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Abstract— Atmospheric processes from which rainfall is formed
are complex and cannot be accurately predicted using 
mathematical or statistical models. In this paper, the 
backpropagation neural network (BPNN) is trained to predict 
rainfall rates, and hence attenuation that is likely to be 
experienced on a link. This study is carried out over the sub-
tropical region of Durban, South Africa (29.8587°S, 31.0218°E). 
Utilizing the non-linear mapping capability between inputs and 
outputs, the backpropagation neural network is trained using 
rainfall data collected from 2013 to 2016 to predict rainfall rates. 
Long-term rain attenuation statistics arising from predicted rain 
rates are compared with actual and ITU-R model, and results 
show a relatively small margin of error between predicted rain 
attenuation exceeded for 0.01 % of an average year. Furthermore, 
analysis of predicted and actual rain attenuation within individual 
rain events from different rainfall regimes was carried out and 
results show that the proposed model can be used to predict the 
state of the link. This is demonstrated when the trained BPNN was 
tested using unseen data that was collected from January 2017 to 
May 2018, a period that spans through all four different climatic 
seasons of summer, autumn, winter and spring. Results of the test 
show a correlation coefficient of 0.8298. Finally, the proposed rain 
prediction model was tested on rainfall data from Butare, Rwanda 
(2.6078°S, 29.7368°E), which is a tropical region and results 
obtained indicate the portability of the proposed model to other 
regions.

Index Terms—artificial neural network, backpropagation 
neural network, rain attenuation, rain rate

I. INTRODUCTION

atellite and terrestrial microwave links operating at
frequencies above 10 GHz may suffer from signal outages

during a heavy rainfall event [1-4]. Continuous streaming of 
content may thus be compromised during point-to-point (PP) 
communication. Live streaming of content like prime news and 
sport events demand virtually zero link outages. Rainfall is a 
natural phenomenon that attenuates the signal along the 
wireless communication link and, therefore, it becomes
mandatory to mitigate rain attenuation for continuous content 
streaming. On this premise, dynamic fade mitigation 
techniques can be employed in conjunction with fade 
prediction models which are capable of predicting the state of 
the link. Accordingly, measures can be taken to ensure that the 
link is fully available for communication even in the advent of 
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a rainfall storm event. Many researchers, including [5-8], have 
used an artificial neural network (ANN) for rainfall 
forecasting, and showed that the ANN can give acceptable 
results after training. In this paper, a backpropagation neural 
network (BPNN) is used to predict and classify rain attenuation 
for dynamic rain attenuation mitigation.

This paper is a detailed extension of work originally reported 
in [8]. In the current paper, additional material include: (1) 
retraining the BPNN with complete 2016 data, contrary to [8] 
where some data was set aside for testing and validation of the 
training network; (2) generation of CCDFs for predicted rain 
rates and rain attenuation, and (3) classification of predicted 
rain attenuation. The paper is structured as follows: Section 2 
gives a summary of related work whereas Section 3 describes 
the artificial neural network as a computing unit. In Section 4, 
the methodology of this work is given while in Section 5 the 
analysis of results is carried out. The proposed prediction model 
is validated in Section 6 and the work is concluded in Section 
7.

II. RELATED WORK

Studies on the application of artificial neural networks in the 
prediction of rainfall and rainfall rates have been on the rise, 
with most applications geared towards the field of water 
management and meteorology [6, 9-12]. French et al. [13] used 
an artificial neural network in forecasting a 2-dimentional 
rainfall one hour in advance. Their work became a good ground 
for most researchers to lay and advance studies in this area. 

In 1995, Michaelides et al., [9] used an ANN in conjunction 
with daily rainfall observations in the neighboring sites to 
estimate missing rainfall data over Cyprus. Christodoulou et al., 
[5] trained the self-organizing map (SOM) and K-Nearest 
Neighbor (KNN) machine learning classifiers using radar data 
as inputs and rain gauge data as outputs to predict rainfall rate 
in Italy.

