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Abstract: In this study, the authors propose two low-complexity near-maximum-likelihood (ML) 
detection algorithms for spatial modulation (SM) systems, employing the new multiple-ring star-M-ary 
quadrature amplitude modulation (NR-STAR-MQAM) constellation. The proposed detectors exploit 
the specific orientation of NR-STAR-MQAM, in order to avoid searching across all constellation points. 
As a result, the computational complexity is independent of both the constellation size and the number 
of rings presented in NR-STAR-MQAM. In addition, these detectors are generalized and can be applied 
to the entire star-MQAM family. The Monte Carlo simulation results demonstrate that the proposed 
detection algorithms achieve the same average bit error rate (ABER) as ML detection for SM but at a 
much lower computational complexity. For example, in a 4 × 4, 2R-STAR-16QAM aided SM system, 
the proposed optimal and sub-optimal detectors achieve an 88.8% and 90.5% reduction in 
computational complexity, respectively, compared to the ML detector. Furthermore, the simulation 
results are supported by a closed-form union-bound theoretical ABER expression. 

 
Keywords: Low-complexity near-maximum-likelihood detection, multiple-input multiple-output, N-
rings star-M-ary quadrature amplitude modulation, spatial modulation. 
 
 
 
 

1. INTRODUCTION 
 

Spatial modulation (SM) is a relatively new transmission 
scheme developed to reduce the cost and complexity of 
conventional multiple-input multiple-output systems [1]. 
In SM, only one transmit-antenna is active during each 
transmission interval, which effectively means that inter-
channel interference (ICI) is completely avoided and inter-
antenna synchronization (IAS) is not needed [2]. The 
transmission of information in SM can be described as a 
simple approach; the transmitter uses the index of the 
activate antenna, which is determined by the bitstream to 
be transmitted, as an additional means to convey 
information in conjunction with the use of conventional 
amplitude/phase modulation (APM) constellation, i.e., M-
ary phase shift keying (MPSK) or M-ary quadrature 
amplitude modulation (MQAM) [3]. 
 
At the receiver, the need to correctly detect the transmitted 
information bitstream is of utmost importance. In [3], 
Jeganathan et al. derived an optimal detection algorithm 
for SM based on the maximum-likelihood (ML) method. 
This detector involves the joint estimation of the transmit-
antenna index and the transmitted symbol. Although 
optimal error performance is achieved, the detector 
imposes a very high search complexity that grows as 𝑁𝑁𝑇𝑇𝑀𝑀, 
where 𝑁𝑁𝑇𝑇 and 𝑀𝑀 represent the number of transmit antennas 
and the modulation order of the employed APM 
constellation, respectively. This high receiver complexity 
poses a considerable challenge for practical 
implementation. In order to address this problem, several 
researchers have proposed low-complexity detection 
algorithms for SM [4]-[12]. In [4], the authors proposed a 

multistage (MS) detection algorithm that operates over two 
steps. The first step selects the most probable estimates of 
the active transmit-antenna index based on the modified 
maximum ratio combiner (MMRC) method. The second 
step uses the ML method to detect the transmitted symbol. 
However, the MS detector imposes a high computational 
complexity for large order APM constellations. In [5], a 
simple detection algorithm for MQAM aided SM 
(MQAM-SM) systems was developed. This algorithm was 
based on searching partitioned symbol sets for the active 
transmit-antenna index and transmitted symbol. Then in 
[6], a distance-based ordered detection (DBD) algorithm 
was proposed and was aimed at achieving a flexible trade-
off between error performance and computational 
complexity. In [7], the authors proposed two-sphere 
decoding algorithms that were tailored for specific SM 
systems. It was shown that the computational complexity 
of these algorithms grows linearly with the constellation 
size. In [8], Rajashekar et al. proposed a hard-limiter based 
ML detector whose computational complexity is 
independent of M and only grows with 𝑁𝑁𝑇𝑇. However, this 
detector is specific for SM systems employing the 
rectangular-MQAM and square-MQAM constellations. In 
[9]-[10], a signal vector-based detection (SVD) algorithm 
was presented. Although the receiver complexity of SVD 
is very much lower than that of ML, it demonstrated some 
performance loss in MQAM-SM systems. Meanwhile in 
[11], the authors proposed a novel detection algorithm 
specific for MPSK aided SM systems. This detector was 
shown to achieve the same error performance of ML 
detection but at a complexity that is independent of M. 
Recently, the authors of [12] proposed two innovative low- 
complexity   detectors   for   SM   employing   the   M-ary
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Figure 1: System model of NR-STAR-MQAM aided SM [4]. 

 
amplitude-PSK (M-APSK) constellation. The M-APSK 
constellation belongs to the family of star-MQAM 
constellations, namely: conventional star-MQAM [13], M-
APSK [14] and new dual-ring star-MQAM [15]. This 
family outperforms the conventional APM constellations 
in terms of achievable mutual information over peak-
power-limited systems [15]-[16]. Hence, it has been 
widely adopted in most satellite and space communication 
standards, such as 2nd generation digital video 
broadcasting system (DVB-S2), internet protocol over 
satellite (IPoS) and advanced broadcasting systems via 
satellite (ABS-S) [13]-[16]. Consequently, the motivation 
and contributions of this paper are: 
 
1.1. Motivation 
 
Based on the above background, SM provides many 
attractive advantages for next generation networks. It is 
useful to note that single-symbol and multiple-symbol 
generalised SM (GSM) [17]-[21] address the constraint on 
the number of required transmit antennas in SM to achieve 
high spectral efficiency. It was shown in [17] that single-
symbol GSM has an inferior error performance compared 
to SM, while the drawback of multiple-symbol GSM [18]-
[21] is the very high hardware complexity due to multiple 
radio-frequency chains, ICI and the need for IAS. Hence, 
this motivates us to investigate SM.  
 
Although the low-complexity detectors of [12] achieve 
near-ML error performance, these detectors are specific to 
SM systems employing only the M-APSK constellation. 
Furthermore, the computational complexities of these 
detectors have been  shown to be independent of M but 
linearly dependent on both 𝑁𝑁𝑇𝑇 and the number of rings (N) 
presented in the M-APSK constellation. Moreover, these 
detectors require pre-processing at the receiver, which can 
easily translate into additional hardware costs. 
  
Despite the merits of the M-APSK constellation [12], [14], 
the rest of the star-MQAM family may prove beneficial for 
different systems. For instance, in SM systems, the new 
dual-ring star-16QAM slightly outperforms the popular 
square-16QAM in terms of error performance [15]. Based 
on this research, we have extended the new dual-ring star-
MQAM to multiple-ring star-MQAM [22], which is 
denoted as NR-STAR-MQAM for simplicity. It was shown 
in [22] that NR-STAR-MQAM utilizes up to 98% less 

average signal energy, and has fewer amplitude levels and 
phase differences than its square-MQAM counterpart. In 
addition, this constellation is superior to other multiple-
ring constellations [23]-[24], in terms of improving error 
performance and deriving a closed-form solution.   
 
