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Abstract: We propose a technique that enhances the bandwidth efficiency of the two transmit antenna
differential space-time block code (DSTBC) by use of space-time block code (STBC) expansion and
trellis coding. STBC expansion is realized by expanding the conventional Alamouti STBC using
unitary matrix transformation. This is followed by trellis code-aided mapping of additional bits to
space-time codes of the expanded set. Trellis code-aided mapping of additional bits enhances the
bandwidth efficiency of the proposed DSTBC scheme. The proposed scheme sends more information
bits in each transmitted space-time code than the conventional differential detection-aided DSTBC
(CDD-DSTBC) scheme, and yet retains the same error performance. For each additional bit sent with
the transmitted space-time codeword, the proposed scheme using 16QAM achieves a 12.5% increase
in bandwidth efficiency, while the scheme using 64QAM realises an 8.3% increase. Simulation results
demonstrate that the error performance of the proposed scheme tightly matches that of CDD-DSTBC
with improvement in bandwidth efficiency. The bandwidth efficiency is enhanced at the expense of a
moderate increase of the computational complexity at the receiver.

Key words: Bandwidth efficiency, coherent detection, differential Alamouti space-time block codes,
differential detection, noncoherent detection, trellis code.

1. INTRODUCTION

Exponential growth in the demand for high data rate
wireless communications requires communication systems
to be more efficient and reliable. Reliable high data rate
communications can be achieved by employing space-time
block code (STBC)-based multiple-input multiple-output
(MIMO) systems [1]. The strength of STBCs lies in
the usage of diverse received versions of the same signal
to mitigate the impairments of wireless multipath fading
channels. Alamouti proposed a full diversity two transmit
antenna STBC defined as follows [2]:

A =

[
x1 x2

−(x2)
∗ (x1)

∗

]
(1)

where symbols x1 and x2 belong to an M-ary quadrature
amplitude modulation (M-QAM) or M-ary phase shift
keying (M-PSK) constellation. Equation (1) is an
orthogonal matrix because its row or column vector
pair has a zero inner product. The orthogonality of (1)
guarantees decoupling of signals at the receiver of the
STBC system with coherent detection [2]. However,
coherent detection requires high-complexity channel
estimation, whose complexity increases with the number
of receive antennas [3]. Hence, the conventional
differential detection (CDD) of differential STBC
(DSTBC) for M-PSK was proposed [4]. CDD has been
further extended to DSTBC with M-QAM [3]. The
differential scheme proposed in [3] also eliminates the

requirement of fading channel power estimation. A
consequence of CDD-aided DSTBC (CDD-DSTBC) is
the signal-to-noise ratio (SNR) penalty, which increases
with the modulation order of M-QAM [3, Fig. 1(a)]. In
order to improve the error performance of CDD-DSTBC,
a number of techniques have been investigated in [3, 5–8].
In spite of their performance advantages, the differential
schemes in [3, 5–8] have low bandwidth efficiency due
to the transmission of symbols which convey the same
message bits over two time slots.

In order to enhance the bandwidth efficiency of
STBC-based MIMO systems, several bandwidth efficiency
improvement techniques have been investigated in [9–12].
The scheme in [9], extends signals to the spatial domain,
resulting in improved bandwidth efficiency. However, the
limitation on the practical number of transmit antennas
that can be used may limit the scheme in [9] from
achieving high bandwidth efficiencies. In [10], the
technique which enhances bandwidth efficiency while
retaining the orthogonality of the two transmit antenna
STBC has been investigated. The bandwidth efficiency
is enhanced by employing a double quadrature PSK
(QPSK) constellation set that consists of the rotated and
unrotated sets. The scheme is capable of sending an
extra bit per transmitted STBC codeword. This technique
has been extended to a four transmit antenna STBC
with QPSK [11]. However, the techniques investigated
in [10, 11] enhance the bandwidth efficiency at the
expense of a degraded bit error rate (BER) performance.
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In [12], a super-orthogonal STBC scheme that enhances
bandwidth efficiency has been investigated. Unitary
matrix transformation is employed in the expansion
of the conventional orthogonal STBC. The availability
of zeros in the four transmit antenna space-time code
is exploited in producing high-rate codes with large
Euclidean distances. The impact of the scheme in [12]
has been an increase in the bandwidth efficiency and
a BER performance improvement of the four transmit
antenna STBC. However, the two transmit antenna
space-time code has a degrading error performance, which
deteriorates further as the code rate is increased. Against
this background, the authors are motivated to enhance
the bandwidth efficiency of a two transmit antenna
CDD-DSTBC without sacrificing the error performance.

