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Face Antispoofing Using Shearlets:
An Empirical Study

Dustin Terence van der Haar, Member, IEEE,

Abstract—Face recognition - A promise made to the modern
technologists as the ultimate access control or surveillance tech-
nology. However, similar to its fingerprint spoofing counterpart,
current face antispoofing technology is still vulnerable to inexpen-
sive spoofing attacks, which pose a threat to security. Although
basic face spoofing attacks that use photographs and video are
common in attack scenarios, they are still not addressed appro-
priately, thereby making security in these environments a difficult
task to achieve. Newer face antispoofing attacks, such as 3D mask-
based antispoofing have emerged and further complicated face
antispoofing matters. Although methods have improved over the
last decade, a robust solution that can accommodate changing
environments is still out of reach. More so, these methods have
not been assessed across multiple publicly available datasets and
very little work has been done to perform a fair comparison
across multiple face spoofing methods. Face spoofing attacks
introduce an object into the scene, which presents curvilinear
singularities that are not necessarily portrayed in the same
way in different lighting conditions. We present a solution that
addresses this problem by using a discrete shearlet transform
as an alternative descriptor that can differentiate between a
real and a fake face without user-cooperation across multiple
environmental conditions. We have found the approach can
successfully detect blurred edges, texture changes and other noise
found in various face spoof attacks. In order to prove that discrete
shearlet transforms are a valid descriptor and to perform a fair
comparison of other methods, an empirical study is conducted
with multiple experimental parameters and concrete results.
Our benchmarks on the publicly available CASIA-FASD, MSU-
MFSD, OULU-NPU, and HKBU-MARs datasets, show that our
approach portrays good results and improves on the most popular
methods found in the field on modest computer hardware, but
requires further improvement to beat the current state of the
art for basic face antispoofing efforts, such as the photo, cut and
video attacks. However, where it succeeds is for detecting 3D
mask-based antispoofing methods. Discrete Shearlet Transforms
achieved very good accuracy on the HKBU-MARs 3D mask
dataset and exhibited excellent precision, recall and f1-score,
thereby showing it is an excellent descriptor for the task. The
approach also achieves real-time face spoof discrimination with
minimal resource overhead, which makes it a practical solution
in real-time applications and a viable augmentation to current
face recognition methods.

Index Terms—Face Recognition, Face Antispoofing, Presenta-
tion Attack Detection

I. INTRODUCTION

We are entering the age of automation. Machines can
replace people with repetitive tasks and differentiate between
people using face recognition. By giving machines the ability
to identify or authenticate people automatically, it can prevent
unauthorised users from accessing secure areas or provide a
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tailored user experience. Face recognition is already being
used in public spaces for surveillance monitoring of citizens
and to maintain watch-lists in airports, malls, border gates,
and casinos [1]. Other similar applications include its use in
mobile computing for face tracking and in affective computing
to detect the emotion of users [2].

However, as technology and methods have progressed for
face recognition, so have the attacks to subvert face recognition
systems. Attacks, such as using photos, modifying them in
some way and video attacks [3], have become common in
various subversion scenarios. Technology has also assisted
attackers through the advent of cheaper 3D printing and in-
creased computational resources. These combined with higher
quality screens, which have improved resolutions and colour
ranges, allow them to facilitate better replay attacks, where
a counterfeit biometric is presented to the face recognition
system.

In order to keep up with these developments, more liveness
and antispoofing research and systems have been introduced to
combat these attacks [4], [5], [6], [7], [8], [9], [10], [11], [12].
These approaches either determine liveness, analyse movement
or perform image quality assessment. Both sides of technology
improvements have resulted in an ebb and flow of attacks
and defences. However, a robust generic solution without
significant computational resource overhead, which performs
well under various conditions is yet to be realised. The
work discussed here poses another defence in the war against
face spoofing. It provides an alternative real-time presentation
attack detection (PAD) method for describing the facial region
of interest, which can tolerate blur, texture changes, and low-
quality frames in order to achieve improved face antispoofing.
A comparison is then made with it and other popular methods
with multiple datasets to get a fair measure of its performance
amongst its peers.

