
Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 77

1

Applying distributed ledger technology to digital
evidence integrity

William Thomas Weilbach and Yusuf Moosa Motara

Abstract—This paper examines the way in which blockchain
technology can be used to improve the verification of integrity
of evidence in digital forensics. Some background into digital
forensic practices and blockchain technology are discussed to
provide necessary context. A particular scalable method of
verifying point-in-time existence of a piece of digital evidence,
using the OpenTimestamps (OTS) service, is described, and tests
are carried out to independently validate the claims made by the
service. The results demonstrate that the OTS service is highly
reliable with a zero false positive and false negative error rate
for timestamp attestations, but that it is not suitable for time-
sensitive timestamping due to the variance of the accuracy of
timestamps induced by block confirmation times in the Bitcoin
blockchain.

Index Terms—Digital forensics, blockchain, evidence integrity.

I. INTRODUCTION

IN the face of an impending financial crisis, an anonymous
researcher, going by the pseudonym Satoshi Nakamoto,

proposed a cryptographic solution to the problem of distributed
trust, also known as “The Byzantine Generals Problem” [1].
This solution, in the form of blockchain technology, was
presented in a paper titled: “Bitcoin: A Peer-to-Peer Electronic
Cash System” [2]. Blockchain technology has emerged as a
significant and potentially revolutionary technology inspiring
a new class of solutions to problems all but forgotten.

The potential applications of blockchain technology are
vast and continue to diversify every day with the emer-
gence of smart contract platforms such as Ethereum [3] and
digital currencies such as Zcash [4]. However, despite its
widespread adoption, blockchain technology remains relatively
unexplored in areas that extend beyond payments and cur-
rency. Blockchains solve a few fundamental issues of trust
by operationally incorporating the properties of immutability
and transparency, and when applied to other problem domains,
these exact properties are equally valuable. One of those
problem domains is the domain of digital forensics: “the
discipline that combines elements of law and computer science
to collect and analyse data from computer systems, networks,
wireless communications, and storage devices in a way that is
admissible as evidence in a court of law” [5].

This paper examines the application of blockchain technol-
ogy to the field of digital forensics. More specifically, it iden-
tifies a particular requirement – proof of existence – within the
field, and independently assesses its application and relevance
in the context of the OpenTimestamps (OTS) system which
could meet this requirement. Given the criticality of digital
forensics in the broader space of cyber crime, is essential that
software such as OTS be tested to provide assurances as to its
reliability and accuracy since it must be assumed that these

Y. M. Motara is with Rhodes University, Grahamstown 6140, South Africa

aspects of digital forensics technology will at some point be
called into question as part of an investigation. It is therefore
necessary to provide a conclusive and vetted explanation of
the proof mechanism to pass peer review.

The paper is structured as follows. Section II describes the
field of digital forensics and argues strongly for the importance
of trustworthy and independently verifiable digital evidence.
Section III then describes blockchain technology and the
properties thereof. Section IV considers the proof-of-existence
problem and is followed by a section that specifically focuses
on OpenTimestamps. Independent testing of this software
follows, and the paper concludes with some discussion and
conclusions.

II. DIGITAL FORENSICS

The digital forensic process, can, at a high level, be de-
scribed by three basic practices: acquisition, analysis, and
presentation [6]. The act of acquiring evidence is the first
step in any digital forensic investigation and can be a non-
trivial task at the best of times [7]. The acquisition phase is
also arguably the most critical in any investigation, as any
error here will naturally propagate to the following phases and
potentially affect the integrity and admissibility of the evidence
as a whole: any issue that adversely affects the admissibility
of digital evidence can cast doubt on entire investigations [8].

A common, and sometimes mandated, practice during the
acquisition phase is the act of hashing evidence [7]. A
cryptographic hash, also referred to as a digest, is a unique,
fixed-length value, generated from any evidentiary artefact of
variable length (the pre-image), that can serve to identify that
piece of evidence. A cryptographic hash is the product of a
one-way deterministic mathematical function through which
data of arbitrary length can be passed to produce a collision-
resistant fixed length representation of that data [9]. A key
property of a hash function is that a minor change in the
input will result in a significant change in the fixed length
output [10]. A second key property is that cryptographic
hashes are computationally infeasible to reverse to determine
a pre-image of a given hash [11]. Hashes are most commonly
used to determine if the evidence has been tampered with
between the time the hash was generated and when the
evidence is scrutinised.

The presentation phase of the digital forensic process in-
volves sharing or presenting the results to a selected audi-
ence, and includes showcasing and explaining the information
concluded from the previous phases. The presentation phase
of an investigation can be, and most likely will be, subjected
to intense scrutiny regarding the integrity of evidence [12].
This is especially relevant if the investigation forms part of a
criminal case. It is, therefore, of paramount importance that
any observations presented be irrefutably backed up by facts

Based on: “Distributed Ledger Technology to Support Digital Evidence Integrity Verification Processes”, by W.T. Weilbach and Y.M. Motara which appeared in
Communications in Computer and Information Science (volume 973). © 2019 Springer International Publishing

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS78

2

derived from evidence of which the integrity can be proved
without a doubt.

III. BLOCKCHAIN

Satoshi Nakamoto proposed the Bitcoin blockchain upon
which all subsequent blockchain implementations to date are
based [2]. Fig. 1 is a simplified visual representation of a
blockchain-type system.

In Fig. 1, there is no starting, or genesis, block, but rather
a sequence of blocks at some point after the genesis block.
It can be seen that one input into a block is the hash of
the previous block. To further improve security, this hash is
combined with a nonce and some arbitrary data items before
it is once again hashed and provided as input to the following
block. A nonce is simply a value used once for a particular
message or operation [13], and is usually a random value [14].
By chaining blocks together like this, it is possible to verify
the data in them, as any change in the data will result in
a change of the hash which will necessarily cascade up the
chain, changing all subsequent block hash values.

To explain general blockchain functionality further, the first
implementation of a blockchain-driven system – Bitcoin – will
be used. Although not all blockchains follow this exact model,
they are all based on the same basic principles.

Blocks are collections of structured data that form a funda-
mental part of the ledger. A “miner” within the system can
“mine” a block – thus obtaining a new block to append to the
chain – by solving a computationally difficult puzzle that is
associated with the latest block in the chain.

The chain is a series of connected blocks. Each block in
the chain contains a collection of transactions, each of which
contains a series of inputs and outputs. Fig. 2 is a high level
view of blocks in the Bitcoin blockchain.

Transactions involve the creation or transfer of value within
the network. Nodes that process transactions in the Bitcoin
network are referred to as miners, and their function is to:

1) collect transactions that are broadcast to the network;
2) add those transactions to the block structure (see Table

I);
3) solve a Proof-of-Work (PoW) puzzle associated with that

block.
Bitcoin, like other forms of currency backed by commodi-

ties and resources, can suffer the effects of inflation should
it be overproduced. Since Bitcoin is completely digital, there
needs to be a mechanism to regulate the amount of Bitcoin
released into the system. If Bitcoins were trivial to create,
it would have little to no value as a store of value, since
any person could simply create vast amounts of the currency.
To combat the effects of inflation, Bitcoin is designed to
be difficult to create through controlled supply, which is
enforced in two ways: by having a finite supply of Bitcoin,
and regulating the rate at which new Bitcoins can be mined.
The Bitcoin generation algorithm defines at what rate currency
can be created and any currency generated by violating these
rules will be rejected by the network.

The Proof-of-Work is another important component of con-
trolled supply as it ensures that the difficulty of finding a
block can be adjusted to compensate for fluctuations in the
network’s aggregate mining power. By adjusting the difficulty
every 2016 blocks – through consensus by all participating

miners – the network can respond to fluctuations in mining
power and ensure that blocks are released, on average, every
10 minutes. The PoW puzzle implemented by Nakamoto [2]
was based on the Hashcash system developed by Back [15].
As the mining power of the network increases, the difficulty of
the PoW puzzle is adjusted to slow the rate of block creation.
The PoW puzzle difficulty is defined by the nBits field (see
Table I) of a block.

