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Abstract: The main contribution of this work is to investigate the hypothesis that the performance
of the Simulated Annealing (SA) algorithm can be improved by combining it with other sampling
methods in solving the single machine weighted earliness and tardiness scheduling problem. In
this paper we present the formulation of our novel hybrid algorithm, SAM, and the main results.
The algorithm SAM, which stands for Simulated Annealing with Metropolis-Hastings, is a two-step
process. To initialise, the search space of possible feasible schedules is divided into a number of
sections. In the first step Metropolis-Hastings sampling is performed over the sections in order to
obtain characteristics of a likelihood function over the sections so that a section with a high likelihood
of containing the optimal schedule is chosen for step two. In step two SA is run on the pruned search
space to find a solution schedule. This relies on a novel way of visualising the search space in a
geometric way as a wheel of indices. The results show that low deviation solutions can be obtained in
significantly shorter runs with SAM than seen in the literature or required of the basic SA algorithm.
We can achieve a 4.5 times reduction in required algorithm run time to achieve a less than 2% deviation
from the optimum value. SAM even enables us to find the optimal solution in as few as 1000 iterations
of SA in some cases.

Keywords: Simulated Annealing, scheduling, single-machine, earliness-tardiness, multi-objective,
MCMC, Metropolis-Hastings, meta-heuristic

1. INTRODUCTION

Scheduling can be described as the allocation of a set of
tasks over any sparse resource in order to optimise certain
objectives [1]. Numerous applications in a wide variety
of fields has resulted in a rich history of research into
optimisation for scheduling. Although it is a fundamental
form of the problem, the single machine scheduling
problem with two or more objectives is known to be
NP -hard or NP -complete [2], and so meta-heuristic
algorithms such as Genetic Algorithms (GAs), Tabu search
and Simulated Annealing (SA) are the accepted solution
technique since no optimal polynomial time algorithm
exists (unless P = NP ) [3]. These meta-heuristic
algorithms may provide acceptable answers in a much
shorter time than exhaustive search or exact methods, but
there is still a time cost to pay.

Consider the problem of finding the optimal schedule
according to specific objectives in the case of only 10
tasks. The search space has an overwhelming size of
over 3.6 million options. Now consider another very
modest problem with 100 different-sized tasks. This has
of the order of 10157 possible solutions. With a history
of research mainly centred around the manufacturing
industry, traditional scheduling methods may come short
of meeting the needs of more modern applications,
where results may be more time-sensitive. In wireless
communications networks, for instance, tasks such as data

packets ought to be cleverly scheduled in time or frequency
domains or both in order to maximise data throughput
whilst optimising use of spectrum resources in a context
where the tolerance for computational delays is very low.
The issue of spectrum scarcity has become increasingly
contentious and expensive. The algorithms developed in
this work if applied to scheduling packets for wireless
communications can help to improve spectral efficiency.
In this application algorithms must find solutions quickly
enough to ensure the user experience is not negatively
affected. With such a large search space, more efficient
ways to obtain good quality solutions are required. There
is great practical necessity and potential benefit if a general
way can be found to reduce the solution search space and
shorten run times without significantly compromising the
quality of solutions, where good solutions are those that
are minimally deviant from the optimal value.

In this work we investigate if the performance of Simulated
Annealing in solving the single machine weighted
earliness-tardiness scheduling problem can be improved by
combining the SA algorithm with other sampling methods
in a two-step process, the first step being a pre-sampling
step to reduce the search space, and the second being
to run SA on the reduced search space. One of the
most powerful sampling methods available at this time is
Markov Chain Monte Carlo methods based on Bayesian
inference, which we have chosen for pre-sampling. For
our experiments we have generated thirteen problem
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instances with different parameters, which we contend
are sufficiently representative for the results here to be of
more general significance. Performance is evaluated in
terms of running time and quality of the solution: on the
basis of required total number of iterations, and percentage
deviation from the optimum value respectively.

The contributions of this work are:

• to present the first hybrid MH-SA algorithm for use in
optimisation of scheduling problems that improves on
the efficiency of existing algorithms.

• to investigate the performance of SA in solving the
single machine scheduling problem and compare with
the new SAM algorithm.

