𝜎2 = 𝐴𝐴𝜇𝜇𝜇𝜇 + 𝐵𝐵𝜎𝜎 ln(𝑅𝑅)                                                          (30) 
𝛼𝛼 = 𝑎𝑎𝛼𝛼𝑅𝑅𝑏𝑏𝛼𝛼                                                                           (31) 
 

D. Comparison of the proposed DSD model with otherDSD 
models in Butare, Rwanda 
 
Distribution parameters for different rainfall DSD statistical 
models were estimated using the methods earlier explained. The 
Lognormal (LGN), Modified Gamma (MGM), Marshal-Palmer 
(M-P) and Weibull (WBL) distributions were fitted to the 
measurement data using the method of moment (MoM) 
technique. The new DSD model was fitted using maximum 
likelihood (ML) estimation technique. Therefore, various input 
model parameters obtained by applying the above techniques 
(MoM or ML) are expressed as a function of rainfall rate via 
regression techniques and results are presented in the following 
subsections  

 
Regime Variation of Rainfall Drop Size Distribution: Using 

the MoM technique and ML estimation technique, various input 
parameters for different DSD models for Butare were estimated 
and results are presented in TABLE III and V for the existing DSD models (LGN, MGM, MP and WBL) and the new DSD 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.  Rain size distribution in Butare, Rwanda based on rainfall regimes. (a) 
Drizzle at 4.95 mm/h (b) Widespread at 9.9 mm/h (c) Shower at 27.7 mm/h (d) 
Thunderstorm at 75.28 mm/h 
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model, respectively. In TABLE III and V we present the model 
parameters for different DSD statistical models in Butare based 
on rainfall regimes. The measured data was compared with 
different DSD models at selected rainfall rates. The comparison 
is done at rainfall rate of 4.95 mm/h for drizzle; 9.9 mm/h for 
widespread; 27.7 mm/h for shower; and 75.28 mm/h for 
thunderstorm regime; and results are shown in Figure 4(a)-(d). 

In Figure 4(a), at rainfall rate of 4.95 mm/h, the LGN model 
underestimates the measurement at drop diameter region 
between 0.359 and 0.913 mm. It is seen that, the MGM and 
WBL models seem to coincide with the measured DSD even 
though they overestimate it at lower raindrop diameter regions. 
Compared with other statistical models, the measured DSD is 
best fitted by the proposed DSD model. In Figure 4(b), for 
widespread at 9.9 mm/h, the WBL, MGM and the M-P models 
overestimate the measurement in the diameter range up to 1 
mm, the LGN model seems to fit the measurement better. In 
Figure 4(c), for shower rainfall at 27.7 mm/h, the proposed 
DSD model best fits the measured DSD compared to other 
models. The MGM, M-P and WBL models all overestimate the 
measurement at drop diameter region less than 1.506 mm. For 
thunderstorm rain at 75.28 mm/h (as shown in Figure 4(d)), the 
proposed DSD model gives a better fit compared to other DSD 
models. From the plotted graphs of Figure 4, it is observed that 
the models have different performances as the rainfall rate 
changes. Therefore, there is need for proper error estimation 
between the measured DSD and the distribution models at 
various rainfall rates to establish the best model in the region. 

In this regard, the various DSD models were tested using 
the root mean square error (RMSE) test given by [22]: 
 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑛𝑛 ∑ [𝑓𝑓∗(𝑥𝑥𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖)]𝑛𝑛

𝑖𝑖=1                                 (32) 

 
Where f*(xi) is the measured data from the disdrometer and f 
(xi) the modelled data, with n being the sample size. 
 

Using equation (32), the results of the error estimation for 
different rainfall DSD models for Butare based on the four 
rainfall regimes are presented in TABLE VI. 
From TABLE VI, the DSD model giving the lowest RMSE will 
be the best fit to the measurements; therefore, by combining the 
information from Figure 4 and TABLE VI, the Weibull DSD 
model best fits the measured data with RMSE of 0.108 for 
drizzle rainfall events. The Lognormal best fits the measured 
data with RMSE of 0.061 for widespread rainfall events. 

For the shower rainfall event, both Lognormal and the new 

DSD models best fit the measurement with RMSE of 0.095 for 
Lognormal and the RMSE of 0.096 for the new DSD model. 
Finally, the new proposed model best fits the measured data 
with RMSE of 0.072 for thunderstorm rainfall regime. 