The article begins by unpacking the problem at hand and
face antispoofing related work. The proposed approach is
then discussed by outlining the method with an appropriate
discussion. The experiment methodology followed by the
researcher to validate the approach is then described for all
four datasets, followed by the achieved results. The paper is
then concluded, along with future work.

II. RELATED WORK

The prevalence of face recognition systems in society has
motivated criminals to find ways of subverting these systems
to avoid identification. The ideal method for achieving this
is for them to undergo facial plastic surgery that changes
fundamental components of their face. Technology has also
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made it possible to achieve these attacks at a lower cost.
Although plastic surgery is a pressing concern, there have been
attacks that prove it is not necessary to go to that extent to
subvert a face recognition system [13].

There are more simple, non-intrusive attacks that can be
used to spoof face recognition systems. These attacks include
(and examples can also be seen in Figures 1 and 2):

1) A photo attack where a printed image of a legitimate
user is presented in front of the user’s face.

2) The warped photo attack where the photo attack is
extended to include movements and minor folding of
the photo.

3) A cut photo attack where holes are cut out by the eyes
are in the photo to fool blink-based liveness systems.

4) The video replay attack where a user places a video of
a legitimate user in front of their head using a tablet or
similar device [6], [3].

5) A mask attack where the attacker wears a 3D mask of
a legitimate user [10].

Thankfully researchers have become cognizant of these attacks
and research has been pursued to address them appropriately.
There have also been face antispoofing competitions to pro-
mote more novel solutions within the research community,
as seen in the International Joint Conference on Biometrics
(IJCB) 2011, 2013 and 2017. Datasets have been created that
emulate these attacks, such the NUAA Photograph Impostor
Database (which only contains photographs) [14], REPLAY-
ATTACK Database [6], CBSR database [3], CASIA-FASD
[8], MSU Mobile Face Spoofing Database (MFSD) [15] and
more recently OULU-NP [16] (used in one of the 2017 IJCB
competitions) along with the HKBU-MARs mask-based face
antispoofing dataset [17] to serve as a benchmark for any
proposed methods.

In the last decade, there has been significant progress in face
antispoofing methods. Earlier methods used Gabor wavelets
[14] or eye blinking in order to determine whether there was
potential face spoofing occurring [4]. The approach had basic
liveness detection with minimal computational overhead. How-
ever, blink detection still fell victim to the cut photo attack and
poor accuracy. One of the breakthroughs in the field was the
use of micro-texture analysis with local binary patterns (LBP)
[6]. It encapsulated the change of texture in the scene attributed
to the foreign object, was also computationally fast and did not
require cooperation from the user to blink. However, fine detail
that can be used for discriminating between real and fake faces
is lost when using LBP-based histograms around larger areas
of the face. As shown by [5], there is value in dividing it into
overlapping sub-regions (such as 3 by 3 pixels) and calculating
sub-region-based LBP histograms. However, it comes at the
cost of more sparse feature space, additional resources and is
affected by blur present in the region of interest.

Another improvement uses LBP from Three Orthogonal
Planes (LBP-TOP) to achieve face antispoofing [7]. The
improvement increases accuracy, by leveraging the power of
dynamic textures, analysing motion and texture, along with
a score level fusion-based framework. However, the approach
showed incremental improvement and it struggled with lower

(a) Real (b) Photo

(c) Cut (d) Video

Fig. 1: Examples of various attack scenarios and their mean
shearlet representation for the region of interest derived from
the CASIA-FASD dataset.

quality frames found in the CASIA-FASD data set.
The latter part of the decade was then spent on mostly

building on existing methods, performing more image qual-
ity assessments and combining multiple methods. In [8], a
score fusion framework was proposed and provided addi-
tional insights into dataset quality. However, only methods
that are statistically independent can be used in the score
fusion framework, so any potential methods would need to
be statistically vetted before it can be included. The work in
[9] proposes a context-based antispoofing method. It showed
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(a) ThatsMyFace mask (b) Real-F mask

Fig. 2: Examples for the type of mask attacks taken from the
HKBU-MARs dataset.

that scene cues detected with Histogram of Oriented Gradients
(HOG) descriptors and upper body analysis could be used for
face antispoofing. The results show an improvement in other
methods, especially in video replay attacks. However, it is
constrained by particular attack scenarios and is limited to
close-up environments.