1.2. Contributions 
 
Based on the above motivation, the contributions of this 
paper are: we propose two low-complexity near-ML 
detection algorithms for SM systems employing any 
constellation from the star-MQAM family [12]-[15], 
which is now inclusive of NR-STAR-MQAM [22]. Unlike 
the detectors in [12], which are specific to M-APSK aided 
SM (M-APSK-SM) systems, the proposed detectors are 
generalized and can be applied to SM employing any 
multiple-ring constellation. Based on the work in [11]-
[12], we achieve the proposed detection algorithms by 
exploiting the key features of the star-MQAM family. Due 
to the advantages of NR-STAR-MQAM [22], we 
investigate the average bit error rate (ABER) of the 
proposed detectors in SM systems employing said 
constellation. Furthermore, we show that the 
computational complexities of the proposed detection 
algorithms are independent of both the constellation size 
and the number of rings presented in the NR-STAR-
MQAM constellation.  
 
Organization: Section 2 details the NR-STAR-MQAM 
aided SM (NR-STAR-MQAM-SM) system model and the 
features of the star-MQAM family. Section 3 presents the 
proposed low-complexity near-ML detection algorithms.  
In Section 4, the computational complexities of the 
proposed detection algorithms are formulated. Section 5 
demonstrates and discusses the numerical results of the 
work. Finally, concluding remarks are drawn in Section 6. 
 
Notation: Bold lowercase and uppercase letters are used 
for column vectors and matrices, respectively. [∙]𝑇𝑇, |∙| and 
‖∙‖𝐹𝐹 represents the transpose, Euclidean norm and 
Frobenius norm, respectively. argmin

𝑤𝑤
(∙) and argmax

𝑤𝑤
(∙) 

operators represent the minimum and maximum of the 
argument with respect to 𝑤𝑤, respectively. argmax𝑤𝑤𝑁𝑁(∙) 
operator selects the 𝑁𝑁 values of 𝑤𝑤 which maximize the 
argument. 𝐸𝐸{∙} is the mathematical expectation and (∙)∗ 
represents the conjugate of the vector. ℜ(∙) and ℑ(∙) 
represent the real and imaginary part of the complex 
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argument, respectively. {∙}lowerbound
upperbound represents all 

possible values of the argument limited to the upper- and 
lower bounds, and 𝑗𝑗 denotes a complex unit. min(∙) returns 
the smallest element in an array. mod(a, n) denotes that a 
is the computed modulus of n, round(a) rounds the 
element a to its nearest integer and ⌈a⌉ rounds the element 
a to the nearest integer greater than or equal to a.  
 

2. NR-STAR-MQAM-SM SYSTEM MODEL 
 

2.1. SM Transmission and ML Detection 
 
Consider an 𝑁𝑁𝑇𝑇 × 𝑁𝑁𝑅𝑅, NR-STAR-MQAM-SM system 
model shown in Figure 1, where 𝑁𝑁𝑇𝑇 and 𝑁𝑁𝑅𝑅 represent the 
number of transmit and receive antennas, respectively. The 
SM mapper assigns a 𝑏𝑏 = log2(𝑀𝑀𝑀𝑀𝑇𝑇) bit binary input to 
both a transmit-antenna index 𝑖𝑖 (1 ≤ 𝑖𝑖 ≤  𝑁𝑁𝑇𝑇) and a 
complex-valued transmit symbol 𝑠𝑠𝑞𝑞  (1 ≤ 𝑞𝑞 ≤  𝑀𝑀) from 
the APM symbol set 𝒔𝒔. Throughout this paper, we consider 
𝒔𝒔 to be the NR-STAR-MQAM constellation [22], unless 
otherwise stated.  
 
The assignment of 𝑖𝑖 and 𝑠𝑠𝑞𝑞  are defined by the SM mapping 
table, which is known at both the transmitter and receiver 
[3]-[5]. The SM mapper output can be expressed as: 
 
 
 
 

𝒙𝒙 = [0 0… 𝑠𝑠𝑞𝑞 …0]
𝑇𝑇
 (1) 

 
 
 
 
where 𝒙𝒙 is the 𝑁𝑁𝑇𝑇 × 1 transmit vector, 𝑠𝑠𝑞𝑞  denotes the 𝑞𝑞𝑡𝑡ℎ 
symbol from the NR-STAR-MQAM constellation with 
𝐸𝐸 {|𝑠𝑠𝑞𝑞 |

2} = 1 and 𝑠𝑠𝑞𝑞 ∈ 𝒔𝒔, 𝒔𝒔 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑀𝑀}. 
 
The transmit vector defined by (1) has 𝑁𝑁𝑇𝑇 − 1 zero entries 
corresponding to the dormant transmit antennas and a 
single non-zero entry 𝑠𝑠𝑞𝑞  at the 𝑖𝑖𝑡𝑡ℎ position corresponding 
to the active transmit-antenna. After the mapping process 
is completed, the transmit vector 𝒙𝒙 is transmitted over a 
Rayleigh, frequency-flat fading channel experiencing 𝑁𝑁𝑅𝑅-
dimensional additive white Gaussian noise 𝞰𝞰 = [𝜂𝜂1,
𝜂𝜂2, … , 𝜂𝜂𝑁𝑁𝑅𝑅]

𝑇𝑇 
. The 𝑁𝑁𝑅𝑅 × 𝑁𝑁𝑇𝑇 channel gain matrix 𝑯𝑯 is given 

by 𝑯𝑯 = [𝒉𝒉1 𝒉𝒉2  … 𝒉𝒉𝑁𝑁𝑇𝑇], where 𝒉𝒉𝑖𝑖  represents a column 
vector that is defined as 𝒉𝒉𝑖𝑖 = [ℎ1𝑖𝑖 ℎ2𝑖𝑖  … ℎ𝑁𝑁𝑅𝑅𝑖𝑖]

𝑇𝑇 
. The 

elements of both 𝑯𝑯 and 𝞰𝞰 are assumed to be independent 
and uniformly distributed complex Gaussian random 
variables with zero mean and unit variance. 
 
The corresponding 𝑁𝑁𝑅𝑅 × 1 received signal vector 𝒚𝒚 is 
given by: 
 

𝒚𝒚 = √𝜌𝜌𝑯𝑯𝑯𝑯 + 𝞰𝞰 (2) 
 

where 𝜌𝜌 is the average signal-to-noise ratio (SNR) per 
receive antenna and the transmit vector 𝒙𝒙 is of the form, 
𝒙𝒙 = 𝑠𝑠𝑞𝑞𝒆𝒆𝑖𝑖, where the vector 𝒆𝒆𝑖𝑖 is selected from the 𝑁𝑁𝑇𝑇-
dimensional standard basis vectors, e.g., 𝒆𝒆1 =  [1,0, … ,0]𝑇𝑇 
[4]. The set of all 𝒙𝒙 is contained in  𝜞𝜞. 
 