To solve a PoW puzzle, a miner must calculate a double-
SHA256 (henceforth abbreviated as “dSHA256”) hash H over
the contents of the block b so that it is smaller or equal to
the target value nBits. Since hash functions are deterministic,
dSHA256(b) will always result in the same output. In order for
a miner to generate different hashes to satisfy the condition,
it must incorporate a random nonce n into the input of
the function such that dSHA256(b ‖ n) ≤ nBits . Once
the condition is met, the puzzle has been solved, and the
miner broadcasts this block, accompanied by the proof, to the
network for confirmation.

PoW difficulty is adjusted by decreasing the nBits value.
The more zeroes required, the more hashing operations the
miner has to perform in order to find a value that satisfies the
condition. This is because there is no way, other than brute-
force, to find a solution with the appropriate number of leading
zeroes [11]. Thus, by solving this PoW, the miner proves that
it has invested an approximate amount of effort at its own
cost toward finding the block, and that it is a willing and
conforming participant in the network.

This ongoing work results in the chain as depicted in Fig. 2.
Due to the distributed nature of the system where many nodes
compete to solve the PoW puzzle, it occasionally happens
that more than one miner solves the PoW for different blocks
at the same time. When this happens, it results in a fork in
the chain; and each node will then accept the first proof it
receives as the correct one and build the chain from that block.
When this happens, the rejected block is called an orphaned
block, depicted in Fig. 2 as the block with dotted borders.
However, transactions that were part of these orphaned blocks
are not lost but are instead rebroadcast to the network for later
inclusion. Miners always work on the longest chain, which
implies the chain on which the most computational effort was
exerted. This is to ensure that there is consensus around which
chain is the correct chain, and to prevent malicious nodes from
altering previous blocks to create an alternative chain.

The exact structure of a block can be seen in Table I. A
Bitcoin block can be up 1024 kilobytes (1024000 bytes) in
size, but no larger. Blocks larger than 1024 kilobytes, are
considered invalid and will not be accepted by the network.
As can be seen from the size allocations in Table I, the header
data for a block (all non-transaction data) can be up to 80
bytes in size, leaving the vast majority (1023920 bytes) for
transaction data. The block structure has a direct effect on the
way in which miners are incentivized to include a transaction,
as well as being important for understanding the way in which
OpenTimestamps reduces its costs.

Transactions are listed in the vtx[] part of the block, and
described more fully in Table II. A transaction must be either
a coinbase transaction or a transfer of value. Each transaction
output is associated with a particular scriptPubkey which spec-
ifies, using a primitive and minimal language, the conditions
under which that output can be spent. Usual conditions include

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 79

3

Fig. 1. A visual illustration of a blockchain

TABLE I
BITCOIN BLOCK STRUCTURE

Field Name Type Size Description

Header

nVersion int 4 bytes The block format version
HashPrevBlock uint256 32 bytes Hash of previous block header

HashMerkleRoot uint256 32 bytes
MR of all
transactions

nTime unsigned int 4 bytes
UNIX-format time stamp of
block creation time

nBits unsigned int 4 bytes Proof of work problem target

nNonce unsigned int 4 bytes
Nonce for solving proof of work
problem

Payload cnt vtx VarInt 1 to 9 bytes Transaction count in vtx[]
vtx[] Transaction Variable Array Array of transactions

Fig. 2. Example of a Bitcoin blockchain with forks

a way to authenticate the owner of the funds using public-key
cryptography; however, any other scriptable conditions can be
used. The scriptSig part of an input must fulfill the necessary
conditions for an output to be spent. If an executed script does
not return a true value when executed by a node in the mining
network, then the transaction is invalid and is ignored. Both
the scriptPubkey and scriptSig are under the control of the
user and can, compared to other fields, store relatively large
amounts of data [16].

There are economic incentives that explain why miners
choose to mine blocks; there is more to be said about the exact
structure of a block; there is more complexity to be understood
around the increasing difficulty of PoW puzzles; and there is
more depth to be examined relating to the mechanics of block
verification which is covered in depth by [16]. However,
these topics are not directly relevant to this work and have
been elided. Instead, from a digital forensics perspective, what
has been said is sufficient to understand four key properties
of a blockchain: immutability, chronology, redundancy, and
transparency.

Immutability, the lack of ability to be changed, is arguably

one of the most important properties of blockchain systems.
Immutability is not a property on the macro level - as the
chain is constantly changing and expanding when new blocks
are added - but rather on a more granular level as data and
transactions that are embedded in the blocks are unchangeable.
This immutability is conditional and strengthens over time as a
consequence of the design of the system [9]. As newer blocks
form on top of older blocks, the block depth increases and the
ability to change data embedded in that block diminishes. Any
entity that wishes to change some data within a block would
have to change the data in that block and recompute that block
and all subsequent blocks faster than all the other nodes in the
network can. It would therefore be theoretically possible for
multiple nodes to collude to change some data, but this type of
collusion is unlikely and inherently detectable. In the Bitcoin
blockchain, the current block depth to guarantee a permanent
and unchangeable transaction is six-blocks deep [9]. This
immutability means that the public ledger record cannot be
altered to reflect a record that represents a false or fabricated
transaction, and can thus be trusted. The immutability of the
information embedded in the blockchain means that, to any
observer or participant, all information can be considered an
unchangeable and a true record of data over time.

Chronology – the sequential arrangement of events or
transactions over time – is another property of blockchain
design that gives it immense value and utility. Timestamping
is the ability to associate the existence of a certain piece
of information with a specific moment in time [17], and all
blocks contain timestamps [2]. A mining node can reject a
timestamp that is deemed to be too old or in the future,
and timestamps are thus validated by distributed consensus.

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS80

4

TABLE II
BITCOIN TRANSACTION STRUCTURE

Field Name Type Size Description
nVersion int 4 bytes Format version of the transaction
cnt vin varInt 1-9 bytes Count of the entries in vin[]

vin[]

hash uInt256 32 bytes Hash of past transaction (dSHA256)

n uInt 4 bytes
Transaction index in the output of
previous transaction

ScriptSigLen varInt 1-9 bytes Length of ScriptSig

scriptSig Script Variable length
Script that specifies conditions for the
spending of the output

nSequence uInt 4 bytes Sequence number of transaction
cnt vout varInt 1-9 bytes Count of the entries in vout[]

vout[]
nValue int64 8 bytes Amount
scriptPubkeyLen varInt 1-9 bytes Length of ScriptPubkey

scriptPubkey Script Variable length
Script that specifies conditions for the
output to be claimed.

nLockTime uInt 4 bytes
Timestamp indicating the time past
which transactions can be included in a
block

By combining immutability in the form of an append-only
chain and chronology in the form of trusted timestamping,
blockchains give the unique ability to store and verify the
existence of data at a point in time with accuracy.

Redundancy is a further significant property of a
blockchain-based system, and was a key design consideration
in the Bitcoin blockchain [2]. Not only would the system
need to be fault-tolerant to be widely used, but it would also
necessitate the participation of many entities to safeguard the
decentralisation that lies at the core principle of the concept:
trust. Decentralised trust, or the lack of trust in a single entity,
implies that trust is the responsibility all participants and not
that of a governing entity or a subset of privileged entities.
Most blockchain-based systems therefore have incentive sys-
tems and each differ slightly in terms of reward. By having
a completely distributed system with decentralised trust, the
resiliency of the system can be guaranteed for as long as there
is an incentive to participate in the system.

Transparency is the final of the four core blockchain prop-
erties and is more of a functional requirement and not a design
consequence. All transactions need to be broadcast openly
to any entity willing to listen. Furthermore, the information
embedded inside the ledger must be open for all to see and
verify. This is necessary for the Bitcoin system to work as a
distributed financial ledger since transactions are stored instead
of balances. Therefore, to calculate the balance of a specific
address, all the transactions to and from that address need to
be visible.

By combining immutability, chronology, redundancy, and
transparency, blockchain-based systems are uniquely equipped
to address many of the problems associated with trust and
decentralised processing.

IV. PROOF OF EXISTENCE OF DIGITAL EVIDENCE

It is useful, at this point, to summarise the requirements of
the digital forensics community and tie those to properties of
the blockchain.

• Existence. It is important to verify the existence of
digital evidence. The blockchain allows arbitrary data,
including digital evidence, to be embedded within it.
The transparency and immutability of the blockchain can
ensure that the evidence is preserved for as long as the
blockchain itself exists, and that the evidence can be
examined by any party at any time.