In [18], multiple feature vectors are created from twelve
different components that form what they call their holistic
face (or H-Face). The H-Face-based approach performs well,
but there are many measures to calculate, thereby limiting
its potential in real-time applications. The approach by [19]
extends traditional LBP approaches by performing motion
magnification using optical flow vectors first before deriving
LBP sub-sampled histograms. However, it only provides an
incremental improvement and is subject to similar issues ex-
perienced by other LBP-based descriptors. Another approach
by Galbally and Marcel [10] uses general image quality
assessment to achieve face antispoofing, by using a combi-
nation of different image quality measures, such as measures
used to determine pixel difference, correlation and edges.
These features, such as signal to noise ratio (SNR), average
distance (AD) and total edge difference (TED) present a low
degree of complexity and can potentially be used for real-time
applications. However, the approach exhibits only a marginal
improvement over other methods.

Antispoofing based on colour texture analysis is achieved
in [11] by analysing LBPs in various colour spaces, such
as HSV , RGB and Y CbCr. The approach shows promising
results but suffers in varying lighting and environmental con-
ditions. Patel et al. shows in [20] that Moiré pattern aliasing
present in spoof face videos can be used for face antispoofing.
The approach worked well on video but lacks results for photo-
based spoofing methods. Agarwal also proposes in [21], the
use of Haralick features to achieve face antispoofing with
good accuracy, but it comes at the cost of very large feature
space and computational overhead, which results from the
subsequent dimensional reduction required.

More recently in [12], a fusion of various approaches is
used to achieve face antispoofing. Face and scene optical
flow-based motion features coupled with an image quality

feature are used to train an artificial neural network for spoof
discrimination. It results in very good accuracy, but at the cost
of significant computational and memory resources. The use of
convolutional neural networks (CNN) has also been shown to
exhibit excellent accuracy for face antispoofing, which make
it the current state of the art [22]. Although it achieves very
good results, it too consumes a great deal of memory and is
slower than methods with a lower level of complexity.

Methods in face antispoofing have improved, but it is
still clear that there is still no robust solution that performs
consistently under various changes (such as a change in
camera, resolution or lighting) without incurring significant
computational and memory overhead. Little attention is paid
to the resource usage of methods, its potential use in real-time
applications and its performance under varying environmental
conditions. The approach discussed in the next section remains
cognizant of these requirements (especially the real-time ap-
plication aspect) and attempts to address them appropriately.

III. FACE ANTISPOOFING USING SHEARLETS

In a spoof scenario, there are certain elements present in a
video frame present, which will help with face-based spoof
discrimination. Attacks introduce a rigid object within the
scene to mimic a legitimate object. Much of the work done so
far attempts to differentiate between these rigid objects from
a non-rigid face by deriving a feature space that can classify
for anomalies. However, many of them rely on colour space-
based methods and are greatly affected by lighting changes.
However, there is value in analysing curvature and significant
edges found in the scene that are more robust to lighting
changes. Our approach uses a discrete shearlet transform-based
(DST) descriptor to achieve this.