At the receiver, the SM detector obtains estimates of the 
transmit-antenna index and transmitted symbol using the 
ML detection rule, which is given by: 
 

(𝑖𝑖ሶመ , 𝑠𝑠Ƹ𝑞𝑞) = argmin
𝒙𝒙 ∈ 𝜞𝜞

 ‖𝒚𝒚 − √𝜌𝜌𝑯𝑯𝑯𝑯‖𝐹𝐹
2

 (3) 
 
where 𝑖𝑖ሶመ and 𝑠𝑠Ƹ𝑞𝑞  represents the estimates of the transmit-
antenna index and transmitted symbol, respectively. 
 
In order to gain a better understanding of the proposed 
detectors, we first introduce the features of the star-
MQAM family and then briefly explain the latest low-
complexity detectors [12]. 
 
2.2. Star-MQAM Family of Constellations 
 
The star-MQAM family is composed of N concentric rings 
of PSK. In addition, the phase differences between 
adjacent symbols on the same ring are equal [12]-[15], 
[22].  The set of constellation symbols 𝒔𝒔 are given as 
follows: 
 
𝒔𝒔 = 

{
 
 
 

 
 
 𝑟𝑟1 exp (𝑗𝑗 (

2𝜋𝜋
𝑛𝑛1
𝑘𝑘 + 𝜃𝜃1)) , 𝑘𝑘 = 0;  1; … ; 𝑛𝑛1 − 1 

𝑟𝑟2 exp (𝑗𝑗 (
2𝜋𝜋
𝑛𝑛2 𝑘𝑘 + 𝜃𝜃2)) , 𝑘𝑘 = 0; 1; … ; 𝑛𝑛2 − 1

⋮
𝑟𝑟𝑁𝑁 exp (𝑗𝑗 (

2𝜋𝜋
𝑛𝑛𝑁𝑁
𝑘𝑘 + 𝜃𝜃𝑁𝑁)) , 𝑘𝑘 = 0;  1; … ; 𝑛𝑛𝑁𝑁 − 1

 
  
(4) 

 
where 𝑛𝑛𝑙𝑙 such that ∑ 𝑛𝑛𝑙𝑙 = 𝑀𝑀𝑁𝑁

𝑙𝑙=1 ,  𝑟𝑟𝑙𝑙 such that 𝑟𝑟1 < 𝑟𝑟2 <
⋯ < 𝑟𝑟𝑁𝑁 and 𝜃𝜃𝑙𝑙 represents the number of symbols, the 
radius and the initial phase shift of the 𝑙𝑙𝑡𝑡ℎ ring, 
respectively. 
 
The configuration to denote the number of symbols on 
each ring is given by 𝒏𝒏 = (𝑛𝑛1, 𝑛𝑛2, … , 𝑛𝑛𝑁𝑁). In Figure 2, the 
conventional star-16QAM [13], 16-APSK [14] and the 
new class of dual-ring star-16QAM [15] constellations are 
shown, respectively. Note, these dual-ring constellations 
are the foundation of any multiple-ring constellation that 
can be both Gray mapped and theoretically validated. The 
multiple-ring constellations in [23]-[24], do not inherit the 
features of the dual-ring constellations in Figure 2 and 
hence, not viable options to both improve and evaluate the 
ABER performance of SM systems. Nevertheless, the 
proposed detectors can still be applied to these irregular 
constellations [23]-[24].  
 
Table 1 presents the different number of amplitude and 
phase types of the conventional star-16QAM, 16-APSK,

𝑖𝑖𝑡𝑡ℎ position 

1𝑠𝑠𝑠𝑠 position 𝑁𝑁𝑇𝑇𝑡𝑡ℎ position 
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Figure 2: The dual-ring star-MQAM family, a) Conventional star-16QAM, 𝒏𝒏 = (8,8), b) 16-APSK, 𝒏𝒏 = (4,12),  and c) 

New dual-ring star-16QAM, 𝒏𝒏 = (8,8). 

 
new dual-ring star-16QAM and the popular square-
16QAM constellation [22]-[23]. It can be seen that the 
star-16QAM family has fewer amplitudes and phase types 
than the square-16QAM constellation. This indicates that 
the star-MQAM family has a stronger ability to resist 
errors than its square-MQAM counterpart [22]-[23]. For 
example, square-16QAM has 3 different amplitude and 12 
different phase types, whereas conventional star-16QAM 
has 2 different amplitude and 8 different phase types. 
 
Table 1: Amplitude and Phase Types of the star-16QAM 

Family and square-16QAM Constellations [22]-[23]. 

 
Compared to the multiple-ring constellations in [23]-[24], 
NR-STAR-MQAM is superior in terms of matching with 
Gray mapping, error performance and being able to easily 
derive a closed-form solution [22]. Hence, we investigate 
the proposed detectors in NR-STAR-MQAM-SM systems. 
The multiple-ring constellations sizes of interest are the 
2R-STAR-16QAM, 4R-STAR-64QAM and 8R-STAR-
256QAM. These constellations were designed, based on 
achieving almost the same Euclidean distance as the 
square-16QAM, square-64QAM and square-256QAM 
constellations, respectively, by using as few rings as 
possible [22]-[23]. 
 
2.3. Latest Low-Complexity near-ML Detection 

Algorithms 
 
The authors of [12] developed two low-complexity 
detection algorithms for SM systems employing the M-
APSK constellation (Figure 2(b)). The first detection 
algorithm achieves optimal-ML performance and consists 

of two steps. The first step lies in identifying the most 
probable ring in the M-APSK constellation to which the 
receive signal vector belongs to, and is defined as: 
 

𝑧𝑧𝑖𝑖 = 𝒉𝒉𝑖𝑖
𝐻𝐻𝒚𝒚

‖𝒉𝒉𝑖𝑖‖𝐹𝐹
2 , 𝑖𝑖 ∈ 1; … ; 𝑁𝑁𝑇𝑇 (5) 

 
In order to achieve the desired outcome of the first step, 
the receiver is required to perform a few preprocessing 
tasks that create a threshold decision rule. The 
computational complexity of this rule may grow 
depending on the number of rings presented in the M-
APSK constellation. Let 𝑙𝑙መ be the estimated ring at the end 
of the first step. 
 
Then, step 2 involves jointly estimating the transmit-
antenna index and transmitted symbol. At this point, the 
search space of the transmitted symbol is reduced from M 
to the number of symbols that lie on the 𝑙𝑙መ𝑡𝑡ℎ ring and is 
given by: 
 

𝒔𝒔𝑙𝑙መ = 

𝑟𝑟𝑙𝑙መ  exp (𝑗𝑗 (2𝜋𝜋
𝑛𝑛𝑙𝑙መ 

𝑘𝑘 + 𝜃𝜃𝑙𝑙መ )) , 𝑘𝑘 = 0; 1; … ; 𝑛𝑛𝑙𝑙መ − 1 
 

 (6) 

 
Once (6) has been determined, the most probable symbol 
on the 𝑙𝑙መ𝑡𝑡ℎ ring can be determined using [12, Eq. (26)]. 
Then by using [12, Eq. (27)] the estimated transmit-
antenna index can be determined.  
 