III. THE ARTIFICIAL NEURAL NETWORK COMPUTING TOOL

The neural network as a computing unit is divided into two 
functional parts: an integration function part, which sums the 
N inputs into a single value; and the output (or activation) 
function, which produces an output in accordance with the 
function of computation. The common activation function is 
the sigmoid function which possesses two beneficial properties 
namely: (1) continuity and, (2) differentiability of the error 
function during training. A simplified diagram of this 
computing unit and the training structure are shown in Fig. 1
and Fig. 2, respectively. 
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Integration and activation functions shown in Fig. 1 are 
given by [8, 14]: 
 

𝑔𝑔 = 𝑏𝑏 + ∑ 𝑤𝑤𝑛𝑛𝑖𝑖𝑛𝑛           𝑛𝑛 = 1,2, … , 𝑁𝑁
𝑁𝑁

𝑛𝑛=1
         (1) 

 

𝑓𝑓(𝑔𝑔) = 1
1 + 𝑒𝑒−𝑔𝑔                                                   (2) 

 
where 𝑔𝑔 is the integration function, b  is the bias input, f  is the 
activation function, N is the number of inputs, 𝑤𝑤𝑛𝑛 is the nth 
weight and 𝑖𝑖𝑛𝑛 is the nth input. 

The actual output of the BPNN is obtained by the application 
of the activation function to the summation function as shown 
in (2).  Thereafter, evaluation of the network’s performance is 
done during training by computing an error, E, given by [14, 
15]: 

𝐸𝐸 = 1
2 ∑(𝑂𝑂𝑡𝑡 − 𝑂𝑂𝑎𝑎)2

𝐻𝐻

ℎ=1
                            (3) 

 
where Oa is the actual output, Ot is the desired output 
(target) and H is the number of data points. Errors in (3) 
are minimized using an error derivative given by [8, 14]: 

𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝜕𝜕𝑎𝑎

= −(𝑂𝑂𝑡𝑡 − 𝑂𝑂𝑎𝑎)                            (4) 

An optimized weight vector, w, that provides a 
minimized error function is achieved by updating 
associated weights using the expression, 

∆𝑤𝑤𝑖𝑖 = 𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂𝑖𝑖

             𝑖𝑖 =        1,2, … , 𝐼𝐼               (5) 

where η is the learning rate, i is the input, ∆wi is the weight 
change on the ith input and Oi and the output contributed by 
the ith input.  

The main objective in (3) is to find a minimized error 
function with ∇𝐸𝐸 = 0 for prediction of a future rainfall rate Rp(t 
+ 1) mm/h, given by [8]: 

𝑅𝑅𝑝𝑝(𝑡𝑡 + 1) = 𝑓𝑓(𝑅𝑅𝑎𝑎(𝑡𝑡 − 2), 𝑅𝑅𝑎𝑎(𝑡𝑡 − 1), 𝑅𝑅𝑎𝑎(𝑡𝑡))           (6) 

where Ra(t) is the actual rainfall rate at time t, Ra(t – 1) is the 
actual rain rate at time (t – 1),  Ra(t – 2) is the actual rain rate at 
time (t – 2). All rain rates being in mm/h. 

Most rain rate prediction models predict rain rates exceeded 
at various percentages of time in an average year. Some of these 
models include the work of [16] and [17]. For rain attenuation 
prediction, various prediction models have been proposed and 
include Bryant model [18], SC EXCELL model [19], Crane 
two-component model [20], SST model [21] and ITU-R model 
[22]. 

In this study, the SST model proposed by Matricciani [21] 
and the ITU-R model [22] are used for prediction of attenuation 
due to rain. For the model proposed in [21], the vertical 
structure of rain is modelled as two layers of precipitation, layer 
A (hydrometeors in the form of rain drops) and layer B (melting 
hydrometeors). In addition, the ITU-R P.618-13 also provides 
a model for prediction of rain attenuation exceeded for different 

percentages of time in an average year. This model is given in 
[22]: 

𝐴𝐴𝑝𝑝 = 𝐴𝐴0.01 ( 𝑝𝑝
0.01)

−0.655+0.033 ln(𝑝𝑝)−0.045ln(𝐴𝐴0.01)−𝛽𝛽(1−𝑝𝑝)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
   (7) 

and: 

𝐴𝐴0.01 = 𝑘𝑘𝑅𝑅0.01
𝛼𝛼  ×  𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒       [𝑑𝑑𝑑𝑑]                     (8) 

where p is the probability of exceedance in %, 𝐴𝐴𝑝𝑝 is the 
attenuation exceeded p % of time in an average year, 𝐴𝐴0.01 is 
the attenuation exceeded 0.01 % of time in an average year, 𝛽𝛽 
is the parameter dependent on the latitude of the earth station, 
and 𝜃𝜃 is the angle of elevation of the earth station antenna, and 
Leff is the effective slant path length, with both β and θ as 
obtained in [22], k and α are parameters dependent on 
frequency. 