• to present a unique application method of
Metropolis-Hastings Monte Carlo to a problem
that has not been done in the literature before, in a
way that recognises and uses specific properties of the
search space in solving this particular problem. It also
relies on a new perspective of the search space.

Despite its ability to specialise to the characteristics of the
search space, it is also a general method applicable to a
wide range of different problems and objectives.
The remainder of the document is structured as follows:
Section 2. presents some of the most pertinent work related
to the present work, the problem and solution models and
approaches are detailed in Section 3., experimental results
are presented in Section 4. before concluding in Section 5..

2. REVIEW OF RELATED WORK

2.1 Simulated Annealing

Using SA, Tan and Narasimhan investigate minimising
tardiness on a single machine with the addition of
sequence-dependent setup times [4]. A rather unique
situation is investigated by Jozefowska et al., where each
task can be executed in one of several modes, which are
divided according to activity resource requirements and
duration [5]. They use SA for minimising the makespan
with no pre-emption allowed. The researchers also
perform pre-processing on the search space to eliminate
various options. For 10-job schedules average relative
deviation without penalty functions is 0.93% but increasing
significantly to 110% maximum, in 60 000 iterations, with
performance generally improving for larger problem
instances. This trend may suggest that the results presented
in Section 4. may also be improved in larger problem
instances. Wu at al.’s experiments on SA with learning
effect had results ranging from an average percentage
deviation of 1% to maximum 1371% and even 3867% for
12-job instances [6]. Such large discrepancies indicate
that more research is required on scheduling using the SA
algorithm to get more consistent results.

Mahdavi et al. use SA for the single machine scheduling
problem to minimise total weighted earliness and tardiness
[7]. In their formulation, however, they assume fixed due
dates and controllable processing times where job lengths
can be expanded or compressed within certain limits. They
seek to find an optimal set of expansions and compressions
as well as job sequence. Multiple machine single objective
scheduling is approached using SA by Kim et al. [8].

An attempt is made to find a general solution to
multi-objective scheduling problems with two or more
objectives by Loukil et al. [9]. Their method requires
that a set of “potentially efficient” points be initialised at
the start and a family of weighting functions be defined
to direct the statistical search to potentially more efficient
solutions. It also involves a filtering procedure where the
solutions in potentially efficient sets undergo pairwise
comparison to remove solutions unfairly dominated by
any one of the objectives. These functions are used
in every iteration of the algorithm to update the set of
potentially efficient points, adding significant complexity.
The choice of weighting functions is both arbitrary and
problem-dependent, and can have a significant impact on
the solution. The authors also concede that a large number
of experiments is necessary to determine the number of
sets of weights that give “good” solutions. It is our opinion
that this method is unnecessarily complex and contains too
many variables that have a large impact on the solution
quality and run time, and that there is space for more
innovation in multi-objective scheduling algorithms.

Neighbour generation is known to be a strategic part of
the implementation of SA having an influence on the
performance [10], yet most commonly in the literature
the same methods are employed i.e. selecting random
positions and performing various shift, swap, and insertion
operations; see, for example [4–6, 8, 9, 11]. These
methods both involve unnecessary complexity and add
to the algorithm run time, necessitating the storage and
generation of a number of arrays and performing numerous
operations on them many thousands of times. We take an
entirely different approach to neighbour generation which
significantly reduces the complexity.

Initial temperature is an important parameter to fix and is
often determined by setting a starting acceptance ratio and
deriving temperature from that [8]. It has been asserted
that initial solution is also an important factor in algorithm
performance and much of the literature sees the use of
priority dispatch rules or other methods to generate a good
starting solution [8, 12, 13]. The effect of starting solution
on the final solution is investigated by Tan and Narasimhan
who find no evidence that “better than randomly selected”
initial solutions lead to lower average objective function
values in the final solution and prompting the researchers to
conclude that a properly tuned SA algorithm can produce
good results regardless of the initial solution.
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Some researchers design the algorithm such that a
large number of solution updates is performed at every
temperature value or within a temperature range [4, 10].
This number is yet another variable that is to be determined
experimentally. Tan and Narasimhan conclude that it
would yield better results to use a smaller temperature
decay function than a larger number of updates at each
temperature [14]. We rely on this conclusion and choose
only to do one update at each temperature and use a log
temperature decay function to ensure a gentle reduction.