The second low-complexity detection algorithm in [12] 
achieves sub-optimal ML performance and also consists of 
two steps. The first step selects the 𝑁𝑁 most probable 
transmit-antenna indices, based on the MMRC [4]-[5] 
criterion and is described as: 
 

𝒘𝒘 = arg max𝑖𝑖∈[1:𝑁𝑁𝑇𝑇]
𝑁𝑁 (|𝑧𝑧𝑖𝑖|) (7) 

 
The second step jointly estimates the transmit-antenna 
index from the 𝑁𝑁 candidates and the transmitted symbol 
using the optimal-ML detection algorithm. 
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Despite the ingenuity of the above-mentioned algorithms, 
there are two notable disadvantages. Firstly, these 
algorithms are only suited for SM systems employing the 
M-APSK constellation. Secondly, the pre-processing tasks 
at the receiver may add to overall hardware cost of the 
system. 
 
Hence, to alleviate these disadvantages, we formulate two 
near-ML low-complexity detection algorithms, which are 
presented in the next section. 
 

3. PROPOSED DETECTION ALGORITHMS 
 
In this section, we propose two near-ML low-complexity 
detectors for NR-STAR-MQAM-SM systems. Unlike the 
latest low-complexity detectors [12], which are only suited 
for SM employing the M-APSK constellation, the two 
proposed detectors are generalized and can be applied to 
SM employing any constellation from the star-MQAM 
family. Note that any multiple-ring constellations, despite 
both its structure and orientation, belongs to the star-
MQAM family.  
 
3.1.  Proposed Low-Complexity Optimal Near-ML 

Detection Algorithm 
 
The proposed optimal near-ML detection algorithm for 
SM systems operates over two steps. The first step 
involves detecting the two rings closest to (5) and lastly, 
the second step involves jointly estimating the transmitted 
symbol and the transmit-antenna index. 
 
Step 1: The first step is aimed at determining the two rings 
closest to 𝒛𝒛𝑖𝑖. This is achieved using, step 3 to step 7, in 
Algorithm 1. Note the estimates of the two closest rings 
are stored in 𝒕𝒕.   
 
Once the two most probable rings have been determined, 
the search space of the second step has been reduced to the 
symbols that lie on the estimated two rings and is given by 
[11]-[12]: 
 

𝒔𝒔𝒕𝒕 = {𝑟𝑟𝒕𝒕(1) exp(𝑗𝑗𝝋𝝋𝒕𝒕(1))
𝑟𝑟𝒕𝒕(2) exp(𝑗𝑗𝝋𝝋𝒕𝒕(2)) (8) 

 

where 𝝋𝝋𝒕𝒕(1) and 𝝋𝝋𝒕𝒕(2) ∈ 𝝋𝝋𝒕𝒕, 𝝋𝝋𝒕𝒕 = { 2𝜋𝜋
𝑛𝑛𝒕𝒕(𝑤̅𝑤) 

𝑘𝑘𝒕𝒕(𝑤̅𝑤) +

𝜃𝜃𝒕𝒕(𝑤̅𝑤) , 𝑘𝑘𝒕𝒕(𝑤̅𝑤) = 0, 1, … , 𝑛𝑛𝒕𝒕(𝑤̅𝑤) − 1}
𝑤̅𝑤=1

𝑤̅𝑤=2
 and 𝑟𝑟𝒕𝒕(1), 𝑟𝑟𝒕𝒕(2) ∈ 𝒓𝒓𝒕𝒕, 

with 𝑟𝑟𝒕𝒕(1) < 𝑟𝑟𝒕𝒕(2). 
 
Step 2: The ML-based criterion of (3) can be split-up into 
an inner- and outer optimization problem that can be 
rewritten as: 
 

(𝑖𝑖ሶመ, 𝑠𝑠Ƹ𝑞𝑞) = argmin
𝑖𝑖∈[1:𝑁𝑁𝑇𝑇]

(min
𝑠𝑠𝑞𝑞∈𝒔𝒔𝒕𝒕

‖𝒚𝒚 − √𝜌𝜌𝒉𝒉𝑖𝑖𝑠𝑠𝑞𝑞‖𝐹𝐹
2 ) (9) 

 

For a given value of i, the inner optimization problem of 
(9) can be written as 𝑠𝑠Ƹ𝑞𝑞 = min

𝑠𝑠𝑞𝑞∈𝒔𝒔𝒕𝒕
(‖𝒚𝒚 − √𝜌𝜌𝒉𝒉𝑖𝑖𝑠𝑠𝑞𝑞‖𝐹𝐹

2 ) and is 

equally described as [11]:  
 

𝑠𝑠Ƹ𝑞𝑞 = argmin
𝑠𝑠𝑞𝑞∈𝒔𝒔𝒕𝒕

(|𝑧𝑧𝑖𝑖 − 𝑠𝑠𝑞𝑞|2) (10) 
 
where  𝑧𝑧𝑖𝑖 = 𝑐𝑐𝑖𝑖exp(𝑗𝑗𝜗𝜗𝑖𝑖) and 𝑠𝑠𝑞𝑞 = 𝑟𝑟exp(𝑗𝑗𝑗𝑗), respectively. 
  
Then (10) can be further expressed as: 
 

𝑠𝑠Ƹ𝑞𝑞 = 
 argmin
𝑟𝑟∈𝒓𝒓𝒕𝒕,𝜑𝜑∈𝝋𝝋 𝒕𝒕

(|𝑐𝑐𝑖𝑖|2 + |𝑟𝑟|2 − 2𝑐𝑐𝑖𝑖𝑟𝑟 cos(𝜗𝜗𝑖𝑖 −  𝜑𝜑)) (11) 

 
The equivalent of (11) can be directly expressed as: 
 

𝜑̂𝜑𝑖𝑖 = argmax
𝜑𝜑∈𝝋𝝋 𝒕𝒕

(cos(𝜗𝜗𝑖𝑖 − 𝜑𝜑)) (12) 
 
The function of (12) is to determine the transmitted symbol 
𝑠𝑠Ƹ𝑞𝑞  by comparing the angles of each symbol in 𝒔𝒔𝒕𝒕 to the 
angle of the receive signal vector 𝑧𝑧𝑖𝑖. However, this will not 
work when 𝒔𝒔𝒕𝒕 contains symbols with different amplitude 
levels. This is because there exists a scenario where a 
symbol will be chosen based on (12) but another symbol 
will lie closer to 𝑧𝑧𝑖𝑖 based on Euclidean distance. Note, the 
latter part of the scenario will obtain the correct result. 
Hence, we establish a relationship between the orientation 
of each ring and 𝑧𝑧𝑖𝑖. Thus for an initial phase shift of 
𝜃𝜃𝒕𝒕(𝑤̅𝑤) = 0, the relationship can be described as: 
 

𝜑̂𝜑𝒕𝒕(𝑤̅𝑤) = 

mod (round (𝑄𝑄𝜑̂𝜑𝒕𝒕(𝑤̅𝑤)) , 𝑛𝑛𝒕𝒕(𝑤̅𝑤)) ×  ( 2𝜋𝜋
𝑛𝑛𝒕𝒕(𝑤̅𝑤)

) (13) 

 
where 𝑄𝑄𝜑̂𝜑𝒕𝒕(𝑤̅𝑤) = 𝜗𝜗𝑖𝑖/(2𝜋𝜋/𝑛𝑛𝒕𝒕(𝑤̅𝑤)) and 𝑤̅𝑤 = 1, 2. 
 