A. DST for Face Antispoofing

Shearlets were introduced to overcome the traditional
wavelet limitation of describing directionality. They are a
natural extension to wavelets that can efficiently represent
anisotropic features, such as edges in images, and serve as
a good sparse approximation of multidimensional data. These
properties make it an excellent candidate for face antispoofing
because the rigid objects introduced in the scene exhibit
anomalies in the form of curvilinear singularities in a com-
pact and computationally efficient form. Instead of analysing
the high dimensional space found in the original sample, a
succinct representation made up of a wavelet-like function that
can portray directionality. A discrete shearlet transform (DST)
is defined as [23]:

SHψf(j, k,m) = 〈f, ψj,k,m〉, j > 0, k ∈ Z,m ∈ Z2 (1)

Where SHψ maps the function f to the shearlet coefficients, j
is associated with the scale index, k the orientation index and
m the positional index. Shearlets have been used for edge
detection [24] and non-reference image quality assessment
[25], but it has the potential for face antispoofing. The DST
can highlight blurred edges, texture changes and other noise
found in the frame, which can be attributed to the rigid object
used in a typical face spoofing attack.
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Fig. 3: The proposed approach that uses a discrete shearlet transform to achieve face antispoofing.

Other work exists that shows initial attempts to achieve
face antispoofing using shearlets, but they lack evidence that
validates the proposed use case. Li et al. in [26]and [27] follow
a more integrated approach by using shearlet spectrum for both
live detection and face recognition. They take the shearlet
transform, feed it into stacked autoencoders and classify it
using a support vector machine. They test the approach on the
CASIA database and derive Detection-Error Trade-off (DET)
curves to show their results. However, they do not test it with
other attack vectors or provide enough detail to reproduce the
method and test it with higher quality datasets and derive other
performance metrics, so that it can be compared against other
methods.

When applied to a video frame captured in the scene that
contains a face, it allows us to perform face spoof discrim-
ination. As seen in Figure 1, the DST results can be seen
for each attack scenario. In 1a the sharp outline of significant
curvature found on the real face can be seen, along with subtle
details of the face. Whereas in 1b and 1c key details of the
face are missing, which can be attributed to the lack of detail
portrayed in the photograph and cut attack. Lastly, it can also
be seen that there is a significant amount of detail lost in the
video attack portrayed in 1d. These examples show that there
is clear value in using DST for face antispoofing.

B. The Proposed Method

In order to use DST within the context of face antispoofing
(as seen in the process found in Figure 3) there are specific
steps that need to be made to perform face antispoofing that
maximises performance and make it tolerant of environmental
changes. Each captured video frame undergoes face region
of interest (ROI) segmentation. The Viola-Jones face detector
[28] is used to capture the face, but instead of using the method
for every subsequent frame, a basic colour histogram check
is performed and if it passes the check, the coordinates of
the previous ROI is used. In order to compensate for motion
artefacts that cause ROI drift, minor translation smoothing is
applied by analysing prior ROI coordinates found in previous
frames.

Once the face ROI is segmented, the DST is used to derive
the features. It begins by going through a calibration phase,
where the shearlet spectrum is derived for the ROI. The
precomputed shearlet spectrum during the calibration phase
is then used in subsequent frames for deriving the shearlet

(a) 45◦ (b) 90◦

(c) 180◦ (d) 360◦

Fig. 4: Partial shearlet orientation coefficients.

coefficients in a significantly faster manner. Frames that fail
the previous colour test trigger another shearlet spectrum
derivation event. This optimisation allows the approach to
achieve face antispoofing in real-time. Further speed optimi-
sations can be achieved on much higher resolutions (such as
4k video) by using partial shearlet coefficients at a specific
direction only, as seen in Figure 4. Directionality present in
the DST can also be leveraged further if details of the scene are
known, such as subject pose and camera position. However,
for this investigation, the partial orientation coefficients are
not explored, but a combination of all the orientations are
explored.