• Chronology. It is important to verify that digital evidence
existed at a particular point in time. The chronology of a
blockchain, and the digital consensus around timestamps,
can be used to show this.

• Non-repudiation. It is important that the digital forensics
analyst cannot change a claim that is made. If this were
the case, then the trust that is placed in digital evidence
would rest solely on the reputation of the digital forensics
analyst. The blockchain’s immutability, transparency and
redundancy makes it easy to make a claim that cannot
be repudiated at a later date. This, in turn, ensures that
the claim made before the analysis stage begins cannot
be changed at the analyst’s discretion.

The existence requirement is complicated by two issues:
firstly, the evidence may sometimes be of a private nature, and
may therefore not be revealed to the public; and, secondly, the
evidence may be very large. The second issue ties in directly
with the already-mentioned fact that a larger block payload
is correspondingly more expensive to store in a blockchain.
Both of these issues are addressed by a blockchain times-
tamping services such as Chainpoint [18], proof-of-existence
(PoE) [19] and OpenTimestamps [20].

PoE or blockchain timestamping services embed the hash
of arbitrary data – and not the data itself – into a block. By
using this method, it is possible to permanently embed a small
amount of data into the Bitcoin blockchain; the embedded data
may also be prepended with some marker bytes that makes
searching for such proofs in the blockchain easier. Of the
various PoE services, OpenTimestamps (OTS) is the only one
which is completely open source and transparent, and therefore

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 81

5

the only one which is open to public examination and testing
– both of which are very important for a service of this nature
in the context of digital forensics.

V. OPENTIMESTAMPS

The OTS service consists of server-side and client-side
components that interact, using an open protocol, to per-
form the timestamping of data as well as validate existing
timestamps for which proofs have been received. The client-
side component takes some arbitrary data as input, hashes it,
incorporates that hash into a predefined structure and submits
it to the server-side component via remote procedure call
(RPC). The server-side component then takes the data and
incorporates it into a Bitcoin transaction and submits that
transaction to be processed into the Bitcoin blockchain. The
server then sends a OTS proof back to the client and the
client can, from that point onward, use that proof to verify the
timestamp and the integrity of the data by performing another
RPC call.

In the OTS system, the Bitcoin blockchain acts as notary as
it affords users thereof the ability to create and verify both the
integrity of a document and the approximate date at which
it must have existed. OTS allows any participant to submit
the hash of an arbitrary piece of data to be embedded in a
transaction in the Bitcoin blockchain and to timestamp that
document hash on the blockchain. The accuracy of such a
time stamp is estimated by to be within two to three hours of
the submission date and time [20].

OTS uses “commitment operations” [20] which simply
is a function that alters the function input to produce a
deterministic output. A simple concatenation function such as
a||b = ab is an example of a commitment operation. In OTS,
the verification of an OTS timestamp is the execution of the
sequence of commitment operations and the comparison of
the output to the value stored on the Bitcoin blockchain. OTS
timestamps can therefore be said to be trees of operations with
the root being the message, the edges (also known as nodes)
being the commitments, and leaves being the attestations. The
usage of these terms is not coincidence but rather as a result
of the heavy reliance on Merkle Hash Trees (MHTs) [21] to
support OTS functionality.

A MHT is a data structure that relies heavily on crypto-
graphic hashing for its function and value. The broad purpose
of a MHT is to make the validation of data more efficient,
by providing a way for large amounts of data to be validated
against a single hash value without having to rehash all the
data. It is often used in peer-to-peer protocols to facilitate the
validation of data without having to transfer vast amounts of
data between peers on a bandwidth-restricted network. In this
sense, the purpose of a MHT is to provide a mechanism for
validating large sets of data in a distributed environment with
reduced capacity for data storage, transfer and computation.
Its application in blockchain technology is for this exact same
purpose; and, in fact, it is used by the Bitcoin blockchain
itself, as well as by the OTS application that is built upon the
blockchain.

MHT consist of three basic components:
1) The root, also called the Merkle Root (MR), of which

there is only one per tree

2) The nodes, also referred to as Child Nodes (H), of
which there must be at least two; theoretical there is
no maximum number of Child Nodes per tree

3) The leaves (L) of which there must be at least two;
theoretical there is no maximum number of leaves per
tree

Fig. 3 shows a basic example of a MHT with four leaves,
six nodes and a root. For the purpose of explanation, the four
leaves would be the raw data needing to be verified. This
data is not included in the tree but serves as the basis of
its creation. Theoretically, there can be an infinite number
of leaves, but the number of leaves is usually limited to
avoid long running computation. One level up (level MR-2)
are the nodes, H1 to H4, which are hashes of the respective
leaves (L1 to L4). It is essential to note that these nodes are
hashes (one-way functions) of the leaves but that the actual
hash algorithm is not stipulated. Each use case may call for
different hash algorithms, based on the preference for speed
over security, or vice versa. In the Bitcoin implementation
and other implementations where security of the hash values
(their resistance to collision) is important, hash algorithms,
like SHA256, are used. One level up (MR-1) are the secondary
nodes, which each consists of the hash of the concatenation
(Hxy = Hx||Hy) of its children on MR-2. Finally, on the very
top level is the MR which, like the nodes below it, is a hash
of its concatenated children. It is considered the root as it is
a single hash that incorporates elements of all the leaves. In
this way, a seemingly insignificant change in a single leaf will
propagate up the tree and result in a changed MR. It is clear
that MR can be used to verify the integrity of all of the leaves
independently or as a whole; therein lies the power of MHT
as a mechanism for verification.

By using MHTs, a large amount of arbitrary data can be
hashed into a single MR hash. To verify any leaf on the tree,
its original data, the hashes on its path, and the root hash
needs to be known. This means that not all the leaves need to
be present to be able to validate the integrity of a single leaf,
thereby allowing the MHT to preserve space.

OTS primarily makes use of MHTs to address the problem
of scalability. By using MHTs, OTS can compress large
amounts of data into a single hash by adding individual
hashes as leaves of a MHT. These leaves would then be
collapsed into the MHT root which, in turn, is embedded
into a Bitcoin transaction. This aggregation occurs on OTS
aggregation servers when the OTS client sends the hash of the
desired data to at least two OTS aggregation servers. These
aggregation servers collect all of the different hashes from
different OTS clients, uses them as leaves of a MHT and
computes the MR. This MR is in turn embedded into a single
Bitcoin transaction.

Once a MR for a given set of leaves has been embedded
in the Bitcoin blockchain, verifying any single leaf can be
accomplished by simply replaying a subset of commitment
operations with efficiency O(log2(n)). Fig. 4 serves as a visual
example of a series of relevant commitments to be able to
prove the integrity and existence of data in L2.

Note how, to verify the integrity or the timestamp associated
with the data in L2, only a subset of leaves or nodes need to
be known. This means that many hashes representing large
datasets can be stored within the bounds of a small amount of
blockchain data by aggregating these leaves into a MHT. The

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS82

6

Fig. 3. A symmetric binary Merkle Hash Tree

Fig. 4. A series of relevant OTS commitment operations to verify leaf L2

root of that tree is then stored in a block, and returns only the
commitments necessary to follow the commitment path up the
tree and to the MR.

The OTS timestamp, or proof, is at the core of the OTS
protocol. It is the artefact that enables the verification of a
given attestation. To understand what a timestamp does, it is
necessary to first understand what a timestamp is and what
an attestation is. An attestation, in the context of OTS, is a
statement that some information - a logical file in the case
of the current OTS design - existed in a certain state at a
certain point in time. An attestation is, therefore, time-bound
and content-specific. An attestation is not a proof in any form

but rather a claim, the authenticity of which is proven by an
OTS timestamp.

The timestamp is a series of operations that, when re-
played, provides evidence that the attestation is true for a
particular source file. The source of truth for OTS is the
Bitcoin blockchain, which is demonstrably immutable and
chronological, as discussed in section III Since a timestamp is
essentially just a collection of commitment operations that are
applied to an input message in a specified sequence, replaying
those commitment operations in order is all that is necessary
to verify the timestamp.

An OTS proof thus allows any person or entity in possession

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 83

7

of the original file or an exact bit-by-bit replica thereof, and
the timestamp generated from it, to verify two things without
having to trust a third party: that the file existed in a specific
time window in the past, and that the file’s content remains
unmodified from the time the timestamp was created.