In this paper, we first expand the STBC in (1) via unitary
matrix transformation [12]. To improve the bandwidth
efficiency, trellis code-aided mapping of additional
bits to the expanded STBC is proposed. Differentially
encoded high-rate STBC codewords are transmitted by a
differential transmission scheme, hereinafter referred to
as trellis code-aided DSTBC (TC-DSTBC). Compared
to CDD-DSTBC [3], the proposed scheme is capable
of sending additional bits per transmitted space-time
codeword, while closely matching the error performance
of CDD-DSTBC. It should be noted that there has been
work published in [13], which appears similar to the
proposed scheme. However, differences exist. For
example, in [13], there is a fixed mapping of additional
bits to high-rate STBCs and the scheme employs selective
power scaling to improve the error performance of
coherent STBC with M-PSK. In the proposed TC-DSTBC
system, the error performance is improved by the dynamic
mapping of additional bits to high-rate STBCs.

The remainder of the paper is organised as follows:
Section 2 firstly presents the technique for enhancing
the bandwidth efficiency. Thereafter, the system model
of TC-DSTBC is presented. Comparison of the
computational complexity of the proposed detector with
the CDD-DSTBC detector is given in Section 3. Section
4 presents the numerical results and discussion. The paper
is concluded in Section 5.
The notations used throughout this paper are as follows:
NT is the number of transmit antennas and NR is the
number of receive antennas. Bold lower case and upper
case letters are used for vectors and matrices, respectively.
|·| and ‖·‖F represent the Euclidean and Frobenius norm
operations, respectively. E{·} is the expectation operator.
(·)∗ is the conjugate operator. (·)H is the Hermitian
transpose operator. r is the number of additional bits sent
with each transmitted high-rate STBC compared to the
conventional Alamouti STBC. CM×N is a set of M × N
complex-valued matrices. Z≥0 is a set of non-negative
integers including 0. ⇔ represents ‘corresponds to’.
argminω (·) represents the argument of the minimum with
respect to ω. D is the bit delay. The label D−1 indicates
the transmission delay for one block.

2. TC-DSTBC

In this section, we present the technique for enhancing the
bandwidth efficiency of STBCs and the system model of
TC-DSTBC.

2.1 STBC expansion

Unitary matrix transformation is employed in expanding
the conventional Alamouti STBC so as to introduce
redundancy that is required for trellis coding. The
Alamouti code in (1) is expanded by multiplying it by
diagonal unitary matrices. Unitary matrix transformation
does not expand the resulting modulation alphabet, which
prevents the increase of the peak-to-average power ratio of
the transmitted signal [12]. In order to send r additional
bits per STBC, a total of 2r+1 diagonal unitary matrices
is required. This number of unitary matrices ensures
that the trellis code-aided scheme has STBCs of twice
the cardinality when compared to schemes with unaided
mapping, thus satisfying the redundancy requirement for
trellis coding [14]. Diagonal unitary matrices of the form
shown in (2) are employed.

U =

[
ejθ1 0
0 ejθ2

]
, 0 � θi < 2π, i ∈ [1 : 2] (2)

where θ1 and θ2 are variable rotational angles. While a
computer-aided numerical search can be used to find 2r+1

combinations of θ1 and θ2, which give a set of unitary
matrices with the optimal Euclidean distance distribution
[12], the same can be achieved by searching the literature.
The literature search reveals that the optimal Euclidean
distribution can be realized by maintaining a constant θ1,
while varying θ2 in equal steps over the entire 2π range
[13, 15]. For conventionality purposes, θ1 = 0 is used in
this paper. Therefore, unitary matrices of the form shown
in (3) are employed in the STBC expansion.