In the last step before classification, the feature space is
converted into a more succinct representation that can be
compared. Unlike LBP-based systems, which lose specificity
across large areas, the DST-based feature space is not changed
into a histogram. Instead, a DST-based feature mean (as seen
in Figure 3) is calculated across the orientations for a defined
window of video frames (the results use a 100 frame window)
and fed into the classifier for assessment.
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Once the DST-based features have been calculated, we
investigate the classification accuracy using support vector
machines (SVM). We first used a Linear SVM classifier and
then similar to other methods [5], [7], [11] we use a Radial
Basis Function (RBF)-based SVM for determining whether the
DST features depict a real or fake face. The use of the SVM
classifier instead of a neural network-based classifier allowed
us to achieve the most memory and computational gains. The
SVM classifier is first trained using a set of real and fake faces
with ground truth labels according to each respective dataset’s
assessment protocols.

IV. EXPERIMENT ANALYSIS

In order to validate the approach an experiment is used,
which is cognizant of environmental changes and the real-
time constraint. In order to ensure more robust results, unlike
many other approaches which portray results for a favourable
data set, the proposed approach was validated against three
datasets. The experiment data and setup is discussed in the
subsections that follow.

A. Experimental Data

In order to provide more robust, repeatable results publicly
available datasets were used for the experiment. The CASIA-
FASD, MSU-MFSD, OULU-NPU and HKBU datasets were
all selected for the experiment and compared because they ex-
hibited the most common attacks under varying environmental
conditions and portrayed a good range of quality for samples.
Each of the datasets contains at least three types of videos
used for face antispoofing assessment. At least one video
with the subject’s real face, which would constitute the true
videos, along with videos that facilitate a print attack and video
attack (with CASIA-FASD also containing the cut attack) to
represent the spoofed video. By using various datasets, it also
allows us to assess results under varying lighting conditions
with a diverse amount of subjects.

The CASIA-FASD dataset contains 20 subjects for training
and 30 subjects for testing. The base videos are captured at
a resolution of 640 by 480 pixels, and their higher resolution
videos are captured at a resolution of 720 by 1280. Both the
standard and higher resolution videos were captured using a
web camera at a frame rate of 25 frames per second under
varying lighting conditions for at least 6 seconds. The dataset
contains photo, warp, cut and video attacks.

The MSU-MFSD dataset contains 35 subjects (in the pub-
licly available version) captured using two types of cameras
(a built-in Macbook Air camera at 640 by 480 pixels and a
front facing Google Nexus 5 camera at 720 by 480 pixels) to
capture video at 30 frames per second. The dataset includes
photo attacks and video replay attacks using an iPad and an
iPhone.

The OULU-NPU dataset contains 20 subjects for training
and 15 for development. The videos are captured at a resolu-
tion of 1080 by 1920 at 30 frames per second using the front
camera of multiple devices (Samsung Galaxy S6, HTC Desire
EYE, MEIZU X5, Asus Zenfone, Sony XPERIA C5 ultra
Dual and OPPO N3) and under varying lighting conditions.

The dataset contains photo attacks using two types of printers
and video attacks using two types of displays. For this study,
evaluation protocol one was used when evaluating how face
antispoofing methods impact performance under illumination
and background scene changes.

The HKBU-MARs dataset contains eight subjects captured
with a web camera with a resolution of 1280 by 720 and
a frame rate of 30 frames per second. The dataset primarily
focuses on mask attacks and uses two types of masks, namely
ThatsMyFace and REAL-F, for face spoofing (as seen in
Figure 2).

B. Experimental Setup
The videos of the subjects for each data set corresponding

to the training and test sets were used to facilitate the
benchmark. All the captured ROI images are normalised to
256 by 256 pixels before the DST-based mean or derivative
for each window of samples is derived. The results of our
approach are then compared against a local binary pattern
(LBP) approach under the same conditions (using both a
linear and RBF-based SVM). Time traces and memory usage-
based tests are performed between frames and an average
is calculated on a modest computer with an i7 920 CPU
with 2.67 GHz and 4 GB of RAM all using un-optimised
python code. Each benchmark is done independently of each
other and given the same resources to provide objective results.

Since using the original feature vector with all the shearlets
and their respective orientations would incur additional
memory and computational overhead, a DST derivative would
be more practical for face antispoofing deployment. In order
to determine which DST derivative to use for describing
the feature space, an additional experiment was performed
with different variations of processing pipelines using the
MSU-MFSD data set. The experiment included deriving
histograms, the mean and principal components (using PCA)
from the DST representation. The results for this experiment
can be seen in Figure 5.