When requested to timestamp a file, the OTS client will
create a hash of the file and submit it to one or more calendar
servers. A calendar server adds the file hash as a node in a
MHT and provides the MR to the client; it thus aggregates
hashes into the MHT. A client can also optionally “upgrade”
their local proof by requesting the relevant MHT path from
the calendar server, thus locally obtaining all the information
that is necessary to verify the data; recall that, for a MHT
to be verified, the user requires the original data, the MR,
and the path through the MHT. After submission the calendar
server submits a binary blob representing the MHT to the
Bitcoin blockchain; after this point, a client can use the verify
operation to verify that the data exists in the blockchain, and
obtain the timestamp of that data. The end result is that a large
number of hashes can be embedded within the blockchain
without incurring a high cost.

A. OpenTimestamps components and trust

To achieve its functional goal, OTS relies on multiple
different components, each built on various technologies. OTS
was designed to strike a careful balance between ease-of-use
and dependencies on systems outside the control of the user.

Due to the nature of OTS and its focus on trust, any system
that is not the Bitcoin blockchain or the end-user system in-
troduces a level of uncertainty and potential risk into the OTS
timestamp system. Simultaneously, OTS tries to be simple to
configure and use to encourage usage; this necessitates that
highly technical components can be abstracted and performed
on behalf of the user to preserve the user experience. This
abstraction leads to the introduction of other systems into the
OTS ecosystem. It is, therefore, important that an exploration
of these systems is undertaken to understand how they impact
the trust placed in an OTS timestamp.

Trust domains – a logical boundary which denotes where
a party’s control of a particular system begins and ends –
are used to better explain OTS components. Recall that OTS
attempts to provide easy and trustworthy proofs by eliminating
the need for a verifier of a timestamp to trust a third party
as trust becomes more fragile as more and more parties are
added to the trust chain. It is worth noting then that the
failure of any one party will cause the complete trust chain
to be broken. This is why OTS attempts to limit the number
of systems to trust to the user themselves and the Bitcoin
network; essentially, this means dealing with only two trust
domains. It is therefore useful to begin by designating three
trust domains for explaining various OTS components:

1) SELF: trusted users of OTS and systems in their direct
control

2) BTC: the Bitcoin network and blockchain
3) OTHER: neither SELF nor BTC
Ideally, instances where OTHER is trusted need to be

avoided where possible. In cases where OTHER cannot be
avoided, it is essential to understand how OTHER functions,
what protection it provides, and what degree of trust can safely

be placed in OTHER without completely compromising the
trust of the OTS timestamp.

The OTS client is one of the main components in the SELF
trust domain, as it is controlled by the user and runs on systems
under their control. The libraries and code embedded in the
OTS client to interact with the Bitcoin blockchain are therefore
also included in SELF trust domain.

The Bitcoin network is the only other essential and neces-
sary component of OTS and resides in the BTC trust domain.
This domain is considered trustworthy in as far as the Bitcoin
network is trusted, underpinned by the resiliency and trust
mechanisms which have been discussed previously.

Calendar servers are the only other significant OTS com-
ponent that potentially fall within the OTHER trust domain.
Calendar servers are used to centralise, simplify, and speed up
the creation of timestamps at the cost of delegating some trust
to the OTHER domain. These are used to provide aggregation
services, blockchain interactions services and attestation ser-
vices for users who choose to, or cannot, run these services
locally. Note that the use of calendar servers is not required
and that OTS, if configured to do so with the installation of
the necessary Bitcoin services, can directly interact with the
Bitcoin blockchain to create and verify timestamps.

Calendar servers are not necessarily in the OTHER domain
since they can be run privately by the user if they choose to
centralise the aggregation and blockchain interaction within
the SELF trust domain. One may, for example, think of a
company providing OTS calendar servers as part of a private
OTS notary service.

The default OTS configuration, as used for illustrative
purposes in this work, relies on three public calendar servers:

• https://a.pool.opentimestamps.org Alias: https://alice.btc.
calendar.opentimestamps.org

• https://b.pool.opentimestamps.org Alias: https://bob.btc.
calendar.opentimestamps.org

• https://a.pool.eternitywall.com Alias: https:
//finney.calendar.eternitywall.com

These public calendar servers are maintained by the creators
of OTS and are used by default in OTS to allow the easy
creation of OTS timestamps by foregoing the need for the
user to install, configure and maintain a local instance of the
necessary Bitcoin software to interact with the blockchain.
The installation and maintenance of a full local Bitcoin node
can be a daunting task to potential users of OTS, and thus is
delegated away from the user and presented as a service in
the form of calendar servers. The complexities of configuring,
maintaining, and securing a full Bitcoin node is not within the
scope of this work.

By using a combination of the defined trust domains and
the technology dependencies of OTS to be able to perform
timestamps, three distinct configurations (A, B and C) are
defined, two of which can be considered fully-trusted (Only
SELF and BTC trust domains involved) and the other semi-
trusted (SELF, BTS and OTHER trust domains involved).
These are illustrated in Table III.

Configuration A, being fully trusted, is depicted in Fig. 5.
This configuration requires that user install and run the neces-
sary Bitcoin software on the local environment to enable the
OTS client to interact directly with the Bitcoin network.

The configuration depicted in Fig. 5 would require increased
effort to configure and run, as all the components would have

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS84

8

Fig. 5. Major components of OTS in trust domains for Configuration A

TABLE III
RELEVANT TRUST DOMAINS PER CONFIGURATION OPTION

Trust Domains
SELF BTC OTHER

C
on

fig
. A TRUE TRUE FALSE Fully-trusted

B TRUE TRUE FALSE
C TRUE TRUE TRUE Semi-trusted

to be installed by the user. Additionally, this configuration
would also carry a cost to the user, since they would be
responsible for the transaction fees required to perform the
Bitcoin transaction. It is therefore implied that the user would
have to have a Bitcoin wallet and a positive Bitcoin balance
to successfully interact with the Bitcoin network.

Configuration B, also being fully trusted, is depicted in
Fig. 6. This configuration extends the functionality of Con-
figuration A outside the scope of the local system by using a
private calendar server. This configuration requires that users
install and run a calendar server, as well as install and run the
necessary Bitcoin software on the calendar server to enable
the OTS client to interact with the Bitcoin network.

By using Configuration B, multiple OTS clients in the SELF
trust domain can create and upgrade timestamps without each
having to install and run the required Bitcoin services. As
with Configuration A, Configuration B would require more
effort and skill to configure and maintain while also carrying
a cost, in the form of transaction fees, for performing Bitcoin
transactions.

Finally, Configuration C, depicted in Fig. 7 is semi-trusted
as it includes the OTHER trust domain by making use of
public calendar servers. The configuration of C is very similar
to B in terms of the required components, the only design
change is the fact that the calendar server moves from the
SELF to the OTHER trust domain.

By using these public calendar servers, the OTHER trust
domain is included in the complete trust chain, and therefore
can be considered to be the least trustworthy use case for OTS.
It was thought prudent to discuss this configuration, as any
other configuration that does not make use of public calendars
will be inherently be more trustworthy, and will therefore

only increase the confidence level of the OTS timestamp.
Essentially, from a trust and complexity perspective, the worst
case scenario for OTS is evaluated. OTS strikes a careful
balance between usability and trust, by giving the user the
choice of placing their trust only in themselves and the Bitcoin
blockchain, or delegating some trust to external OTS systems
not controlled by them.

The lifecycle of an OTS timestamp depends heavily on
the OTS configuration, since it will determine which systems
come into play to create and verify the timestamp. Going
forward, the lifecycle of a timestamp is discussed, given OTS
is configured as depicted in Fig. 7.

Local dependencies for Configuration C are:
• OTS client: For creating and validating the timestamp and

interacting with the public calendar servers.
• Bitcoin node: For verifying the block header in the

timestamp.
The above mentioned Bitcoin node can be a pruned node. A

pruned node is a node which can function without storing the
complete blockchain history with all blocks. A pruned node
works by keeping a configurable cache of the latest blocks
(specified in MB), thus saving space [22].

Remote dependencies for Configuration C are:
• Public calendar server(s): For timestamp aggregation and

interacting with the Bitcoin network.
• Bitcoin network: For storing the data that enables the

OTS proof mechanism.