In order to accommodate for rings that have an initial phase 
shift equal to 𝜃𝜃𝒕𝒕(𝑤̅𝑤) = (𝜋𝜋/𝑛𝑛𝒕𝒕(𝑤̅𝑤)), we formulate a simple 
expression: 
 

 
Thus from (13) and/or (14), we can estimate the most 
probable symbol on each ring as follows [12]: 
 

𝒔̂𝒔𝒕𝒕 = {𝑟𝑟𝒕𝒕(1) exp(𝑗𝑗𝜑̂𝜑𝒕𝒕(1))
𝑟𝑟𝒕𝒕(2) exp(𝑗𝑗𝜑̂𝜑𝒕𝒕(2)) (15) 

 
By using (10) and (15), we can correctly estimate the 
transmitted symbol, which is given as: 
 

𝑠𝑠Ƹ𝑞𝑞 = arg min
𝑠𝑠∈𝒔̂𝒔𝒕𝒕

(|𝒛𝒛𝑖𝑖 − 𝑠𝑠|2) (16) 
 

𝜑̂𝜑𝒕𝒕(𝑤̅𝑤) = 

(mod (⌈𝑄𝑄𝜑̂𝜑𝒕𝒕(𝑤̅𝑤)⌉ , 𝑛𝑛𝒕𝒕(𝑤̅𝑤)) × ( 2𝜋𝜋
𝑛𝑛𝒕𝒕(𝑤̅𝑤)

)) − ( 𝜋𝜋
𝑛𝑛𝒕𝒕(𝑤̅𝑤)

) (14) 
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After obtaining the correct transmitted symbol 𝑠𝑠Ƹ𝑞𝑞 , we 
estimate the transmit-antenna index by substituting 𝑠𝑠Ƹ𝑞𝑞  in 
(9), which is given by:  
 

𝑖𝑖ሶመ = arg min
𝑖𝑖∈[1:𝑁𝑁𝑇𝑇]

(‖𝒚𝒚 − 𝒉𝒉𝑖𝑖𝑠𝑠Ƹ𝑞𝑞‖𝐹𝐹
2 ) (17) 

 
In order to reduce the complexity of (17), the authors of 
[8] considered that: 
 

‖𝒚𝒚 − 𝒉𝒉𝑖𝑖𝑠𝑠Ƹ𝑞𝑞‖𝐹𝐹
2 = … 

            … = ‖𝒚𝒚‖𝐹𝐹
2 + ‖𝒉𝒉𝑖𝑖‖𝐹𝐹

2 |𝑠𝑠Ƹ𝑞𝑞|2 − 2ℜ(𝒉𝒉𝑖𝑖
𝐻𝐻𝒚𝒚𝑠𝑠Ƹ𝑞𝑞∗) 

            = ‖𝒚𝒚‖𝐹𝐹
2 + {|𝑧𝑧𝑖𝑖 − 𝑠𝑠Ƹ𝑞𝑞|2 − |𝑧𝑧𝑖𝑖|2} ‖𝒉𝒉𝑖𝑖‖𝐹𝐹

2  

(18) 

 
From (17) and (18), we obtain that: 
 

𝑖𝑖ሶመ = 
arg min

𝑖𝑖∈[1:𝑁𝑁𝑇𝑇]
(‖𝒚𝒚‖𝐹𝐹

2 + {|𝑧𝑧𝑖𝑖 − 𝑠𝑠Ƹ𝑞𝑞|2 − |𝑧𝑧𝑖𝑖|2} ‖𝒉𝒉𝑖𝑖‖𝐹𝐹
2 ) (19) 

 
For the optimization problem of (19), ‖𝒉𝒉𝑖𝑖‖𝐹𝐹

2  does not need 
to be computed again, which further reduces the 
computational complexity [8]. 
 
Hence the low-complexity optimal near-ML detection 
algorithm is summarized in Algorithm 1: 
 
 
Algorithm 1: Low-complexity optimal-ML detection 
algorithm for SM employing any multiple-ring 
constellation. 
 
1:  For 𝑖𝑖 = 1 ∶ 𝑁𝑁𝑇𝑇 
2:    𝑧𝑧𝑖𝑖 = (𝒉𝒉𝑖𝑖

𝐻𝐻𝒚𝒚/‖𝒉𝒉𝑖𝑖‖𝐹𝐹
2 ) 

3:    For 𝑙𝑙 = 1 ∶ 𝑁𝑁 
4:      If 𝑟𝑟𝑙𝑙 < |𝑧𝑧𝑖𝑖| ≤ 𝑟𝑟𝑙𝑙+1 
5:        𝒕𝒕 = 𝑙𝑙, 𝑙𝑙 + 1. Note, when |𝑧𝑧𝑖𝑖| ≤ 𝑟𝑟1, 𝒕𝒕 = 1, 2 and 
when |𝑧𝑧𝑖𝑖| > 𝑟𝑟𝑁𝑁, 𝒕𝒕 = 𝑁𝑁 − 1, 𝑁𝑁. 
6:      End If  
7:    End For 
8:    For 𝑤̅𝑤 = 1 ∶ length(𝒕𝒕) 
9:      Obtain 𝒔̂𝒔𝒕𝒕 from (15) 
10:    Compute 𝒅𝒅𝑤̅𝑤, where 𝒅𝒅𝑤̅𝑤 = (|𝑧𝑧𝑖𝑖 − 𝒔̂𝒔𝒕𝒕(𝑤̅𝑤) |2) 
11:  End for 
12: Find the minimum value of 𝒅𝒅 and store index, then          
𝑠𝑠Ƹ𝑞𝑞(𝑖𝑖) = 𝒅𝒅index 
13:  Compute 𝒄𝒄𝑖𝑖 = {|𝑧𝑧𝑖𝑖 − 𝑠𝑠Ƹ𝑞𝑞(𝑖𝑖)|2 − |𝑧𝑧𝑖𝑖|2} ‖𝒉𝒉𝑖𝑖‖𝐹𝐹

2  
14: End for 
15: Find the minimum value of 𝒄𝒄 and store index∗, Output 
index∗ and 𝑠𝑠Ƹ𝑞𝑞(index∗) 
 
 
3.2.  Proposed Low-Complexity Sub-Optimal Near-ML 

Detection Algorithm 
 
In this subsection, we propose a low-complexity detection 
algorithm which achieves sub-optimal error performance. 