From the experiment results, we can see some DST
derivatives did not perform well in terms of accuracy. The
worst performer was using principal component analysis
(PCA) on the raw shearlets to achieve dimensional reduction.
Showing that the dimensional reduction comes at the cost of
feature specificity. Alternatively, in a similar vein to using
LBP-based histograms, the other DST derivative we assessed
computes histograms for the original shearlets. It performed
better than PCA and resulted in a compact representation,
which may be beneficial in certain contexts, but was not as
consistent as the dstMean in our study. The best performer
was the DST mean-based derivative, which achieved an
AUC of 93%. Another finding was that radial basis function
or gaussian kernel-based support vector machine (SVM)
classifiers performed better in terms of accuracy at the cost
of longer training and testing times.

C. Experiment Results
We evaluated the performance of our approach using three

different datasets and compared its results with LBP. The
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Fig. 5: The receiver operating characteristic (ROC) curves and
Area Under Curves (AUC) for different DST derivatives on the
MSU data set.

Fig. 6: The receiver operating characteristic (ROC) curves and
Area Under Curves (AUC) for our various approaches for face
antispoofing on the CASIA-FASD data set.

performance of the approach is determined in terms of the
receiver operating characteristic (ROC) curve to determine its
accuracy for each respective data set (CASIA, MSU, OULU
and HKBU). The equal error rate (EER) is then calculated for
each data set and compared with current approaches (as seen
in table I) to provide perspective on the results. Additional
metrics, namely time taken, memory usage, accuracy, preci-
sion, recall and f1-score, are then derived for the best approach
to form the evidence for our empirical study.

As seen in Figures 6, 7, 8 and 9, our DST approach
performs consistently across the low, medium and even high
quality ranges, along with different types of attacks. Overall
the feature descriptor fared well against the various datasets
showing robustness in the face of environmental and attack
changes.

In the CASIA dataset, the results (Figure 6) showed a
margin of improvement over LBP-based face antispoofing was

Fig. 7: The receiver operating characteristic (ROC) curves and
Area Under Curves (AUC) for our various approaches for face
antispoofing on the MSU-MFSD data set.

Fig. 8: The receiver operating characteristic (ROC) curves and
Area Under Curves (AUC) for our various approaches for face
antispoofing on the OULU-NPU data set.

between 7 and 11%. Thereby showing consistent improvement
in the lower quality image band. The choice of classifier
did not impact the LBP-based descriptor, but the RBF SVM
showed incremental improvement for the dstMean descriptor.

For the OULU dataset results (Figure 8) the significant en-
vironmental changes can be seen to impact performance. The
LBP variants could not breach an AUC of 80%, whereas the
dstMean variants fared relatively well. Interestingly enough,
as seen in Figure 7 and 8 the choice of linear and RBF-
based SVM’s exhibit different results for LBP and DST by
a margin of 5-6%, thereby validating it as a better choice for
face antispoofing methods than LBP-based methods. However,
as investigated by the author, face antispoofing efforts at the
higher resolution scale still have room for improvement even
when using DST’s.

In the MSU dataset results (Figure 7), we can see closer
competition, due to attack materials quality and change in
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Fig. 9: The receiver operating characteristic (ROC) curves and
Area Under Curves (AUC) for our various approaches for face
antispoofing on the HKBU data set.

TABLE I: A table comparing the EER results of DST-based
face antispoofing with other approaches on different datasets,
where the approach results in italics are derived from this
study.