B. OTS functions

A detailed description of the processes and systems involved
in each of the core OTS functions will now be presented.

1) Stamping: When stamping a file, the OTS client gen-
erates a SHA256 hash H of the target file. A MHT is then
constructed with H to produce a Merkle Root (MR). In the
case of a single file being timestamped the values of H and
MR will be the same, since a MHT with only one value will
be the value of the only leaf. If multiple files are timestamped
at the same time, the OTS client performs a round of local
aggregation by constructing a MHT from the H values of all
the files being timestamped to produce a value for MR.

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 85

9

Fig. 6. Major components of OTS in trust domains for Configuration B

Fig. 7. Major components of OTS in trust domains for Configuration C

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS86

10

When calculating the MR value, the OTS client appends a
random nonce n to the H value of each file. The purpose of
this nonce is to preserve privacy, since the MR will be sent
to an untrusted public calendar server. The nonce process will
be explained in more detail later.

Once the MR value has been derived, an OTS RPC call
is made to all the nominated calendar servers supplying the
hexadecimal encoded string MR value to the digest endpoint.
This call is a REST-based web service call over HTTPS and
would look similar to the below:

https://[calender server URL]/digest/[hex encoded MT
value]

Once the calendar server receives the MR value it performs
some validation on the length and structure of the MR value.
Upon completion of the validation, the calendar server then
performs its own aggregation function by incorporating the
MR value into another MHT with all the MR values received
from other clients. As mentioned before, this is necessary to
make the solution scalable and keep costs low by aggregating
many hashes into a single MHT, the MR of which will be em-
bedded into a single Bitcoin transaction as an OP RETURN
opcode.

Depending on the extent of local and remote aggregation,
OTS effectively creates nested MHTs where the root of one
MHT becomes a leaf in a higher order MHT. This can
theoretically be done an infinite number of times to create
a single MR from an infinite number of leaves.

Since the calendar server might take some time to aggre-
gate other timestamps and complete the Bitcoin transaction
and wait for it to be verified on the blockchain, it cannot
synchronously provide the complete proof because the com-
plete timestamp does not yet exist. In lieu of the complete
timestamp, the calendar server returns a reduced timestamp
which is essentially a commitment that it guarantees it will
incorporate the submitted timestamp into a future transaction
and return a full timestamp at that point. This is one of
the primary examples where trust is placed squarely in the
OTHER domain. A malicious calendar server may provide a
commitment but discard the timestamp.

It is for this reason that OTS allows the user the ability to
submit to multiple calendar servers at the same time while
specifying that m of n calendars should return a positive
commitment before considering the timestamp submitted. A
user also has the ability to provide a whitelist of calendar
servers that will be used by the client. If none of those
calendars are available, or if the m of n minimum is not met,
the timestamp will be considered failed.

Once the incomplete timestamp is received from the calen-
dar server, the OTS client saves the timestamp to the same di-
rectory as that of the original file. The returned timestamp will
contain the relevant commitment operations and a timestamp
identifier for each calendar server that committed to submitting
the timestamp.

Once this has been performed the stamp process is com-
plete, albeit with a reduced or incomplete timestamp.

2) Info: The simplest of all the OTS functions is the
Info function which takes any timestamp as input, parses
the commitment operation contained within it and presents
them in a legible way to the user. This function is useful
if there is a need to see the commitment operation of a
particular timestamp or to see if the timestamp is correctly

formatted, as any small change in the timestamp will result
in a complete parsing failure. The Info function can also be
used to determine if a timestamp is complete or if an upgrade
request needs to be sent to the calendar server to retrieve the
complete timestamp. The Info function operates only locally
in the SELF trust domain.

The Info function does not perform any verification of the
commitment operations of the timestamp, but only the integrity
of the structure of the timestamp.

3) Upgrade: The Upgrade function attempts to upgrade
any given incomplete timestamp to a complete timestamp by
requesting the complete timestamp from the relevant calendar
server(s). A complete timestamp is a timestamp that is locally
verifiable without the need to contact a calendar server. Similar
to the Stamp function, the Upgrade function needs to interact
with a calendar server in the OTHER trust domain, as only
the calendar server has the ability to interact with the Bitcoin
blockchain. The mechanism for interacting with the calendar
server is also very similar, to the digest call, and is performed
via an OTS RPC call over HTTPS to a REST endpoint called
timestamp:

https://[calender server URL]/timestamp/[timestamp iden-
tifier]

If the timestamp has been completed by the calendar server,
the complete timestamp is returned synchronously to the OTS
client as a downloadable binary .ots file. Once the OTS client
verifies the structure of the timestamp, it proceeds to create a
backup of the original incomplete timestamp before appending
the .bak extension to it, and merging the complete timestamp
into the existing .ots file. The OTS client also confirms in the
CLI that the timestamp has been upgraded and that it is now a
complete timestamp which can be validated locally if a Bitcoin
node is present; it then no longer requires interaction with the
calendar server.

In the case where an upgrade request is made to a calendar
server and the timestamp is not yet complete or was not
found on the calendar server, the appropriate message is
returned synchronously to the OTS client. Incomplete but
found timestamps can again be requested at a later stage by
the OTS client.

4) Verify: Verification is the final OTS function, and pro-
vides an OTS user the most value by validating the saved
timestamp through replaying its commitment operations and
verifying the result against the state of the current file. Since it
is essential that a very good understanding of how this verifica-
tion works is obtained, a portion of a manual verification based
on the commitment operations contained in the timestamp is
conducted.

It is important to note that verification does not necessarily
require any interaction with a calendar server if the timestamp
has been upgraded. Since verification is such a sensitive and
critical operation, OTS was designed in such a way as to
ensure it does not require interaction with the OTHER trust
domain.

Verification does require that the OTS client be able to
query the Bitcoin blockchain for block headers, since the
timestamp ultimately points to the block header which contains
the transaction which contains the MR derived from the file
hash. Verification is performed between the OTS client (SELF)
and the Bitcoin blockchain (BTC), by using a locally running
Bitcoin node. In the scenario where access to a local Bitcoin

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 87

11

node or one in the SELF domain is not possible, the timestamp
can still be verified by contacting the calendar server, however
that necessarily weakens the proof as the OTHER domain is
involved in attesting to the validity of the timestamp.

There is a significant difference in size and complexity
between an incomplete timestamp and a complete timestamp.
This difference is a direct result of the Upgrade function, since
the entire timestamp and all relevant commitment operations
have been retrieved from the calendar server. This would
include commitment operations for local aggregation, calendar
server aggregation, and the Bitcoin transaction itself.

Note that although there may be multiple distinct com-
mitments, due to the initial timestamp being submitted to
multiple calendar servers, the complete timestamp only needs
to be retrieved from a single source. Retrieval of the complete
timestamps from other sources is pointless since a single valid
timestamp is sufficient to perform local verification. Verifica-
tion results in attestation, which is a statement that confirms
that a particular block, with a particular block creation time,
does contain the specified timestamp.

Below is a step-by-step walkthrough of exactly how a times-
tamp is verified, and how it is possible to make an attestation.
For the sake of brevity each commitment operation in the
complete timestamp will not be manually reproduced. Rather,
select examples will illustrate how that can be done. Since
the hashes can become very long, the example hexadecimal
data below has been rendered using ASCII85 encoding [23]
to reduce the amount of space required for display.

1) Compute the SHA256 hash of the data.
A=JKI*drCOFmd:PVZ:JOPJf¡!.=;BT’e!ˆNa¿Xi+

When run from the command-line, the first step the OTS
client performs is to look up the original file based on
the timestamp name. If the file is found in the same
directory, it performs a SHA256 hash of the file. This
hash value serves as the starting point for the timestamp
verification and is the first commitment in a series of
commitments.

2) Local noncing.
A=JKI*drCOFmd:PVZ:JOPJf¡!.=;BT’e!ˆNa¿Xi+Yt4S:fY@b(7ˆ89&¿,ˆ5n

Due to the privacy concerns of sending the hash of a
potentially sensitive file to an untrusted calendar server,
the OTS client appends a 128bit random nonce.