 
Annual Variation of Rainfall Drop Size Distribution: 

Estimation of annual fit parameters for different rainfall DSD 
statistical models was carried out using the MoM and ML 
techniques as earlier explained. The LGN, MGM, M-P and 
WBL drop size distribution models were fitted to the measured 
DSD by the MoM technique and results are presented in 
TABLE IV. For the proposed DSD model given in (17) and 
maximum likelihood estimators given in (25) to (27), the model 
parameters for the prediction of annual drop size distribution in 
Butare for rainfall rates between 0.0029 and 118.516 mm/h are 
given by: 

 
𝜇̂𝜇 = −0.073 + 0.1881ln (𝑅𝑅)                                         (33) 
𝜎̂𝜎2 = 0.0941 + 0.0112 ln(𝑅𝑅)                                        (34) 
𝛼̂𝛼 = 3.1897𝑅𝑅0.1899                                                         (35) 

 
The measured data was compared against the different DSD 

models at selected rainfall rates. The selected rainfall rates are 
4.97 mm/h for drizzle, 9.9 mm/h for widespread, 25.55 mm/h 
for shower and 60.08 mm/h for thunderstorm rainfall regimes, 
and results are shown in Figure 5. From the plotted graphs of 
Figure 5, it is observed that those models have different 
performances as the rainfall rate is varied. That is why there is 
need for quantitative analysis between the measured DSD and 
the distribution models so as to determine the most suitable 
annual DSD model. Using equations (32), the results of the 
error estimation are presented in TABLE VII. From TABLE 
VII, the annual RMSE values show that the WBL DSD model 
best fits the measurement with rainfall rate less than 5 mm/h. 
As the rainfall rate increases, results show that between 5 mm/h 
and 40 mm/h, the LGN DSD model best fits the measurement. 
Finally beyond 50 mm/h, the proposed model is seen to be the 
best as it gives the lowest RMSE values compared to other 
distributions and therefore it can be considered as the best 
annual model for Butare because it best fits the measured DSD 
at high rain rates that are most associated with microwave and 
millimetre wave fading. 

V. SPECIFIC RAINFALL ATTENUATION PATTERNS 
OVER BUTARE, RWANDA 

 

TABLE V 
MODEL PARAMETERS FOR DIFFERENT RAINFALL DSD STATISTICAL MODELSANALYSIS IN BUTARE, BASED ON RAINFALL 

REGIMES [18] 
 

Input 
parameter 

Rain rate 
(mm/h) 

𝑁𝑁𝑇𝑇,𝑜𝑜𝑜𝑜𝑜𝑜 𝜇𝜇 = 𝐴𝐴𝜇𝜇 + 𝐵𝐵𝜇𝜇ln (𝑅𝑅) 𝜎𝜎2 = 𝐴𝐴𝜎𝜎 + 𝐵𝐵𝜎𝜎 ln(𝑅𝑅) 𝛼𝛼 = 𝑎𝑎𝛼𝛼𝑅𝑅𝑏𝑏𝛼𝛼 
 𝐴𝐴𝜇𝜇 𝐵𝐵𝜇𝜇 𝐴𝐴𝜎𝜎 𝐵𝐵𝜎𝜎  𝑎𝑎𝛼𝛼 𝑏𝑏𝛼𝛼 

Drizzle 4.95 137.23 -0.105 0.1754 0.1095 0.017 2.888 0.150 
Widespread 9.9 157.53 -0.179 0.2697 0.1128 -0.017 2.215 0.425 

Shower 27.7 165.48 -0.232 0.2869 0.0817 -0.002 1.276 0.643 
Thunderstorm 75.28 293.38 0.6065 0.0599 0.1067 0.008 8.544 0.148 
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A. Introduction 
The rainfall specific attenuation or attenuation per unit length 

over a fixed radio link is a fundamental quantity in the 
calculation of the attenuation due to rain statistics for both 
terrestrial and earth-space paths. The total value of specific rain 
attenuation can be computed by integrating each raindrop 
contribution as given by [23]: 
 
 𝐴𝐴𝑠𝑠[𝑑𝑑𝑑𝑑 𝐾𝐾𝐾𝐾⁄ ] = 4.343𝑥𝑥10−3 ∫ 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒

∞
0 (𝐷𝐷)𝑁𝑁(𝐷𝐷)𝑑𝑑𝑑𝑑        (36) 

 
where As is the specific rain attenuation, N(D) is the drop size 
distribution, N(D)dD is the number density of raindrops with 
diameter D in the interval dD and; Qext , the extinction cross-
section, which is determined from classical scattering theory 
developed by Mie. Assuming that the raindrops, illuminated by 
a plane wave, are uniformly distributed in a rain-filled medium 
and the distance between raindrops is sufficiently large to avoid 
multiple scattering [24]. The extinction-cross-section depends 
on the complex refractive index of water, m, the wavelength, λ, 
and the shape and the size of the rainfall drop, and can be 
computed by the following expression [25]: 
 
 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝐷𝐷) = 4𝜋𝜋

𝑘𝑘2 𝑅𝑅𝑅𝑅{𝑆𝑆(0)}                                                   (37) 
 
where, 𝑘𝑘 =  4𝜋𝜋

𝜆𝜆  is the wave number and 𝑅𝑅𝑅𝑅{𝑆𝑆(0)} is the real part 
of the forward scattering amplitude for spherical raindrops 
which is the greater portion of the extinction cross-section 
coefficient. The forward scattering amplitude for spherical rain 
drops is expressed by [25]: 
 
 𝑆𝑆(0) = 1

2 ∑ (2𝑛𝑛 + 1)[𝑎𝑎𝑛𝑛(𝑚𝑚, 𝛼𝛼) + 𝑏𝑏𝑛𝑛(𝑚𝑚, 𝛼𝛼)]∞
𝑖𝑖=1               (38) 

where an(m,α) and bn(m,α) are the Mie scattering coefficients 
which are functions of rain drop diameter, wavelength, and 
complex refractive index of water. Parameters m and α depends 
on the ambient temperature and the frequency of droplet. The 
extinction cross-section in (37) can be reduced to a power law 
relation as a function of raindrop diameter, D, as follows [24]: 
 
 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒𝑎̅𝑎𝜁𝜁𝑒𝑒𝑒𝑒𝑒𝑒                                                             (39) 
 
where 𝑎̅𝑎, is the radius of the assumed spherical droplet in 
millimetres, 𝜅𝜅𝑒𝑒𝑥𝑥𝑡𝑡 and 𝑎̅𝑎𝜁𝜁𝑒𝑒𝑒𝑒𝑒𝑒 are constants computed by Alonge 
at 20°C for frequency up to 1000 GHz [26]. 
 
Based on the Joss-Waldvogel disdrometer channels, equation 
(36) can be reduced to the following expression [27]: 
 
 𝐴𝐴𝑠𝑠[𝑑𝑑𝑑𝑑 𝐾𝐾𝐾𝐾⁄ ] = 4.343𝑥𝑥10−3 ∑ 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒𝑎̅𝑎𝜁𝜁𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

𝑖𝑖=1 𝑁𝑁(𝐷𝐷𝑖𝑖)𝛥𝛥𝐷𝐷𝑖𝑖 . (40) 
 
where N(Di)ΔDi is the number density of the droplet with 
equivalent diameter Di in the diameter interval ΔDi. 
 

In the computation of the specific attenuation due to rain in 
Butare, equation (40) has been used and this estimation is based 
on raindrop size distribution models developed in section four. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.  Annual Rain drop size distribution in Butare, Rwanda (a) Drizzle at 4.97 
mm/h (b) Widespread at 9.9 mm/h (c) Shower at 25.55 mm/h (d) Thunderstorm 
at 60.08 mm/h 
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B. Variability of Specific Attenuation Distribution 
By using the expression given in (40), the specific rain 

attenuation for the four rainfall regimes are estimated over 
frequencies from 2 GHz to 60 GHz at 20°C in Butare, Rwanda, 
and the results are presented in Figures 6(a)-(d). These plots 
show comparisons between the specific rain attenuation for 
drizzle at 4.9 mm/h, widespread at 9.9 mm/h, shower at 39.1 
mm/h, and thunderstorm at 96.02 mm/h using various DSD 
models including the ITU-R estimation for both horizontal and 
vertical polarization [28]. From the results, it is seen that the 
specific attenuation due to rain increases as the frequency 
increases where the lowest and highest values of rain 
attenuation are recorded in the drizzle and thunderstorm rainfall 
regimes, respectively. 