2.2 Other algorithms

Genetic Algorithms are popular in the scheduling literature
although there are few papers on the same optimisation
objectives as ours. Hamidinia et al. look at a similar
problem of minimising weighted tardiness and earliness
without pre-emption but in a batched delivery system
and with single due dates [15]. Other Genetic Algorithm
approaches have various differences from the problem
of this work [16–19]. Wan and Yen investigate the
performance of Tabu search methods in solving the
weighted earliness-tardiness problem with problem sizes
of 15 to 80 jobs [20]. They claim that the method usually
obtains deviations within 5% of the optimal value, with
an average 2% deviation for 15-job problems. However,
the worst case values or variances are not given. Hino and
Ronconi also solve the earliness-tardiness problem with
Tabu search, including heuristics for finding a suitable
starting schedule [21]. They find deviations ranging
from 0% to 0.25% from the heuristic benchmark (not
the optimal) for 10-job problems, solving 216 of 280
instances optimally. The complexity of this algorithm
is O(n2). Wodecki finds errors below 5% for 40-job
earliness-tardiness problems after 2n2 iterations, but using
another algorithm to find a suitable starting point [22].

Tan et al. find that branch and bound (B&B) would be
the preferred solution for smaller problems compared to
SA and Genetic Algorithms since it yields an optimum
solution in an acceptable time period [14]. Their particular
problem considers sequence-dependent setup times in the
minimisation of total tardiness. Other examples of branch
and bound approaches are [23–26]. Mazdeh et al. compare
the performance of a B&B algorithm with a Dynamic
Programming (DP) method and show that using B&B
gives significantly better efficiency than DP owing to the
time complexity of DP [13]. DP for scheduling is also
investigated in [27–36].

Neighbourhood search [37, 38], particle swarm [39]
and recovering beam search [40] are all examples of
alternative techniques seen in the literature. Problems
modelled as multiple competing agents are presented by
Perez-Gonzalez and Framinan [41] and Mor and Mosheiov
[42] who present a polynomial time solution for a specific
two-agent problem. The proposed Goal Programming

method of Li, Fonseca and Chen promises to ensure a
global optimum solution is found but fails to highlight
the trade-off with computational complexity [43]. Linear
programming solutions that include certain upper bounds
are presented by Ng, Cheng and Kovyalov [44] and an
analysis of a linear programming heuristic by Potts shows
that for the minimisation of maximum completion time on
two parallel machines, a linear time algorithm can be used
[45].

2.3 Other hybrid or combined algorithms

Yannibelli and Amandi combine SA and an evolutionary
algorithm [46]. In their formulation the stage of the evolu-
tionary algorithm and level of diversity of the population
changes the behaviour of the SA algorithm. Gupta and
Smith tackle the single machine scheduling problem for
minimising total tardiness, with the sequence dependent
setup times [47] using a greedy randomised adaptive search
procedure. Other approximation algorithms [48] and
memetic algorithms (which include scatter search) [49, 50]
used are claimed to combine the strengths of a hierarchical
population approach such as in GA, and the “intensification
power” of local search procedures [50] ∗.

2.4 Metropolis-Hastings Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods have
arguably been the most influential algorithms of the
20th century, being used in fields as varied as Physics,
Engineering, Econometrics, Statistics and Computer
Science. Surprisingly, this kind of Monte Carlo does not
appear to have been used in scheduling applications at all.
Developments in MCMC are ongoing with improvements
such as adaptive MCMC [52, 53], Hamiltonian Monte
Carlo [55] and various papers on convergence diagnostics
[57–60].