3) Re-hashing after noncing.
]e#&“K”12@¡))0tc6AkP,ˆC.U+7W%“;8uOB(’(]L

The concatenated value is then hashed again. This hides
the nonce from being viewed by any other party. The
user must retain the nonce value to be able to prove that
the calendar server has committed the stated data.

4) Submission and time encoding.
=jtVL’tc5!jci7HCeH!82D“j”kN92?H=B˙p0g’ai%˙Kbf

The value is now sent to the calendar server, which
prepends the system time on the server. This value is not
reliable since it is entirely dependent on the system clock
of the calendar server and the trustworthiness of the
calendar server. Nevertheless, it gives some indication
of when a submission may have been made.

5) Method authentication code.
=jtVL’tc5!jci7HCeH!82D“j”kN92?H=B˙p0g’ai%˙Kbf:t+#&:jIIg

The server then generates a hashed message authentica-
tion code (HMAC) based on the time and a secret key

that the server holds. This HMAC can be used to state
authoritatively that a particular calendar server handled
the message. The HMAC is appended to the message.

6) Re-hashing and reply.
¡]5)‘c”KdU.KeiS2)00O+nA#@TD;R3)r$NlY0rT1

The value is now hashed again, using SHA256, and
the entire sequence of operations (including prepended
value, appended value, and hashed result) are send back
to the client. The client is free to re-calculate the hashed
result using the prepended and appended values that
are supplied to it. The hashed result is what will be
aggregated into the MHT, the Merkle Root of which
will be entered into the blockchain.

When submitted as a transaction to the Bitcoin network, one
input and two outputs will be seen. The first input and output
are used to provide a transaction fee, and thus incentivize
miners to include the transaction. The second output stores
the MR within its scriptPubkey field (see Table II), and
precedes it with a Script instruction that makes it provably
unspendable under any circumstances. The entire transaction
is approximately 150 bytes, which provides a further incentive
to miners to include it since it does not take up too much
valuable space.

An upgraded timestamp provided by the calendar server will
include the submitted hash, all of the necessary hashes that
lead up towards the MR, and the transaction hash that uniquely
identifies the transaction on the blockchain. It is then possible
to look up the transaction on the blockchain independently of
the calendar server and verify that the provided operations
and hashes do lead up to the blockchain-stored MR. The
OTS client does this as part of its verification functionality.
It is important to note that the attested time that the OTS
client gives is, in fact, derived from the nTime field of the
transaction’s block, and not related to the prepended time used
by the calendar server.

By trusting the Bitcoin network with its inherent integrity
and immutability, assurance is established that this timestamp
cannot be forged and that the contents of the block also cannot
be forged or altered. And since the file hash indirectly exists in
a confirmed transaction output script in that block, it is known
that the file that produced that hash must have existed on or
before the stated date.

VI. TESTING

Testing of two aspects of OTS was conducted in order to
verify its usefulness in a digital forensics context: the timing
and accuracy of the timestamping, and the failure rate of
OTS. Data on the former was obtained by using the OTS
client to stamp, submit, upgrade, and verify timestamps, and
noting how long each of these operations took. The failure rate
was obtained by intentionally tampering with OTS artefacts to
create invalid files and timestamps, and attempting to verify
them using OTS.

Data gathering lasted for 34 days, from 5 September 2017
up to and including 8 October 2017. OTS timestamps were
created, upgraded, and verified every 10 minutes, resulting in
a data set of 4 702 unique files, their timestamps, timestamp
results, and operational metadata. These were then analyzed
to derive the following values:

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS88

12

• tStamp: the time in seconds that it takes to create a
timestamp and get a commitment from the calendar
server, including local processing time.

• tUpgrade: the time in seconds that it takes to upgrade
a timestamp to a complete timestamp, including local
processing time.

• tVerify: the time in seconds that it takes to verify a
timestamp, including local processing time.

• tAccuracy: the time difference in seconds between the
time the timestamp was completed (timeToUpgrade as
dipicted in Fig. 9) and the time attestation received by
the Bitcoin blockchain as per the OTS verify operation.

Supplementary to the base data set, some metadata about
OTS operations was captured by calculating the start and end
times of each OTS operation performed by the script. These
measurements aimed to accurately measure the execution time
of these OTS operations. Initially, this was simply for potential
troubleshooting, but it became clear that having a data set of
OTS operation times could be valuable and that this data set
was also analysed. The times taken to verify operations (Verify-
OperationTime) and stamp operations (StampOperationTime)
were recorded.

A final data set was gathered pertaining to the failure rate of
OTS. The data set was generated by intentionally tampering
with OTS components to induce invalid files and timestamps
and reverifying them using OTS. Modification and validation
were performed using a Python script, which also recorded the
results. The script enumerated all of the previously generated
files and timestamps, and alternated between modifying the
files, or the associated timestamp, by appending a few fixed
bytes. By intentionally breaking the timestamps, or modifying
the files in known and consistent way, more insight into
potential false positive and false negative results from the OTS
Verify function can be gathered.

Using the above-mentioned data sets, more in-depth analysis
was performed on each data set to highlight trends, issues and
other potentially significant facts.

A. Data analysis
For each of the tStamp, tVerify, tUpgrade, and tAccuracy

metrics, an average, minimum, maximum, and standard devi-
ation was calculated. These values are listed in Table IV.

All of the measurement values in Table IV are rounded
up to two decimal places. These values will henceforth be
referred to by concatenating the names of the relevant row
and column, e.g. the Average (A) timeToUpgrade (tUpgrade)
will be denoted by A-tUpgrade.

The time to create a complete timestamp has been visu-
alised in Fig. 9. On the x-axis is the creation time of the
timestamp (proofCreatedTime), and the time the proof was
created (timeToStamp) is on the y-axis. Additionally, there is a
calculated moving average per 144 data points (1 day) to assist
in visualising the timestamp completion-time without some of
the outlier values. The overall average for timeToUpgrade (A-
tUpgrade) is 3 563.04 seconds, as can be seen in Table IV.

Similarly, Fig. 11 shows the timestamp accuracy. Timestamp
accuracy is defined as the difference in time between the point
the timestamp was created (the known time data existed and
was committed), and the time verification can attest the data
first existed. This is used to measure accuracy as it shows

how precise OTS attestations are for a sample with a known
creation data.

A moving average over 144 data points is also calculated
and shown in Fig. 11 to account for outliers with the overall
average A-tAccuracy being 2687.64 seconds. Both of these
metrics visualised in Fig. 9 and Fig. 11 are relevant to
the responsiveness and performance of OTS within the test
environment.

Another aspect of OTS performance is the time it takes
to perform individual granular functions. Granular functions
refer to the actual time taken to perform a single operation,
i.e. Stamp or Verify. Previous measurements were related to
the time between multiple operations i.e., Stamp and Verify.
The following data set relates to the time it takes to perform
individual functions or the time it takes for OTS functions to
deliver a requested result.

Granular execution times were recorded for OTS functions:
• tStampG: Stamp (All stamp actions including RPC call

to remote calendar).
• tVerifyG: Verify (All verify actions including RPC call to

local Bitcoin node)
Table V shows a summary of a few metrics about execution

time of specific OTS operations that were measurable as part
of the testing design.

All values in Table V are measurements of seconds taken,
rounded up to two decimal places. As with the preceding data
sets, the sample covered all of the files created during the test
window.

The final piece of analysis was performed sought to evaluate
the error rate of the OTS Verify function. The Verify funtion,
as stated previously, is the most critical of all OTS operations
as it is the mechanism by which OTS delivers the attestation
result. It is also likely that Stamp and Upgrade may only be
executed once for any particular file, but that Verify might be
executed many times throughout the relevant life of the file.

Table VI shows a summary of the results of this analysis
phase.