Rain attenuation time series obtained from the SST model 
proposed by [21] is given by: 

𝐴𝐴(𝑡𝑡) = 𝑘𝑘𝐴𝐴𝑅𝑅(𝑡𝑡)𝛼𝛼𝐴𝐴𝐿𝐿𝐴𝐴 + 𝑟𝑟𝛼𝛼𝐵𝐵𝑘𝑘𝐵𝐵𝑅𝑅(𝑡𝑡)𝛼𝛼𝐵𝐵(𝐿𝐿𝐵𝐵 − 𝐿𝐿𝐴𝐴)        (9) 

where 𝐴𝐴(𝑡𝑡) is rain attenuation, in dB, at time t, 𝐿𝐿𝐴𝐴 and 𝐿𝐿𝐵𝐵 are 
precipitation layer and the melting layer slant paths, 
respectively, in km, R(t) is the rain rate in layer A, r is rain rate 
in layer B whose value is given in [21], whereas kA, αA, kB, and 
αB  are frequency-dependent parameters for layer A and layer B 
given in [23]. 

IV. METHODOLOGY 
Data for training and validating the BPNN model proposed 

in this work was collected at the University of KwaZulu-Natal, 
Durban, through a JWD, RD-80 impact type disdrometer with 
a sampling time of 30 seconds. Additional details and setup are 
given in [4, 8]. Training data was collected for a period of four 
years from 2013 to 2016. This dataset comprises of four rainfall 
regimes from drizzle to super storms and the total number of 
training samples used was 108,861. Validation and testing data 
was drawn from data collected from January 2017 to May 2018. 

 
 

Fig. 1  ANN Computing unit 
 

 
 

Fig. 2  BPNN training structure 
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Rainfall data within this period of 17 months are a 
representation of all four seasons (summer, autumn, winter and 
spring) that are experienced in South Africa. 

V. RESULTS AND ANALYSIS 
This section presents the analysis of results that were 

obtained from the study. 

A. BPNN Training 
A three-layered network with three neurons in the input layer 

(I), three neurons in the hidden layer (H) and one neuron in the 
output layer (O) was used during training as shown in Fig. 2. 
This architectural structure is simplified as 3:3:1:1, where the 
last ‘1’ represents the network output and not a neuron.  

The artificial neural network was trained using TRAINLM 
training function and LEARNGDM as the adaptation learning 
function. Performance functions chosen were the mean squared 
error (MSE) and TANSIG transfer function. Training, testing 
and validation results are shown in Fig. 3 and Fig. 4. 

During the neural network training, the best performance 
reached was the optimum mapping of outputs and targets at 
epoch 371 of 377 epochs with a mean square error of 6.017. The 
training performance plot is shown in Fig. 3. Similarly, Fig. 4 
shows the training regression plot with a regression coefficient, 
R2 = 0.91094 which shows a good correlation between the 
actual outputs and predicted outputs.  

Optimized weight and bias matrices that were obtained 
during the training process are shown in (10). 
 

𝑤𝑤HI = [
−0.1974 −1.1467 −7.8568
−0.0115 0.0086 −0.0476
4.0797 6.1838 6.0543

]          (10𝑎𝑎) 

 
𝑤𝑤OH = [−78.4395 −32.0736 31.939]         (10𝑏𝑏) 

 

𝑏𝑏H = [
−11.4485

0.4845
−17.3805

]                               (10𝑐𝑐) 

 
𝑏𝑏O = [−32.1027]                              (10𝑑𝑑) 

 
where wHI is the weight vector for weights from the input to the 
hidden layer, wOH is the weight vector for weights from the 
hidden layer to the output layer, bH is the input bias vector to 
the hidden layer, and bO is the bias input to the output layer. 

In Fig. 5, the unseen model testing dataset was sourced from 
2017-2018 rainfall data. This data is ‘unseen’ to the trained 
network because it was not used during training. Results of 
testing show a fair correlation of R2 = 0.8298. Further, this 
complete model testing dataset was compared to the output of 
the trained neural network and an overall root mean square error 
(RMSE) value of 2.5128 was realized. Fig. 6 shows the 
correlation between the ANN predicted output and the current 
or actual output. The correlation between these two outputs is 
0.9811. This correlation implies that the current output can be 
used to predict a future rain rate at time (t + 1). This prediction 
can be deduced from the relationship shown in Fig. 6 and is 
given by: 