This algorithm matches the ABER of SM systems using 
the MS detection algorithm [4]. However, unlike the MS 
detection algorithm, the proposed sub-optimal detector is 
suitable for SM systems that employ large order APM 
constellations. The proposed low-complexity sub-optimal 
detection algorithm operates over the following two steps, 
which are summarized as follows: 
  
Step 1: The first step is aimed at reducing the transmit-
antenna search space, which is efficiently achieved by 
using (7). 
  
Step 2: After reducing the transmit-antenna search space 
to 𝑁𝑁 possible candidates, we then apply Algorithm 1, 
which is discussed in the previous subsection. Note that 𝑧𝑧𝑖𝑖 
does not need to be calculated in Algorithm 2, since the 
computation of (7) is the same as (5). The sub-optimal ML 
detection algorithm is summarized in Algorithm 2: 
 
 
Algorithm 2: Low-complexity sub-optimal ML 
detection algorithm for SM employing any multiple-
ring constellation. 
 
1:  Determine 𝒘𝒘, using (7) 
2:  For 𝑖𝑖 = 1 ∶ length( 𝒘𝒘) 
3:    For 𝑙𝑙 = 1 ∶ 𝑁𝑁 
4:      If 𝑟𝑟𝑙𝑙 < 𝒘𝒘𝑖𝑖 ≤ 𝑟𝑟𝑙𝑙+1 
5:        𝒕𝒕 = 𝑙𝑙, 𝑙𝑙 + 1. Note, when 𝒘𝒘𝑖𝑖 ≤ 𝑟𝑟1, 𝒕𝒕 = 1, 2 and 
when 𝒘𝒘𝑖𝑖 > 𝑟𝑟𝑁𝑁, 𝒕𝒕 = 𝑁𝑁 − 1, 𝑁𝑁. 
6:      End If  
7:    End For 
8:    For 𝑤̅𝑤 = 1 ∶ length(𝒕𝒕) 
9:      Obtain 𝒔̂𝒔𝒕𝒕 from (15) 
10:    Compute 𝒅𝒅𝑤̅𝑤, where 𝒅𝒅𝑤̅𝑤 = (|𝒘𝒘𝑖𝑖 − 𝒔̂𝒔𝒕𝒕(𝑤̅𝑤) |2) 
11:   End for 
12:  Find the minimum value of 𝒅𝒅 and store index, then          
𝑠𝑠Ƹ𝑞𝑞(𝑖𝑖) = 𝒅𝒅index 
13:  Compute 𝒄𝒄𝑖𝑖 = {|𝒘𝒘𝑖𝑖 − 𝑠𝑠Ƹ𝑞𝑞(𝑖𝑖)|2 − |𝒘𝒘𝑖𝑖|2} ‖𝒉𝒉𝑖𝑖‖𝐹𝐹

2  
14: End for 
15: Find the minimum value of 𝒄𝒄 and store index∗, Output 
index∗ and 𝑠𝑠Ƹ𝑞𝑞(index∗) 
 
 
Hence, the proposed sub-optimal ML detection algorithm 
is a viable option for SM systems that have a large 𝑁𝑁𝑇𝑇, M 
or both.  
 
4. COMPUTATIONAL COMPLEXITY ANALYSIS 

 
In this section, we present the computational complexity at 
the receiver, in terms of the total number of floating point 
operations (flops) [22] required for both the proposed sub-
optimal detector (PSOD) and proposed optimal detector 
(POD). Thereafter, we compare these detectors to a few 
other notable SM detectors, i.e., the MMRC detection [4], 
SVD [9], DBD [6], MS detection [4] and ML-based 
detection [3]. We assume results required for future 
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computations can be stored, therefore redundant 
computation is neglected and full channel knowledge is 
known at the receiver for all the detection algorithms. 
  
4.1.  Formulation of Computational Complexity  
 
ML Detection: It is straightforward from (3) that it can be 

rewritten as (𝑖𝑖ሶመ, 𝑠𝑠Ƹ𝑞𝑞) = arg min
𝑖𝑖∈[1:𝑁𝑁𝑇𝑇]

(min
𝑠𝑠𝑞𝑞∈𝒔𝒔

(‖𝒚𝒚 − √𝜌𝜌𝒉𝒉𝑖𝑖𝑠𝑠𝑞𝑞‖𝐹𝐹
2 )) 

and that the order of complexity grows as 𝑁𝑁𝑇𝑇𝑀𝑀. For a 
given (𝑖𝑖ሶመ, 𝑠𝑠Ƹ𝑞𝑞), the complexity imposed by the inner term 
‖𝒚𝒚 − √𝜌𝜌𝒉𝒉𝑖𝑖𝑠𝑠𝑞𝑞‖𝐹𝐹

2 = ∑ |𝑦𝑦𝑡𝑡 − √𝜌𝜌ℎ𝑡𝑡,𝑖𝑖𝑠𝑠𝑞𝑞|2𝑁𝑁𝑅𝑅
𝑡𝑡=1  is equal to 6𝑁𝑁𝑅𝑅 

flops. Hence, the total computational complexity imposed 
is  𝛿𝛿𝑀𝑀𝑀𝑀 = 6𝑁𝑁𝑅𝑅𝑁𝑁𝑇𝑇𝑀𝑀 flops [11]-[12]. 
 
Latest low-complexity ML Detection Algorithms: In 
[12], two detectors, termed PHD and PMML were 
proposed specifically for M-APSK-SM systems. The 
complexity imposed by both PHD and PMML are 𝛿𝛿𝑃𝑃𝑃𝑃𝑃𝑃 =
(6𝑁𝑁𝑅𝑅 + 4)𝑁𝑁𝑇𝑇 + 9𝑁𝑁 + 4𝑁𝑁⌈𝑁𝑁/2⌉ flops and 𝛿𝛿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
(6𝑁𝑁𝑅𝑅 + 11)𝑁𝑁𝑇𝑇 + 4𝑁𝑁𝑇𝑇⌈𝑁𝑁/2⌉  flops, respectively. Note, 
that the complexity of PHD and PMML matches the 
complexity of the PSOD and the POD, respectively, only 
for M-APSK-SM systems. 
 