3. FORMULATION OF THE MODEL

3.1 The Scheduling Problem

Figure 1 illustrates elements of the general scheduling
problem. The single machine scheduling problem is
defined by a set of n jobs or tasks J = (J1, J2, ..., Jn) to
be processed by a single machine. Each job j ∈ J can
be characterised by its processing time (pj), due window
beginning at ej and ending at dj , and possible weightings
(wj) which indicate relative importance. The unique
weighted earliness of job j is w′

jEj and the weighted
tardiness is w′′

j Tj . The job’s start time is denoted sj
and completion time is Cj . We assume pre-emption is

∗ Many researchers use mean CPU run times of their algorithms as
a performance measure (examples are [6, 7, 15]) but neglect to present
the complexity order of their algorithms. This makes comparisons fairly
meaningless as myriad factors affect run times, including the platform,
other software running on the platform, the language in which the
algorithms are coded, and the developer’s coding technique. This is why
we have opted not to record running times.
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Figure 1: Example representation of a schedule

not allowed, i.e. the job must be completed without
interruption, so we can define completion time as

Cj = sj + pj

Earliness (Equation (1)) and tardiness (Equation (2)) are
defined for a job with due window as

Ej = max{ej − Cj ; 0} (1)

and
Tj = max{Cj − dj ; 0} = max{Lj ; 0} (2)

The scheduling objective of our work is Equation (3)

min γ = min
∑
j∈J

(w′
jEj + w′′

j Tj) (3)

and we seek a solution that has a small deviation from the
optimum (less than 5%) in an efficient way.

A feasible schedule has no overlapping jobs and no job
starting earlier than the schedule start time, i.e condition
Equation (4) is met.

{si ≥ Cj ∀ i > j } ∧ {si ≥ t0} ∀ i, j ∈ J (4)

We assume the processing times of jobs are known a priori
to the scheduling activity and all jobs are available from the
start of the scheduling activity, that machine idle time is not
allowed and no setup time is considered, pre-emption is not
allowed, and there are no precedence relationships between
jobs. Therefore the scheduling decision involves only the
order in which jobs are to be scheduled.

3.2 Solution Approach

The solution approach relies on a novel way of visualising
the search space not as n! schedules consisting of
permutations of n jobs, but as an array of indices 0 to n!−1
arranged radially similar to the hours of a clock, as shown
in Figure 2. The indices are keys to the permutations of
the base schedule {1, 2, ..., 10} sorted into lexicographical
order.
In order to find our proverbial needle in a haystack we
introduce a two-step process, outlined as:
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Figure 2: Representation of the search space as schedule
indices arranged radially in a similar manner to the hours
of a clock

• In the first step the search space of schedule indices
is divided into m equal sections. We then perform
pre-sampling by Metropolis-Hastings Markov Chain
Monte Carlo on the sections to obtain a distribution of
the likelihood of each section containing an optimal
solution.

• In the second step we select the section with the
highest apparent likelihood of containing an optimum
schedule and perform SA searching for a schedule
index only within the bounds of the chosen section.

We call this hybrid algorithm SAM (SA with
Metropolis-Hastings). Using SAM we are able to
reduce the search space by a factor of 20 or even 100
so that SA can find a minimally deviant, or in many
cases the optimum solution, significantly faster than when
performed on the complete search space. The circular
representation of schedule indices enables us to use
any sampling procedure that is not bounded by simply
continuing around the clock by however many revolutions
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are required for values sampled over n!− 1.

Pre-sampling: Formally, in the first step each index i ∈ I
maps to the set of schedules S(i) ⊂ S within a section i of
size |S|

m as per Equation (5).

i → S(i) = Sx, Sx+1, ..., Sx+[n!
m ]−1 (5)

Metropolis-Hastings MCMC requires the definition of
three functions, a target distribution p(x), a proposal
distribution q(·) from which to sample and a sampling
distribution. The Markov Chain then evolves by choosing
a candidate point from the proposal distribution using the
sampling distribution and calculating whether to reject
or accept the candidate sample (state) according to the
acceptance probability (Equation (6)).

α =
p(i(t))q(i(t)|i(t−1))

p(i(t−1))q(i(t−1)|i(t))
(6)

In this implementation the Metropolis-Hastings sampling
involves samples drawn from section indices instead of
schedules, starting with the uniform prior distribution on
the set of section indices I = {1, 2, . . . ,m}

I ∼ P (I) : p(i) =
1

m
∀ i ∈ I (7)

The target distribution is the posterior distribution of I ,
which is inferred from data gathered about the schedules
within the section after every sample drawn from P (I).
Every time a section i is sampled, uniform inner sampling
is performed within the section and every inner sample
adds to the evidence dataset Di ∈ D. Once a section has
been sampled we use a function to calculate the likelihood
L(S(i) | i ) using Di. The likelihood is a representation of
our belief that the optimal schedule lies within the section
i. We have defined the likelihood as Equation (8)).