VII. DISCUSSION

1) Observations and interpretation: In this section, the
results of the various analyses performed in Section VI-A are
discussed and key observations are drawn from the results.

a) Performance and timing: Looking at Table IV, A-
tStamp execution time is 2.13 seconds on average, with a
minimum execution time (Mi-tStamp) of 1.18 seconds and a
maximum execution time (Ma-tStamp) of 4.98 seconds; this
is particularly significant and will be elaborated on further in
the following section. It should be reiterated at this point that
the actions in tStamp includes the hashing of the file, noncing,
RPC call to a remote calendar server, and the response written
to the local disk. Lastly, the standard deviation at (S-tStamp)
is 0.34 seconds, showing a tight clustering around the mean,
and demonstrating consistency under test conditions. These
values tend to be low and consistent as the Stamp operation
only submits the timestamp to the calendar server and there
is no interaction with the Bitcoin blockchain at this point.
Higher values for tStamp can be expected for larger files, since
the SHA256 hash calculation will take longer. The size of
files however, will have no noticeable effect of the RPC call

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 89

13

TABLE IV
AVERAGE, MINIMUM, MAXIMUM, AND STANDARD DEVIATION

tStamp tUpgrade tVerify tAccuracy
Average (A) 2.13 3563.04 9.40 2687.64
Minimum (Mi) 1.18 600.92 1.36 21.90
Maximum (Ma) 4.98 25208.67 72.79 24568.47
Standard Deviation (S) 0.34 3105.17 7.66 3074.74

Fig. 9. Time, in seconds, to complete a timestamp relative to the date and time the timestamp was created.

Fig. 10. Overlay of average block confirmation time from [24] onto Fig. 9

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS90

14

Fig. 11. Accuracy of a timestamp, in seconds, relative to the date and time the timestamp was created.

TABLE V
GRANULAR OTS FUNCTION EXECUTION TIME

tStampG tVerifyG
Average (A) 2.11 0.26
Minimum (Mi) 1.22 0.16
Maximum (Ma) 8.67 13.64
Standard Deviation (S) 0.50 0.23

and response as the data being transferred is a fixed-length
SHA256 hash.

With regard to tUpgrade, A-tUpgrade is shown to have
a much larger value at 3 563.04 seconds; this represents
the time between two asynchronous, but related, operations.
Mi-tUpgrade is measured at 600.92 seconds, representing an
instance where the timestamp was upgraded to a complete
timestamp in approximately 10 minutes. The actual time to
upgrade to a complete timestamp could actually be an even
lower value, but due to the test script execution scheduled ev-
ery ten minutes, the best-case scenario would be 600 seconds
plus some processing time for the RPC call. Ma-tUpgrade is
high at 25 208.67 seconds or approximately 7 hours. High
values like these are a side-effect of slower Bitcoin network
performance and higher block confirmation times, as shown in
Fig. 10, where the six hour moving average block confirmation
time for the same period is displayed on top of the data set.
With an average block confirmation time of 10 800 seconds,
approximately the same time of Ma-tUpgrade, it is entirely
possible that Ma-tUpgrade could have even higher values as it
may have been included in a block with a higher than average
block confirmation time. S-tUpgrade, at 3 105.17 seconds, is
close to the value of A-tUpgrade, and shows more variation,
but none the less, consistent with times of operations between

only the OTS client and public calendar servers.
tVerify, being the time it takes to verify a timestamp

inclusive of local processing time, has an average value (A-
tVerify) of 9.40 seconds; a minimum value (Mi-tVerify) of 1.36;
and a maximum value (Ma-tVerify) of 72.79 seconds. The
standard deviation (S-tVerify) is 7.66 seconds, showing as with
other, primarily local operations, a close clustering around the
mean and consistent performance. The slightly higher value of
tVerify compared to tStamp, which is also a local operation,
can be attributed to the fact that, during the Verify function,
all of the commitment operations in the complete timestamp
need to be replayed and the result verified against the local
Bitcoin node.

The value of tAccuracy is referred to as the timestamp
accuracy, and is a measurement of the time difference between
the time the initial timestamp commitment was received from
a remote calendar server (the date and time the attestation
was requested), to the time the Bitcoin blockchain can attest
the data existed. The shorter the time span, the more accurate
the timestamp attestation can be considered. Accuracy is very
closely tied to the block confirmation time, as noted in Section
V-A, and thus heavily influenced by the Bitcoin network per-
formance. A-tAccuracy is 2687.64 seconds, which is slightly
lower than A-tUpgrade, as it excluded any lag induced by the
script execution timing. Ma-tAccuracy is 24 568.47 seconds
and Mi-tAccuracy is 21.90 seconds, both close to but slightly
less than Ma-tUpgrade and Mi-tUpgrade. Mi-tAccuracy, at
21.90 seconds, is an example of where a timestamp was
requested from the remote calendar server close to the end
of its aggregation cycle and transaction creation in the Bitcoin
blockchain. It is also clear that the block confirmation time
around the submission of transaction containing the data from
Mi-tAccuracy would be very short. Mi-tAccuracy was commit-
ted to the calendar server at 17/09/17 02:20:04, incorporated

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 91

15

TABLE VI
ERROR RATE OF VERIFY FUNCTION

Pre-
modification

result

Post-
modification

resultNumber of
files tested True False

Modify
action True False

False positive
result

False negative
result

2351 2351 0
Modify

file 0 2351 0 0

2351 2351 0
Modify

timestamp 0 2351 0 0

into the aggregated MHT of which the root was incorporated
into a Bitcoin transaction shortly afterward. This transaction
was contained in a block which was confirmed by 17/09/17
02:20:26. This very low block confirmation time is supported
by the data in Fig. 10, which indicates that the average
block confirmation time at its approximate creation time was
about 500 seconds. S-tAccuracy is close to A-tAccuracy which
indicates similar clustering around the mean to S-tUpgrade.

tStampG and tVerifyG are very granular measurements of
the OTS functions without local processing time performed
by the script like file creation or enumeration. A-tStampG, at
2.11, is slightly lower than A-tUpgrade, indicating a script pro-
cessing time overhead of 0.02 seconds. Similarly, A-tVerifyG
shows very fast execution times of 0.026 seconds as a result of
it being a local operation between the OTS client and the local
Bitcoin node. S-tStampG is very low, at 0.50 seconds, showing
very tight clustering around the mean and very consistent
performance. S-tVerifyG is close to A-tVerifyG, which indicates
slightly less consistent execution times than that of A-tStampG.

In Fig. 11, there is an instance between the dates 05/10/17
00:00:00 and 06/10/17 00:00:00 of an apparent cascading
effect from very high y-axis values to lower values, with
fixed intervals on the Y-axis. This cascading effect, along with
others on Fig. 11, can be explained by slow block confirmation
times during those dates. Regardless, the script that created the
file and submitted the timestamp executed every 10 minutes
irrespective of the Bitcoin network performance. This means
that as the calendar server aggregates timestamp and waits
for a block to be confirmed, multiple timestamps could have
been submitted to it. Since the calendar server timing is
subject to the block confirmation and the testing script is
not, there is a backlog of timestamps being created on the
calendar server when block confirmation is delayed. When
the block confirmation finally occurs, all of these backlogged
timestamps, created over a long time span, are included in the
next block. Since this block now contains timestamps created
over a matter of hours, ten minutes apart, but has a single
confirmation time, the time difference between submission
and attestation of the first timestamp submitted is very high
and gradually gets smaller for each subsequent timestamp.
Looking at Fig. 11, it can be seen that the y-axis values cascade
down at intervals of approximately 600 seconds (10 minutes)
is indicative of the testing script executing and submitting a
new timestamp every 10 minutes. This explanation is further
supported by Fig. 10, which clearly indicates higher average
block confirmation times around these instances of cascading
values.

b) Errors: A very important aspect of this research
relates to identifying error rates of OTS as a protocol and
implementation. Without known error rates, it is difficult to
gauge the level of confidence one can have in OTS. As such,
errors rates will be discussed from two perspectives:

• Verification errors: Errors in the verification of valid OTS
timestamps.

• Creation errors: Errors in creating a complete OTS times-
tamp.

Verification errors are the most serious of potential OTS
errors, as they indicate that the verification operation does
not return a truthful or accurate result. Since the use case for
OTS is to reliably get accurate attestations as to the integrity
and timestamp of a particular file, any error in this process
should be considered serious. Errors in the verification process
undermine the fundamental purpose of OTS, and high error
rates would indicate that OTS cannot be trusted.

OTS verification was tested extensively over the entire test
sample. Exactly half of the test sample (2 351), previously
validated, was modified by appending a few fixed bytes to the
original file. The other half were modified by appending the
same fixed bytes to the timestamp associated to the file. In
this way, the error rates for invalid files or invalid timestamps,
both of which should result in an outright failure to verify,
were tested.