Proposed optimal-ML Detection: It can be seen that 
Algorithm 1 grows as 𝑁𝑁𝑇𝑇. The complexity imposed by (5) 
is 6𝑁𝑁𝑅𝑅 + 2 flops [11]-[12]. The computation of calculating 
the most probable symbol on each ring is equal to a total 
of 8 flops, according to (15). Then the estimated 
transmitted symbol is obtained by (16) which amounts to 
a total of 4 flops.  Finally, the computation of (19) which 
estimates the transmit-antenna index incurs 5 flops, since 
‖𝒉𝒉𝑖𝑖‖𝐹𝐹

2  has already been computed while obtaining (5). 
Hence, the total number of flops imposed is equal to 
𝛿𝛿𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = (6𝑁𝑁𝑅𝑅 + 19)𝑁𝑁𝑇𝑇. 
 
Proposed sub-optimal ML Detection: The computation 
of the first step, which estimates the 𝑁𝑁 most probable 
transmit antenna(s) is equal to 6𝑁𝑁𝑅𝑅𝑁𝑁𝑇𝑇 + 4𝑁𝑁𝑇𝑇 flops [4]. 
Thereafter, we apply Algorithm 1 but with two slight 
modifications. Firstly, 𝑁𝑁𝑇𝑇 needs to be replaced by 𝑁𝑁. 
Secondly (5), does not need to be computed because it is 
the same as (7). Thus the complexity imposed by 
Algorithm 1 is equal to 12 flops for step 8 to step 11 and 5 
flops for estimating the transmit-antenna index. Hence, the 
total computational complexity imposed is 
𝛿𝛿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆𝑆𝑆𝑆𝑆−𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 6𝑁𝑁𝑅𝑅𝑁𝑁𝑇𝑇 + 4𝑁𝑁𝑇𝑇 + 17𝑁𝑁  flops. 
 
It is worth mentioning that the complexity of Algorithm 1 
may be further reduced for SM systems employing the 
conventional star-MQAM constellation (Figure 2(a)). This 
is because the Euclidean distance between any two 
neighboring constellation points on adjacent rings are 
equal.  This means that step 3 to step 7 in Algorithm 1 can 
be easily modified to find the single closest ring to (5). 
Then, step 8 to step 11 in Algorithm 1 will reduce to 6 
flops. Hence, the total flops imposed for SM systems 

employing the conventional star-MQAM constellation 
[13] or any multiple-ring constellation adopting this 
specific orientation [23] is 𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
(6𝑁𝑁𝑅𝑅 + 13)𝑁𝑁𝑇𝑇. Note that this algorithm will achieve 
optimal-ML error performance.  
 
4.2.  Evaluation of Computational Complexity  
 
In this subsection, we evaluate the computational 
complexity at the receiver, in terms of the total number of 
flops, as a function of constellation size 𝑀𝑀, number of 
receive antennas 𝑁𝑁𝑅𝑅 and number of transmit antennas 𝑁𝑁𝑇𝑇. 
The computational complexity of the proposed detectors 
as well as the closest competing detectors are summarized 
in Table 2.   
 

Table 2: Comparisons of Computational Complexity 

 
From Figure 3(a), a 4 × 4 SM system is considered with 
the size of M changing according to the 2R-STAR-
16QAM, 4R-STAR-64QAM and 8R-STAR-256QAM 
constellations. It can be seen that the complexity of the 
proposed detectors does not grow with M. 
 
In Figure 3(b), we show the computational complexities by 
changing  𝑁𝑁𝑅𝑅 when  𝑁𝑁𝑇𝑇  and  M  are fixed at 4 and 16 (2R- 

Detectors Computational 
Complexity 

Complexity 
grows with 

M? 

ML 
Detection 

[3] 
δML = 6𝑁𝑁𝑅𝑅𝑁𝑁T𝑀𝑀 Yes 

DBD [6] 
δDBD = 

𝑁𝑁𝑇𝑇(6𝑁𝑁𝑅𝑅 + 4 + 2𝑀𝑀)
+ 𝑝𝑝(4𝑁𝑁𝑅𝑅 + 2) 

Yes 

MMRC 
Detection 

[4] 

δMMRC = 
6𝑁𝑁𝑅𝑅𝑁𝑁𝑇𝑇 + 4𝑁𝑁𝑇𝑇 + 6𝑀𝑀 Yes 

MS 
Detection 

[4] 

δMS = 
6𝑁𝑁𝑅𝑅𝑁𝑁𝑇𝑇 + 4𝑁𝑁𝑇𝑇 + 6𝑁𝑁 𝑀𝑀 Yes 

SVD [9] 
δSVD = 

(6𝑁𝑁𝑅𝑅 + 4)𝑁𝑁𝑇𝑇 + 2𝑁𝑁𝑅𝑅
+ 6𝑁𝑁𝑅𝑅𝑀𝑀 

Yes 

PSOD δPSOD = 
6𝑁𝑁𝑅𝑅𝑁𝑁𝑇𝑇 + 4𝑁𝑁𝑇𝑇 + 17𝑁𝑁 No 

POD δPOD = 
(6𝑁𝑁𝑅𝑅 + 19)𝑁𝑁𝑇𝑇 No 
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Figure 3: Comparisons of the computational complexity of the ABER performance for the proposed detectors and existing 
detectors as a function of (a) Constellation size 𝑀𝑀 (b) Number of receive antennas 𝑁𝑁𝑅𝑅 (c) Number of transmit antennas 
𝑁𝑁𝑇𝑇. Note that 𝑁𝑁 = (1

2) 𝑁𝑁𝑇𝑇 for both the PSOD and MS detector. In addition, for DBD, the parameter 𝑝𝑝 = (1
2) 𝑁𝑁𝑇𝑇. 

 
STAR-16QAM), respectively. The results show that the 
proposed detectors offer much reduced complexities than 
the other notable detectors. 
 
Finally, in Figure 3(c), we consider the computational 
complexity when 𝑁𝑁𝑅𝑅 = 4 and 𝑀𝑀 = 16 (2R-STAR-
16QAM), while varying 𝑁𝑁𝑇𝑇. Though the computational 
complexity of the MMRC detector is lower than the 
proposed detectors when 𝑁𝑁𝑇𝑇 is large, it has a non-
negligible performance loss, which can be seen in Figure 
5 - Figure 7. 
 
In the next section, we present the Monte Carlo simulation 
results in terms of ABER performance for the proposed 
near-ML detectors in NR-STAR-MQAM-SM systems. 
 

5. NUMERICAL ANALYSIS 
 
The aim of this section is to evaluate and compare the 
ABER performance of the proposed detectors, which was 
presented in Section 3, to a few other low-complexity SM 
detectors, namely, MMRC detection [4], SVD [9], DBD 
[6], MS detection [4] and the benchmark ML-based 
detection [3]. As mentioned earlier, the proposed sub-
optimal detector and proposed optimal detector are dubbed 
PSOD and POD, respectively, for ease of use. The 
simulation results are investigated over i.i.d. Rayleigh 
frequency-flat fading channels. Here the ABER is plotted 
against the average SNR at each receive antenna. As stated 
earlier, the spectral efficiency of SM is given as 
log2(𝑁𝑁𝑇𝑇𝑀𝑀) bits per channel use (bpcu). 
 