Uk =

[
1 0
0 ejθk

]
, k ∈ Z≥0 (3)

where the rotational angle is defined as θk =
(

2πk
2r+1

)
, for

all k = 0,1,2, · · · ,2r+1 − 1. High-rate STBCs are then
formulated from (1) and (3) as Bk = AUk. In expanded
form, the high-rate space-time codes are expressed as

Bk =

[
x1 x2ejθk

−(x2)
∗ (x1)

∗ejθk

]
(4)

where the rotational angle θk encodes additional bits. We
assume that the codebook denoted by χχχk contains M2

distinct codewords of each high-rate STBC Bk,k ∈ [0 :
2r+1 − 1], since there are M2 possible combinations of
symbols x1 and x2. M is the modulation order. For
example, the codebook χχχ0 contains M2 distinct codewords
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of type B0, which have the same rotational angle θ0 = 0.
Table 1 shows values of rotational angles corresponding
to other high-rate space-time codes of (4) for r = 1 and
r = 2. Space-time codes in adjacent rows of Table 1 are at
the minimum maximised squared Frobenius distance from
each other. For each value of r, the first and last row
space-time codes B0 and B2r+1−1 are considered to be in
adjacent rows. The downside of the expanded STBC is the
loss of diversity as revealed by the analysis in Section 2.2.

Table 1: High-rate STBCs and their rotational angles

High-rate STBC r = 1 r = 2
B0 θ0 = 0 θ0 = 0

B1 θ1 =
π
2 θ1 =

π
4

B2 θ2 = π θ2 =
π
2

B3 θ3 =
3π
2 θ3 =

3π
4

B4 not used θ4 = π
B5 not used θ5 =

5π
4

B6 not used θ6 =
3π
2

B7 not used θ7 =
7π
4

2.2 Analysis of diversity

In the TC-DSTBC scheme, codebooks χχχk, for all k ∈ [0 :
2r+1−1], are considered as belonging to a larger codebook
χχχ. For full diversity to be preserved, the codeword
difference matrix between any two distinct codewords
from χχχ must be full rank [16]. Consider Xi,Xj ∈ χχχ, where
Xi ∈ χχχ0 and Xj ∈ χχχ1. Assuming that the same symbols
are used in the two distinct codewords i.e. xn = x1 =
x2, the codeword difference matrix Xdiff would be given
accordingly as:

Xdiff =

[
0 xn(1− ej( 2π

2r+1 ))

0 (xn)
∗(1− ej( 2π

2r+1 ))

]
(5)

The resulting codeword difference matrix has a rank
of 1. This implies that diversity is sacrificed in the
high-rate STBCs of (4), hence, the error performance of
the high-rate STBC is likely to be degraded.

2.3 Trellis code-aided mapping of additional bits to
high-rate STBCs

In this subsection, we incorporate trellis coding in
the mapping of additional bits to high-rate STBCs to
counteract the undesirable effect of loss of diversity
in the form of error performance degradation. Trellis
coding maximises the sum of squared Frobenius distances
between possible sequences of transmitted high-rate
codewords to improve the error performance of the
high-rate STBC.

The sum of squared Frobenius distances between
sequences of high-rate codewords is maximized by

Figure 1: Trellis diagram of the 1
2 -rate 4-state systematic

encoder for r = 1 [14, Fig. 18].

Figure 2: Trellis diagram of the 2
3 -rate 8-state systematic

encoder for r = 2 [14, Fig. 4].

ensuring that codewords associated with trellis state
transitions originating from or merging at the same trellis
state are maximally apart. In this paper, the r

r+1 -rate
2r+1-state systematic trellis encoder of [14] is employed
in the mapping of additional bits to the high-rate STBC.
The selected trellis encoder maximizes the sum of squared
Frobenius distance between the sequences of codewords
by eliminating parallel trellis paths.
As a rule of thumb r

r+1 -rate trellis encoders with a number
of trellis states greater or equal to 2r+1 can be used to
eliminate parallel paths, however, any increase in the
number of trellis states is accompanied by an exponential
increase in the Viterbi decoding computational complexity.
Therefore, taking into account all these considerations,
the systematic trellis encoder with the minimum possible
number of trellis states is employed.