In Figure 6(a), for drizzle at 4.9 mm/h, the ITU-R models 
(horizontal and vertical polarization) underestimate the 
measurement for frequencies less than 10 GHz, while they 
overestimate beyond this frequency. In this regime, the other 
remaining models appear to match the measurement at all 
considered frequencies. 

In Figure 6(b), for widespread at 9.9 mm/h, the Lognormal, 
Gamma and the new Model give the best fit to the measurement 
compared to other models. 

For shower rainfall regime at 39.1 mm/h shown in Figure 
6(c), the ITU-R model for horizontal polarization and Gamma 
models are seen to match the measurement for frequencies up 
to 8 GHz, while they overestimate the measurement for 
frequencies above 8 GHz. 

It is also observed that, the Marshall-Palmer model 
underestimates the measurement in this rainfall regime for all 
the frequency ranges, while the ITU-R for vertical polarization 
coincides with the measurement for frequencies up to 33 GHz, 
and then overestimates it beyond this frequency. In this regime, 
the Lognormal, Weibull and the new model give better fits 
compared to other models. 

For thunderstorm at 96.02 mm/h as shown in Figure 6(d), the 
ITU-R model for horizontal polarization overestimates the 
measurement, while the Marshall-Palmer model underestimates 
them. The ITU-R model for vertical polarization overestimates 
the measurement between 6 GHz and 10 GHz, then closely 
follows the measurement up to 45 GHz. The Weibull model 
predicts well for frequencies above 35 GHz. In this rainfall 
regime as seen on plot of Figure 6(d), the new model gives the 
best fit to the measurement compared to other models. 

 

VI. CONCLUSION 
In this paper, a new rainfall drop size distribution model for 

equatorial Africa has been developed using disdrometer data 
collected in Butare, Rwanda. The method of maximum 
likelihood estimation technique has been used to determine its 
corresponding input fit-parameters. Error analysis as well as 
comparisons with other models showed that the proposed 
model is a slightly better representation of the rainfall DSD in 
the region than any of the current models. It can be concluded 
from the results that as rainfall rate increases, the proposed 
model proves to be the best prediction model for DSD in 
Central Africa and other locations having similar climate and 
similar ranges of maximum rain rate. The Lognormal, Gamma 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Comparison of Specific rain attenuation for various models in in Butare, 
Rwanda. (a) Drizzle at 4.9 mm/h (b) widespread at 9.9 mm/h (c) shower 39.1 
mm/h (d) thunderstorm at 96.02 mm/h 
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and Weibull models give very mixed performances over rain 
regimes while the proposed model gives a more consistent 
performance when compared to measured data. Furthermore, 
results show conclusively that specific attenuation resulting 
from the proposed DSD model offers a greater fit to measured 
disdrometer data than the other models, while it also performs 
slightly better than the ITU model for specific attenuation.  
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TABLE VI 
ERROR ESTIMATION FROM DIFFERENT RAINFALL DSD 
MODELS FOR BUTARE BASED ON RAINFALL REGIMES 

 
Regime LGN MGM M-P WBL Prop model 

Drizzle 0.128 0.433 0.417 0.108 0.110 
Widespread 0.061 0.398 0.417 0.231 0.078 

Shower 0.095 0.325 0.384 0.170 0.096 
Thunderstorm 0.111 0.292 0.387 0.213 0.072 

 
 

TABLE VII 
ERROR ESTIMATION FROM DIFFERENT RAINFALL DSD 
MODELS FOR BUTARE BASED ON RAINFALL REGIMES 

 
Rain rate 

mm/h 
LGN MGM M-P WBL Proposed 

model 
3 0.217 0.490 0.456 0.204 0.205 
5 0.121 0.438 0.423 0.153 0.127 

10 0.029 0.406 0.421 0.317 0.104 
20 0.074 0.364 0.403 0.322 0.078 
40 0.096 0.286 0.375 0.173 0.123 
50 0.075 0.266 0.364 0.180 0.068 
60 0.095 0.269 0.367 0.185 0.073 
80 0.151 0.301 0.394 0.214 0.081 
90 0.190 0.250 0.358 0.205 0.129 
100 0.185 0.228 0.345 0.203 0.146 
110 0.192 0.227 0.344 0.201 0.161 
118 0.171 0.320 0.412 0.244 0.123 

Average 0.133 0.3204 0.3885 0.2167 0.116 
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