Approach CASIA MFSD OULU HKBU
IQA+LDA [10] 32.4% - - -
LBP+SVM(RBF) 24.4% 14.3% 37.75% 7%
LBP+SVM 24.1% 17% 29.5% 5%
Gabor Filters+LTVfused [14] 17.0% - - -
dstMEAN+SVM(Linear) 15.7% 20.3% 20.9% 0%
LBP-HOOF+SVM [19] 14.4% - - -
LBP-TOP+SVM(RBF) [29] 10.0% - - -
dstMEAN+SVM(RBF) 12.1% 14% 22% 0%
IDA+SVM [15] - 8.58% - -
CNN [30] 7.34 % - - -
Haralick+PCA+ SVM[21] 6.7% 2.9% - -
Multi-cue integration+ NN [12] 5.83% - - -

cameras. As confirmed by other work [11], lighting changes
and camera quality impact LBP-based descriptor performance,
but its dstMean-based counterpart performed incrementally
better. It also shows there is value in further exploring the
role camera artefacts play in face antispoofing systems.

As shown by the HKBU dataset results (9) the dstMean-
based descriptor performed very well especially when dealing
with face mask-based attacks. The LBP-based descriptor also
performed well against the ThatsMyFace-based masks (as
previously shown in Figure 2a), but struggled with the Real-F-
based masks (Figure 2b). Since the amount of Real-F masks

TABLE II: A table comparing the average time trace results
(excluding training time) for LBP (in ascending quality order)
and DST on various face antispoofing datasets applied on the
experiment computer.

Approach Resolution Frame rate LBP DST
CASIA 640 by 480 25fps 0.03ms 9ms
MSU-MFSD 720 by 480 14-29fps 0.03ms 9ms
OULU-NPU 1080 by 1920 30 fps 0.04ms 9ms

TABLE III: A table comparing the average memory usage
results (excluding training time) for LBP (in ascending quality
order) and DST on various face antispoofing datasets applied
on the experiment computer.

Approach LBP DST
CASIA 144MB 290MB
MSU-MFSD 76MB 310MB
OULU-NPU 189MB 301MB

Fig. 10: The precision recall curve for the CASIA-FASD data
set.

is quite low in the HKBU, there is value in exploring the
dstMean-based descriptor on a more extensive Real-F face
mask dataset.

The EER in table I show that it outperforms many methods,
but still needs further improvement to beat very recent meth-
ods. As higher quality video becomes more prevalent, it would
be interesting to see how new methods tolerant high definition
video, lighting differences and different camera artefacts. The
performance can be attributed to DST’s blur tolerance and
much of the error can be attributed to significant over-exposed
frames. These over-exposed frames show there is a limit to
how tolerant methods can be with regards to lighting.

In tables II and III, we can also see that the timing and
memory results on a modest computer are reasonable and the
approach allows for real-time detection. As expected, when
the quality of the video increases, so does the time it takes
to derive the results using LBP. As seen in table II our DST
approach achieves relatively stable timings irrespective of the
image quality difference, thereby allowing it to scale better at
higher resolutions. When looking at the memory usage, LBP
does use more memory for the OULU data set, but not for the
MSU-MFSD data set. Interestingly, as seen in table III when
using LBP, the memory usage was not as consistent as the DST
approach’s memory usage. Upon further inspection, the MSU-
MFSD dataset’s drop in memory usage during processing can
be attributed to a lack of textures derived when using their
specific mobile device cameras, thereby affecting accuracy and
specificity. The resource usage shows that the DST approach
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Fig. 11: The precision recall curve for the MSU-MFSD data
set.

Fig. 12: The precision recall curve for the OULU-NPU data
set.

works well considering the 4GB memory and processing
power constraint.

Additionally, as seen in table IV, along with Figures 10,
11, 12 and 13 the dstMean with a SVM(RBF) fares well
across the accuracy, precision, recall and F1 score metrics
for the different datasets. In the context of face antispoofing
systems, we argue that detecting face spoofing is commonly
an imbalanced classification problem and metrics such as
EER (HTER) do not provide us with a complete measure
of its performance. The accuracy metric does provide a full
picture of the bias the approach exhibits towards positive and
negative cases. It will also provide a basis on which to focus
optimisation efforts on a fundamental level instead of resorting
to heuristic-based tweaks.
By analysing table IV and the precision-recall curves for
all the datasets, we can draw insights into how dstMean-
based descriptors are used for face antispoofing. From the

Fig. 13: The precision-recall curve for the HKBU data set.