For r = 1 and r = 2, systematic trellis encoders of [14, Fig.
17] and [14, Fig. 3] are employed, respectively. The
employed trellis encoders ensure that each trellis path
is associated with only one high-rate STBC of (4).
Consequently, the mapping of additional bits for r = 1



Vol.109 (4) December 2018SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS220

Figure 3: 2
3 -rate 8-state systematic encoder for d = 2 [14,

Fig. 3].

and r = 2 is performed according to the trellis diagrams
of Figure 1 and Figure 2, respectively. At each state,
the arrangement of trellis path labels from left to right
corresponds to the top-to-bottom arrangement of the trellis
paths emerging from that state. Note that trellis states
are written in bold font in Figure 1 and Figure 2, while
trellis path labels are enclosed in brackets. Trellis path
labels have a decimal to binary correspondence with
the binary (r + 1)-tuple outputs of the systematic trellis
encoder as follows: (0)⇔ 00, (1)⇔ 01, (2)⇔ 10, etc. in
Figure 1, while (0) ⇔ 000, (1) ⇔ 001, etc. in Figure 2.
Each trellis path label (k), where k ∈ [0 : 2r+1 −1], further
corresponds to the high-rate STBC formulated in (4) as Bk.

As a bit mapping example, consider the 2
3 -rate systematic

trellis encoder illustrated in Figure 3, at state 0. Applying
the input a0a1 = 00, which corresponds to solid lines in
Figure 2, yields an output b0b1b2 = 000. According to
the decimal to binary correspondence stated previously,
the output 000 corresponds to the trellis path label (0),
therefore B0 is selected for further encoding. In the same
manner, applying the input 01 indicated by short-dashed
lines, 10 indicated by long-dashed lines or 11 indicated
by dashed with dots lines at state 0 selects B2, B4 or B6,
respectively. Therefore, the high-rate space-time codeword
transmitted at any t-th instant is encoded according to the
selected high-rate STBC of (4) as follows:

Xk,t =

[
x1 x2ejθk,t

−(x2)
∗ (x1)

∗ejθk,t

]
, k ∈ [0 : 2r+1 −1] (6)

where θk,t is the rotational angle of the high-rate STBC
selected at the t-th instant, the factor k is a function of
additional bits and the trellis state at that instant.

2.4 System model

Consider a NT × NR TC-DSTBC system with NT = 2,
NR > NT, as illustrated in Figure 4. Message bits are
divided into groups of 2m + r bits, where m = log2M.
In this paper, we consider r = 1 and r = 2 only.
At the tth time instant, the first 2m bits are further
partitioned into two bitstreams, b1 = [b1,1 b1,2 · · · b1,m]
and b2 = [b2,1 b2,2 · · · b2,m], each of length m, and fed
into an M-QAM mapper. The M-QAM mapper maps
the input bits onto Gray-coded constellation points and
yields modulated symbols x1 and x2, corresponding to
b1 and b2, respectively. We assume that each symbol

is normalised and scaled by a constant multiplier of
1√
2

to cater for the two transmit antennas, hence,

E{|x1|2 + |x2|2} = 1. Thereafter, symbols x1 and x2 are
fed into the high-rate STBC encoder. The additional
bitstream b3 = [b3,1 · · · b3,r], of length r, is fed into the

r
r+1 -rate 2r+1-state systematic trellis encoder of [14] to
produce r + 1 bits that select one of the 2r+1 high-rate
STBCs of (4) according to the appropriate trellis diagram.
Finally, the two symbols, x1 and x2, are encoded according
to the selected high-rate STBC Bk, yielding the codeword
Xk,t of (6). In this investigation, tailbits are employed to
ensure that the trellis encoding process over N successive
encoding segments starts and ends at the first trellis state,
where N is the trellis encoder depth.