𝑅𝑅𝑝𝑝(𝑡𝑡 + 1) = 𝑚𝑚𝑅𝑅𝑎𝑎(𝑡𝑡) + 𝑛𝑛                          (11) 
 
 

where m and n are regression parameters whose values are 
0.9036 and n = 0.3483, respectively. Consequently, from (9) 
and (11), link attenuation at time (t + 1) can be predicted by: 
 

𝐴𝐴𝑝𝑝(𝑡𝑡 + 1) = Φ𝐿𝐿𝐴𝐴 + Ψ(𝐿𝐿𝐵𝐵 − 𝐿𝐿𝐴𝐴)                (12𝑎𝑎) 

with: 
Φ =  𝑘𝑘𝐴𝐴𝑅𝑅𝑝𝑝(𝑡𝑡 + 1)𝛼𝛼𝐴𝐴                                   (12𝑏𝑏) 

Ψ =  𝑟𝑟𝛼𝛼𝐵𝐵𝑘𝑘𝐵𝐵𝑅𝑅𝑝𝑝(𝑡𝑡 + 1)𝛼𝛼𝐵𝐵                            (12𝑏𝑏) 

B. Complementary cumulative distribution functions 
CCDFs aid in the determination of acceptable link fade 

margins by providing information on different percentages of 
parameter exceedances for an average year. For system design 
engineers, the parameter of ultimate importance is the rain rate 
exceeded for 0.01 % (R0.01) and 0.001 % (R0.001) of time in an 
average year [4, 24, 25]. In this paper, rain rate and rain 
attenuation CCDFs are derived from rainfall data collected 

 
 

Fig. 3  BPNN training performance plot 
 

 
 

Fig. 4  BPNN training regression plot 
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from January 2017 to May 2018. Fig. 7 and Table I shows long-
term rain rate statistics for actual rain rates, ANN predicted rain 
rates and modelled rain rates. In Fig. 7, it is seen that rain rates 
exceeded for various percentages of time in an average year are 
close for the three distributions for percentages below 0.01. For 
the ANN output, the values are close to actual values for almost 
all percentages.  

From Fig. 7, it is seen that the rainfall rate exceeded for 0.01 
% of time in an average year is 177 mm/h and 178 mm/h for 
actual and predicted outputs, respectively. For the model, this 
value is 160 mm/h. Similarly, Fig. 8 and Table II show resultant 
long-term rain attenuation statistics for both actual and 
predicted rainfall rates.  

The ITU-R rain attenuation model is also included for 
comparison of exceedances at various percentages. It is 
revealed that attenuation exceeded for 0.01 % of an average   

 

year is 53 dB (actual rain rates), 50 dB (ANN predicted rain 
rates), 48 dB (proposed model) and 53 dB (ITU-R model). 

 
Fig. 5  Correlation between BPNN predicted outputs 

with actual output 
 

 
Fig. 6  Correlation between BPNN predicted outputs 

with current rain rate 
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Fig. 7  Rain rate CCDFs (2017-2018) 

 

 
Fig. 8  Rain attenuation CCDFs (2017-2018) 

 
TABLE I 

RAIN RATE EXCEEDED 

% Ra(t+1) 
[mm/h] 

Rp(t+1) 
BPNN out 

[mm/h] 

Rp(t+1) 
model 

[mm/h] 
1 12 13 12 

0.1 77 64 70 

0.01 177 178 160 
0.001 219 213 198 

 
TABLE II 

RAIN ATTENUATION EXCEEDED 

% Aa(t+1) 
[dB] 

Ap(t+1) 
BPNN out 

[dB] 

Ap(t+1) 
model 
[dB] 

Ap(t+1) 
ITU-R 
[dB] 

1 2 2 2 5 

0.1 18 15 16 18 

0.01 53 50 48 53 

0.001 86 83 77 106 
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VI. RAIN ATTENUATION PREDICTION AND PREDICTION MODEL 
VALIDATION 

The applicability of the trained neural network and the 
proposed model was tested on different rainfall events from 
different rainfall regimes. Five attenuation classes with 
attenuation thresholds at 10 dB, 20 dB, 40 dB and 60 dB were 
used to show the suitability of the proposed model in the 
prediction of rainfall attenuation for dynamic rain fade 
mitigation. These attenuation classes are shown in Table III.  

Tests on the trained prediction model were carried out on 
individual rain events across different rain regimes. For 
instance, Fig. 9(a) shows the comparison of predicted and actual 
rain rate time series. In this figure, rain rate times series within 
a rain event with a maximum rain rate of 22.2265 mm/h was 
tested against ANN predicted outputs and model outputs. 