Errors during this testing could fall into one of two cate-
gories: false negative or false positive. False negative results
are results where a valid combination of file and timestamp
resulted in a failure to verify. False negative results would
indicate that either the file integrity was compromised, or the
timestamp changed when it was not the case. False positive
results are results where an invalid combination of file and
timestamp (either modified) resulted in a positive verification
result, indicating that the file integrity is sound or that the
timestamp is valid when it is, in fact, not the case. A false
negative result would result in OTS users trusting files and
attestations that are not correct.

As can be seen in column 5 in Table VI, there were no
instances of false positive OTS verifications for the tested
sample. Similarly, in column 6 it can be seen that there were
also no false negative OTS verification results in the tested
sample. With zero errors in the tested sample, it is clear
that the robust verification mechanism and the fragility of the
timestamp structure combine to create a very reliable system
with a near 0%, or insignificant, failure rate.

Creation errors are the second type of error, and relate to
any error in creating a complete OTS timestamp for a file.
This type of error is less serious than a failure to verify, as it

Vol.110 (2) June 2019SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS92

16

Fig. 12. Missing timestamps results due to a failure to create timestamp.

does not make any claim toward the integrity of the file. The
risk with a failure to create a file is that some critical data or
evidentiary item may not receive a complete timestamp and
could therefore not be validated at some future point in time
when its integrity is questioned. During the testing process
there was no specific test for a failure to create a timestamp,
but as data was being analysed and correlated along with
metadata from the script logs, it became apparent that a small
number of timestamps failed to complete.

The log entries were created when the Upgrade function was
attempted, but failed for a particular file. They indicated that
the Upgrade function could not find the timestamp file for
the file in question. There were 26 instances of such errors
in the tested sample. Manual verification confirmed that all
26 files did not have any timestamp file and there was no
indication that a timestamp file existed at any point in time,
despite the script log confirming a timestamp was created.
There were also no errors in the logs indicating that the OTS
Stamp function failed. The only common factor between all 26
instances of these failures, were that the stamp creation time
logged in the script execution was higher than the maximum
stamp time Ma-tStamp allows for valid timestamp. These
logs did not reveal a root cause for this failure, but by a
process of elimination it was determined that the failure either
occurred in the RPC call to the calendar server, or locally
when the returned timestamp commitment was saved to disk.
Unfortunately, there were no logs to indicate which of the two

processes were malfunctioning.
Instances of such failures to create a timestamp can be seen

in Fig. 12, where there are clear gaps between two data points.
Being unable to isolate the root cause to an OTS- or

operating system-specific failure, it is necessary assume the
worst-case scenario from the perspective of OTS, which is
that the calendar server did not return a valid timestamp
commitment for the 26 stamp requests. Even so, the number
of failures as a proportion of the overall data set is extremely
small at 0.553%. Even though the timestamp failed to create
when requested, this does not prevent the request from simply
being resubmitted if the failure is detected. It is, therefore,
suggested that all timestamp creation be immediately validated
when OTS is used in potentially significant use cases, such as
a digital forensic investigation relating to legal proceedings.

VIII. CONCLUSION

This paper has described the field of digital forensics, its
requirements, blockchain technology, the interaction between
these, and independently analysed promising open source
software in this niche. The results have been impressive, and
certainly merit a great deal of discussion in the field of digital
forensics. Blockchain technology, coupled with the design of
OTS, has the potential to take one more human factor out
of the digital forensics equation and increase trust in digital
evidence as a whole. One caveat, however, is that timestamp
accuracy is not to be taken for granted. The blockchain may
therefore not be appropriate for digital evidence that must be
independently timestamped with great accuracy.

REFERENCES

[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp.
382–401, Jul. 1982. [Online]. Available: http://doi.acm.org/10.1145/
357172.357176

[2] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[3] Ethereum Foundation, “Ethereum,” 2016. [Online]. Available: https:
//www.ethereum.org/

[4] Zerocoin Electric Coin Company, “About Us,” 2016. [Online].
Available: https://z.cash/about.html

[5] B. Nelson, A. Phillips, and C. Steuart, Guide to Computer Forensics
and Investigations, 5th ed. Delmar Learning, 2015.

[6] A. Valjarevic and H. S. Venter, “Implementation guidelines for a
harmonised digital forensic investigation readiness process model,” 2013
Information Security for South Africa - Proceedings of the ISSA 2013
Conference, pp. 1–9, aug 2013.

[7] J. Dykstra and A. T. Sherman, “Acquiring forensic evidence from
infrastructure-as-a-service cloud computing: Exploring and evaluating
tools, trust, and techniques,” Digital Investigation, vol. 9, pp. 90–98,
2012.

[8] C. Wilson, “Digital Evidence Discrepancies: Casey Anthony
Trial,” 2011. [Online]. Available: http://www.digital-detective.net/
digital-evidence-discrepancies-casey-anthony-trial/

[9] J. H. Witte, “The Blockchain: A Gentle Introduction,” pp. 1–5, 2016.
[10] B. Preneel, “Cryptographic hash functions,” European Transactions on

Telecommunications, vol. 5, no. 4, pp. 431–448, 1994.
[11] Y. M. Motara, “Preimages for SHA-1,” Ph.D. dissertation, Rhodes

University, 2017.
[12] G. C. Kessler, “Anti-Forensics and the Digital Investigator,” Proceedings

of the 2014 47th Hawaii International Conference on System Sciences,
pp. 1–7, 2006.

[13] P. Rogaway, Nonce-Based Symmetric Encryption. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 348–358.

[14] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source
Code in C. New York, NY, USA: John Wiley & Sons, Inc., 1993.

[15] A. Back, “Hashcash - A Denial of Service Counter-Measure,” 2002.
[Online]. Available: http://www.hashcash.org/papers/hashcash.pdf

[16] K. Okupski, “(ab) using bitcoin for an anti-censorship tool,” Ph.D.
dissertation, Eindhoven University of Technology, 2015.

Vol.110 (2) June 2019 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 93

17

[17] B. Gipp, N. Meuschke, and A. Gernandt, “Decentralized Trusted Times-
tamping using the Crypto Currency Bitcoin,” iConference 2015, pp. 1–6,
2015.

[18] V. Wayne, S. Wilkinson, and J. Bukowski, “Chainpoint: A scalable
protocol for recording data in the blockchain and generating blockchain
receipts,” 2016. [Online]. Available: https://tierion.com/chainpoint

[19] M. Araoz and E. Ordano, “Proof of Existence,” 2013. [Online].
Available: http://proofofexistence.com/

[20] P. Todd, “OpenTimestamps: Scalable, Trustless, Distributed
Timestamping with Bitcoin,” 2016. [Online]. Available: https:
//petertodd.org/2016/opentimestamps-announcement

[21] R. C. Merkle, “Protocols for Public Key Cryptography,” Synopsis on
Security and Privacy, pp. 122–134, 1980.

[22] Bitcoin Foundation, “Wallet: Pruning,” 2016. [Online]. Avail-
able: https://github.com/bitcoin/bitcoin/blob/v0.12.0/doc/release-notes.
md#wallet-pruning

[23] Adobe Systems Incorporated, PostScript Language Reference Manual,
2nd ed. Addison-Wesley Publishing Company, 1990.

[24] Blockchain Luxembourg S.A, “Average block confirmation
time,” 2017. [Online]. Available: https://blockchain.info/charts/
avg-confirmation-time?timespan=60days&showDataPoints=true

William Thomas Weilbach Thomas, who started
his career as a software developer, quickly gravitated
to information security after being exposed to ap-
plication security. After completing his postgraduate
research on the topic of digital forensics, he made
information security his primary professional focus
as an information security specialist at a major
South African bank. Thomas then completed his
MSc in Computer Science at Rhodes University
where he continued his work on digital forensics
and graduated with distinction in 2018, having been

awarded the MWR prize for the Best Information Security Student. Presently
Thomas continues his passion for information security, but returned his focus
to Application Security by enabling the same at a major sovereign wealth
fund.

Yusuf Moosa Motara Yusuf Motara is a Senior
Lecturer in Computer Science at Rhodes University.
His interests are functional programming, informa-
tion security, software development, and computer
science education. He is presently working on the
modeling of functional programs. Dr Motara lives
in Makhanda with his wife, children, and a great
deal of contentment.