Prior to transmission, Xk,t undergoes a differential
encoding process formulated from [3] as follows:

St =
1

βt−1
Xk,tSt−1, t ∈ 1 : N (7)

where St−1 is the DSTBC transmitted at the time instant
prior to t. The power normalisation factor 1

βt−1
, is defined

by βt−1 =
√
‖St−1‖2

F . The first transmitted DSTBC S0 is
set as X0,0, which is selected in random from χχχ0. The tth

received signal matrix Yt ∈ C2×NR is modelled as:

Yt = StHt +Wt (8)

where Ht ∈ C2×NR is the channel matrix. Wt ∈ C2×NR

is the received additive white Gaussian noise (AWGN)
matrix. The entries of Ht and Wt are independent and
identically distributed (i.i.d.) complex Gaussian random
variables (RVs) distributed as CN (0,1) and CN (0,σ2),
respectively. Thus, the average SNR is defined as ρ =
1

σ2 . The channel is assumed to be Rayleigh frequency-flat
fading and remains constant for two DSTBC transmission
durations as in [3] i.e. (Ht = Ht-1). Therefore, (8) may be
further expressed as:

Yt =
1

βt−1
Xk,tSt−1Ht +Wt

=
1

βt−1
Xk,t (Yt−1 −Wt−1)+Wt (9)

The Viterbi algorithm-based decoding technique at the
receiver of the TC-DSTBC system determines the most
likely transmitted sequence of X̂k,t by employing a
maximum-likelihood (ML) estimation method to minimise
the branch metric bmi, j

t in (10) for each possible state i to
state j transition at each t-th decoding stage.

bmi, j
t = argminX̂k,t∈χχχk

‖Yt −
1

βt−1
X̂k,tYt−1‖2

F (10)
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Figure 4: System model of TC-DSTBC

where χχχk is the codebook containing all high-rate
space-time codewords of type Bk, which correspond to
the state i to state j trellis path of the appropriate trellis
diagram. At each state j, the path metric pm j

t given by (11)
is minimised to determine the survivor path.

pm j
t = argmini(pmi

t−1 +bmi,j
t ), t ∈ [1 : N] (11)

where i denotes all the possible previous states with respect
to state j, j ∈ [0 : 2r+1 −1].

3. COMPARISON OF COMPUTATIONAL
COMPLEXITY OF THE DETECTORS

In this section, the computational complexity of the
TC-DSTBC Viterbi algorithm-based detector is compared
with the computational complexity of the CDD-DSTBC
ML detector.
The computational complexity of the CDD-DSTBC ML
detector can be assumed to be equal to σCDD−DST BC−ML.
The computational complexity of the TC-DSTBC Viterbi
algorithm-based detector is dominated by the branch
metric (bmi, j

t ) computation in (10), which is similar to
the ML metric employed by the CDD-DSTBC detector
[3, eq. (6)]. However, the Viterbi algorithm-based
detector computes bmi, j

t for all possible trellis state
transitions. Therefore, the computational complexity
of the TC-DSTBC Viterbi algorithm-based detector per
detected TC-DSTBC codeword can be expressed as:

σTC−DST BC−VA = λσCDD−DST BC−ML (12)

where λ is the total number of bmi, j
t computations over

a decoding depth N. The number of bmi, j
t computations

can be obtained from the careful analysis of trellis state
transitions on the expanded trellis, which has identical start
and end states. In Table 2, we tabulate the total number
of bmi, j

t computations in each decoding segment. The
segments 3 to N−2 have the largest number of trellis state
transitions but the required number of bmi, j

t computations
is only 2r+1 per segment since each computed bmi, j

t is
shared by multiple trellis state transitions.

Using the values tabulated in Table 2, λ can be expressed

Table 2: Number of bmi, j
t computations per decoding

segment over a decoding depth N.

Segment 1 2 3 to N −2 N −1 N
Calculations 2r 2r+1 2r+1 2r+1 2r

as:
λ = 2r+1 (N −2)/N (13)

From (13) it is clear that for large decoding depths, λ
approaches 4 and 8 for r = 1 and r = 2, respectively.
It is evident that the computational complexity of the
TC-DSTBC Viterbi algorithm-based detector is signifi-
cantly higher than that of the conventional CDD-DSTBC
ML detector.