 

Using attenuation classifications shown in Table III and Fig. 
9(b), we show that the predicted rain attenuation values are 
within the expected bound of A < 10 dB (Level 1). A good 
agreement is observed when the ‘o’ and ‘x’ markers merge on 
the graph as seen in Fig. 9(b). 

Similarly, Fig. 10(a) and Fig. 10(b) show rain rates and 
attenuation comparison between the model output and actual 
outputs. Once more, the model attenuation class outputs are 
within expected classes. 

In Fig. 11(a), the model output is tested on a rain event with 
a maximum rain rate of 89.9575 mm/h. From this rain event, 
there are three attenuation levels, 1-3, with a few misses in the 
predicted rain attenuation as seen in Fig. 11(b). Fig. 12 shows 

 

 
(a) 

 
(b) 

Fig. 9  (a) Rain rate prediction (BPNN out) (b) 
classification of predicted attenuation levels for 
storm event of 15th May, 2017, 23:03:30 hours 
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TABLE III 
RAIN ATTENUATION CLASSES 

Attenuation 
Class 

Class Bounds 
[dB] 

1 𝐴𝐴 < 10 
2 10 ≤ 𝐴𝐴 < 20 

3 20 ≤ 𝐴𝐴 < 40 

4 40 ≤ 𝐴𝐴 < 60 
5 𝐴𝐴 ≥ 60 

 

 
       (a) 

 
           (b) 

Fig. 10  (a) Rain rate prediction (model) (b) 
classification of predicted attenuation levels for Storm 

event of 15th May, 2017, 23:03:30 hours 
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a detailed section of Fig. 11(b), spanning 600 seconds. Within 
the testing dataset, the highest rain rate observed was 224.9989 
mm/h within a rain event of 22nd February, 2017 at 10:53:00 

hours, over Durban. This event is shown in Fig. 13(a). In this 
figure, it is seen that five attenuation levels are obtained up to 
the highest attenuation class of level 5. A view of a detailed 
section of Fig. 13(b) is shown in Fig. 14, in which there are nine 
misses during the period of deep fading within 600 s from time 
t = 1000 s to t = 1600 s. However, cases where the ‘x’ marker 
is above the ‘o’ maker can be considered safer because during 
these instances, attenuation is overestimated, which means that 
a fade mitigation measure will be effected. Additionally, further 
analysis shows that overestimation or underestimation of these 
rain attenuation, in most cases, involves two adjacent levels.  
Additional analysis shows that instances of sharp spikes are rare 
and short-lived. More importantly, these results show that the 
ANN model is able to predict deep fades on the link (Level 5) 
as seen in Fig. 14.  

 
(a) 

 
(b) 

 
Fig. 11  (a) Rain rate prediction (model) (b) classification 

of predicted attenuation levels for Storm event of 21st 
Feb. 2018, 20:29:00 hours 

 

 
Fig. 12  Detailed attenuation classification of predicted 

attenuation levels in Fig. 11(b) 
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   (a) 

 

 
         (b) 

 
Fig. 13  (a) Rain rate prediction (model) (b) 

classification of predicted attenuation levels for 
Storm event of 22nd Feb. 2017, 10:53:00 hours 
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To ascertain the portability of the proposed model, rainfall 
data sampled at 1-minute integration time was used to test the 
model with a rain event from Butare, Rwanda, a region with 
equatorial climate. Results of this test are shown in Fig. 15. 
Analysis of this test is presented in Fig. 15(b) and shows that 
there are three misses within a period of 600 s, which, excluding 
overestimation, reduces to only one miss for a case of 
underestimation at time t = 9750 s. 

VII. CONCLUSION 

This study has established that a backpropagation neural 
network can satisfactorily be used to predict the state of the link 
during a rainfall event for dynamic rain fade mitigation. Results 
show that the trained backpropagation neural network is able to 
predict deep fades sufficiently well during a super storm rain 
event. Additionally, the proposed model can be portable to 
other locations with different geographical climates, provided 
that the sampling time is relatively low, that is, from one-minute 
and below. The proposed model, however, may give inaccurate 
results when used with data sampled at relatively long intervals. 
For better results, the sampling time should be one-minute and 
less as recommended by ITU Radiocommunication. Further, 
the proposed model can be improved by training the BPNN 
with rain rates of relatively lower sampling time, as low as 10 
s. This allows detection of shorter rain spikes for a more 
accurate link state prediction. 
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