5.1.  Evaluation and Comparison of the ABER 

Performance 
 
The variance, which is normalized to one, is given as 𝜎𝜎2 =
𝐸𝐸 {|𝒔𝒔𝐴𝐴𝐴𝐴𝐴𝐴

𝑁𝑁𝑁𝑁  |
2

} = 1, where 𝑁𝑁𝑁𝑁 and 𝒔𝒔𝐴𝐴𝐴𝐴𝐴𝐴, represents the 

normalizing factor and symbol set of the employed APM 
constellation, respectively. Here, we denote the symbol set 
for the 2R-STAR-16QAM, 4R-STAR-64QAM and 8R-
STAR-256QAM constellations as 𝒔𝒔2𝑅𝑅⋆16, 𝒔𝒔4𝑅𝑅⋆64 and 
𝒔𝒔8𝑅𝑅⋆256, respectively. 
 
In Figure 4, we compare the ABER of the detection 
algorithms presented in [12], namely PHD and PMML 
along with ML, PSOD and POD in 32-APSK-SM. Note 
that the ML detector is used for benchmarking purposes. 
The 32-APSK-SM system achieves a spectral efficiency of 
7 bpcu and has radii =  (1, 2.5, 4) with  𝜎𝜎2 =
𝐸𝐸 {|𝒔𝒔32−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

10.47  |
2

} = 1, where 𝒔𝒔32−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  represents the 
symbol set of 32-APSK. It can be seen that the ABER 
performance of PHD and PMML closely matches the 
ABER performance of PSOD and POD, respectively. 
 

 
 
Figure 4: Comparison of ABER performance for 32- 
APSK-SM with 𝑁𝑁𝑇𝑇 = 4 and 𝑁𝑁𝑅𝑅 = 2 employing the 
following detectors: ML, PHD, PMML, PSOD and POD 
for a spectral efficiency of 7 bpcu. 
 
The following analysis is performed in SM employing the 
2R-STAR-16QAM, 4R-STAR-64QAM and 8R-STAR-

𝑀𝑀 = 16 and 𝑁𝑁𝑇𝑇 = 4 𝑀𝑀 = 16 and 𝑁𝑁𝑅𝑅 = 4 𝑁𝑁𝑇𝑇 = 4 and 𝑁𝑁𝑅𝑅 = 2 

M 𝑁𝑁𝑅𝑅 𝑁𝑁𝑇𝑇 
(a) (b) (c) 

7 bpcu 

Average SNR 
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256QAM constellations with 𝑁𝑁𝑇𝑇 = 4 and 𝑁𝑁𝑅𝑅 = 2. In order 
to support the Monte Carlo simulation results, a closed-
form union-bound theoretical ABER is provided for NR-
STAR-MQAM [22].  
 

 
 
Figure 5: Comparison of ABER performance for 2R-
STAR-16QAM-SM employing the following detectors: 
MMRC, SVD, DBD, MS, ML, PSOD and POD for a 
spectral efficiency of 6 bpcu.  
 
In Figure 5, the 2R-STAR-16QAM-SM system has 

radii =  (1, 1.8) with  𝜎𝜎2 = 𝐸𝐸 {|𝒔𝒔2𝑅𝑅⋆16
2.12  |

2
} = 1 and 

achieves a spectral efficiency of 6 bpcu. Note, the optimum 
radii for NR-STAR-MQAM-SM is efficiently calculated 
using the optimum ring radii algorithm in [22]. It can be 
seen that the POD matches very closely with the 
benchmark ML detector and that the theoretical 
expression, which was derived in [22], confirms this 
observation. Although, the PSOD has a slight deviation 
from the ML detector after 12 dB, it still has a superior 
error performance than the other detectors. At an ABER of 
10−4, the POD achieves an SNR gain of approximately 1 
db compared to both the PSOD and MS detection. Also, 
when compared to DBD and both MMRC detection and 
SVD, the POD achieves an SNR gain of 2 dB and 15 dB, 
respectively. 
 

 
 
Figure 6: Comparison of ABER performance for 4R-
STAR-64QAM-SM employing the following detectors: 
MMRC, SVD, DBD, MS, ML, PSOD and POD for a 
spectral efficiency of 8 bpcu. 

In Figure 6, the spectral efficiency is increased to 8 bpcu 
by employing the 4R-STAR-64QAM constellation in SM. 
The optimal radii for this system is (1, 1.5, 2.0, 2.5) with 

 𝜎𝜎2 = 𝐸𝐸 {|𝒔𝒔4𝑅𝑅⋆64
3.38  |

2
} = 1. These simulation results, exhibit 

analogous ABER performances compared to Figure 5. For 
example, at an ABER of 10−4, the proposed detectors 
achieve an SNR gain of approximately 3 dB compared to 
DBD and 11 dB compared to both the MMRC detection 
and SVD. 
 

 
 
Figure 7: Comparison of ABER performance for 8R-
STAR-256QAM-SM employing the following detectors, 
MMRC, SVD, DBD, MS, ML, PSOD and POD for a 
spectral efficiency of 10 bpcu. 
 
In Figure 7, similar behaviour to Figure 5 and Figure 6 are 
demonstrated by the proposed detectors. The 8R-STAR-
256QAM-SM system has an optimal radii of 
(1, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8, 3.1) with  𝜎𝜎2 =
𝐸𝐸 {|𝒔𝒔8𝑅𝑅⋆256

4.68  |
2

} = 1. Here the MS detector, ML detector, 
PSOD and POD exhibit approximately the same error 
performance down to an ABER of 10−4.  At the same 
ABER, the proposed detectors achieve SNR gains of 4 dB 
and 6 dB compared to DBD and both the MMRC detector 
and SVD. Hence, these proposed detectors may prove to 
be a feasible alternative to the other notable detectors due 
to its superior ABER performance and lower 
computational complexity. 
 

6. CONCLUSION 
 
In this paper, we have proposed two low-complexity near-
ML detection algorithms for SM systems suitable for 
employing any constellation from the star-MQAM family, 
more specifically the NR-STAR-MQAM constellation. 
We have provided a detailed computational complexity 
comparison of the proposed detectors and existing notable 
detectors. It has been shown that the computational 
complexity imposed by the proposed detectors are 
independent of both the size of the symbol set and the 
number of rings presented in the NR-STAR-MQAM 
constellation. This effectively means that the complexity 
is only dependent on the number of transmit antennas in 
the system. Hence, the proposed near-ML detectors are 
capable of offering near-ML error performance but at a 

Average SNR 

Average SNR 

Average SNR 

6 bpcu 

8 bpcu 

10 bpcu 
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much reduced computational complexity. Furthermore, 
the ABER results have been supported by a closed-form 
union-bound theoretical solution. 
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