4. NUMERICAL RESULTS

In this section, the Monte Carlo simulation results
demonstrated for the TC-DSTBC scheme, with N T = 2
are presented. We assume that the frequency-flat Rayleigh
fading channel is not known at the receiver. The Viterbi
decoder based on the trellis diagram of Figure 1 for r = 1
or Figure 2 for r = 2, implements noncoherent detection
according to (10) and (11), with N = 100. Simulation
parameters are given in Table 3. The fading channel
and AWGN simulation parameters are in line with those
defined in Section 2.4.

Table 3: Simulation parameters.

Parameters Specifications
Signal constellation 16QAM, 64QAM
Number of additional bits, r 1, 2
Channel model Rayleigh fading
Number of receive antennas, N R 4
Decoder Viterbi decoder
Encoder/decoder depth, N 100
Noise AWGN

Results presented in Figure 5, demonstrate the average
BER performance versus the average SNR (10log10ρ) of
the proposed TC-DSTBC scheme with 16QAM, while
results for TC-DSTBC with 64QAM are presented in
Figure 6. Theoretical BERs for coherent Alamouti STBC
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based on the 2NR-branch maximal ratio combining (MRC)
performance given by [17, eq. (15)] are also shown in
Figure 5 and Figure 6. In order to demonstrate that the
proposed scheme has a bandwidth efficiency advantage
compared to existing differential schemes, we also show
numerical results for the CDD-DSTBC scheme from [3].

SNR (dB)

0 5 10 15 20 25

B
E

R

10-5

10-4

10-3

10-2

10-1

100

16QAM STBC --- Theoretical

16QAM CDD-DSTBC [3] (4 b/s/Hz)

16QAM TC-DSTBC --- (4.5 b/s/Hz)

16QAM TC-DSTBC  --- (5 b/s/Hz)

Figure 5: BER performance of TC-DSTBC with 16QAM
in comparison to CDD-DSTBC.

SNR (dB)

0 5 10 15 20 25 30 35

B
E

R

10-5

10-4

10-3

10-2

10-1

100

64QAM STBC --- Theoretical

64QAM CDD-DSTBC [3] (6 b/s/Hz)
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Figure 6: BER performance of TC-DSTBC with 64QAM
in comparison to CDD-DSTBC.

It can be observed that, at high SNR values, the
BER performance of TC-DSTBC converges to that
of CDD-DSTBC down to the average BER of 10−5.
The scheme with 64QAM tightly matches the error
performance of the corresponding CDD-DSTBC at all
SNR values. However, TC-DSTBC achieves better
bandwidth efficiency compared to CDD-DSTBC, as
indicated in Table 4.

We observed that there is a performance gap of
approximately 5dB between the coherent STBC and
DSTBCs with 16QAM in Figure 5, which is similar to the
SNR gap shown in [3, Fig. 1(a)]. As with the SNR gap
shown in [3, Fig. 1(a)], the SNR gap increases further with
an increase in the order of M-QAM. In simulation results
presented in Figure 6, the SNR gap between the coherent
STBC and DSTBCs with 64QAM exceeds 5dB in the high
SNR region.

Table 4: Bandwidth efficiency (R) comparison of
TC-DSTBC and CDD-DSTBC.

Scheme R
[b/s/Hz]

% increase
in R

16QAM CDD-DSTBC [3] 4 −
16QAM TC-DSTBC, r = 1 4.5 12.5
16QAM TC-DSTBC, r = 2 5 25
64QAM CDD-DSTBC [3] 6 −
64QAM TC-DSTBC, r = 1 6.5 8.3
64QAM TC-DSTBC, r = 2 7 16.7

5. CONCLUSION

In this paper, we have investigated a high-rate, two transmit
antenna DSTBC in the form of TC-DSTBC. Monte Carlo
simulation results for a frequency-flat Rayleigh fading
channel were presented. Simulation results demonstrate
that the more bandwidth efficient TC-DSTBC achieves
a BER perfomance that tightly matches that of the
CDD-DSTBC scheme in the high SNR region. However,
there is a trade-off. Bandwidth efficiency is enhanced at the
expense of an increase of the computational complexity at
the receiver. The increase of the computational complexity
is due to Viterbi decoder usage.
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