TABLE IV: A table comparing the average meanDST accu-
racy, precision, recall and f1 score on the datasets.

Dataset Accuracy Precision Recall F1 Score
CASIA 90% 89% 90% 89%
MSU-MFSD 84% 85% 84% 82%
OULU-NPU 86% 86% 86% 86%
HKBU 100% 100% 100% 100%
Average 90% 90% 90% 89.3%

f1 score, we can see that the datasets contain little class
imbalance issues and that the descriptor is fairly stable when
comparing precision to recall. From the results, we can see that
although dstMean-based descriptors perform well overall and
it is tolerant to lighting changes, but as seen in the precision-
recall curve of the OULU dataset in Figure 12, the varying
backgrounds contribute towards error.

Alternatively, other quality measures can be included in
order to improve accuracy. However, it comes at the cost of
additional computational resources and more time required to
achieve face antispoofing. Using the mean DST for a window
of frames allowed us to break the real-time barrier at a minor
cost to accuracy. We have also seen that it is also possible
to improve accuracy by deriving shearlets at multiple scales
(i.e. increasing the j index in equation 1). However, the scale
reaches a saturation point that is directly proportional to the
resolution of the video frame. Any increases to the scale
after that point has diminishing returns on accuracy. Currently,
the scale for the DST which maximises accuracy and still
maintains real-time (based on the hardware constraints) is at:

DSTs =
log2(max(width, height))

2
(2)

The various datasets used to test the approach allowed us
to gauge better performance across varying image qualities,
population diversity, and lighting conditions. The CASIA low-
quality data set with an average resolution of 640 by 480
covers the low-quality band. The MSU-MFSD datasets with
720 by 480 respectively for the medium quality range with
different sensors. The OULU-NPU dataset with 1080 by 1920
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resolution to cover the high definition range with even more
environmental changes. Thereby showing consistent DST’s
performance even in varying difficult conditions.

Overall, the DST-SVM(RBF)-based implemented system
detected most of the spoofing videos under varying environ-
mental conditions and video qualities with a minimal resource
footprint. Deriving DST features on average consumed around
311MB of RAM on average took 9ms to complete. This
provides proof that our proposed approach can potentially be
used in a low resource environment and still achieve real-time
detection. Whereas other methods would require a networked
solution to offload computation to a server or require additional
computation or memory resources.

V. CONCLUSION

The prevalence of face recognition systems has made face
antispoofing research an important concern. As face recogni-
tion systems remain vulnerable to face spoofing, a practical
solution is in dire need. Part of making face antispoofing
methods feasible in the real world is making sure that the re-
sults can be achieved in real-time. By achieving faster results,
critical security environments can become more proactive in
mitigating potential spoof attempts and prevent any potential
attackers from entering a secure area or masquerading as
another user. These results also need to be validated on varying
image qualities to gain better insights into its robustness, as
well as its applicability within different contexts.

By taking into account how curvilinear singularities can
be derived in shearlets, we found it to be a good solution
for achieving face spoof discrimination. By precomputing the
shearlet spectrum during a calibration phase, we achieved real-
time performance for the full assessment process at a little cost
to complexity and resources. The discrete shearlet transform-
based mean features are fed into a linear or RBF SVM, which
are very computationally efficient. The overall results from the
three datasets are good in varying environmental conditions
and also show that it can compete with existing methods,
thereby showing that our approach is viable in practical real-
time face antispoofing application.

Further preliminary results also show that our approach
has great potential in higher quality video, such as 4k video,
without a significant computational footprint. We believe that
further improvements to displays with higher resolutions and
high dynamic range (HDR), along with cheaper 3D face masks
are going to be the next challenge ahead for face antispoofing
methods and we need to be ready for them.
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