L(S(i)|Di) =

(
min
s∈Di

γ(Ss)

)−1

∑
j∈D

(
min
s∈j

γ(Ss)

)−1 (8)

The evidence dataset Di is drawn from a uniform
distribution since no further information is available about
the distribution of cost values in each section to justify
any other distribution. This assumption of a uniform
distribution is maintained throughout the procedure as it
is not the goal in this pre-sampling process to define
the nature of the function within each section precisely.
The posterior (Equation (9)) is updated at every iteration
and eventually the actual distribution emerges from the
Metropolis-Hastings (MH) procedure after a sufficient
number of iterations.

P (I|D) =
L(D|I)×P(I)

P(D)
(9)

Once the algorithm has suitably converged, the section
with the highest likelihood is determined, which forms the
bounds of the search space for the second step, i.e. SA.

Reduced search SA: SA is also a form of Monte Carlo
and so after choosing a starting point schedule with energy
cost E0 the algorithm progresses by generating a candidate
schedule index, calculating the energy cost of the candidate
section (Ei) and accepting if the energy cost is lower or, if
not, accepts or rejects the sample according to the condition
on the Boltzmann distribution (Equation (10)).

u < exp (−∆E/kTi) (10)

where ∆E = Ei −E0, k is the Boltzmann constant and Ti

denotes temperature at iteration i. The term u is a random
real number generated from a uniform distribution in the
interval (0, 1). This process continues until termination
conditions are met.

We generate new candidate schedules in a unique way,
based on Figure 2. The temperature T is related to how
different the new candidate schedule is from the current.
As mentioned, schedule indices are keys to the schedule
permutations sorted in lexicographical order. The set of
permutations is generated once and stored. Generating a
new candidate then requires only a lookup. This eliminates
the need to perform shift, insertion or swapping operations
every iteration as has been done in all the literature we
have seen (see Section 2.).

Two indices that are far apart refer to correspondingly
very different schedule permutations whereas indices closer
together refer to schedules that are more alike owing to the
lexicographical ordering. [−T ;T ] as indicated by the arrow
in Figure 2 gives the bounds of the uniform distribution
from which the new candidate schedule is selected so we
see that a larger temperature is more likely to generate
more different candidate solutions than lower temperatures
as the bounds are closer for lower temperatures. The
temperature follows a logarithmic relationship relative to
the starting temperature T0, and changes value every
iteration i according to Equation (11).

Ti =
T0

ln(i)
(11)

4. SIMULATION RESULTS

The most common problem instance generation technique
used in the literature is that proposed by Potts and Van
Wassenhove [45], or similarly by Hall and Posner [61],
which is considered the classical approach [6, 26] and is
also the method we use. The method is adapted to generate
due windows instead of due dates. We use a range of
tardiness factor and relative due date values to generate
the problems so we contend that the 13 problem instances
tested are sufficiently representative of real problems in as
far as proving the algorithm and methodology we present
are valid and for these performance evaluations to be at
least indicative of expected results for any given problem
instance.
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The experiments compare the performance of our two-step
SAM algorithm with basic SA run on the complete search
space. The quality of the solution obtained by the tested
algorithm is measured by the percentage deviation from the
optimal, defined in Equation (12).

% dev =
x− x∗
x∗

(12)

where x∗ is the absolute optimal solution for the problem
set and x is currently obtained solution.

Basic SA with two different starting temperatures (0.5n!
and 0.25n!) was run on all 13 problem sets, 50 times per
unique combination of parameters. Average, minimum
and maximum values were recorded as well as variance.
Experiments were performed on SAM with 20, 50 and
100 section divisions and the results compared against one
another and against basic SA. The starting temperature of
reduced search SA in SAM was half the size of a section.
The starting point for all SA runs was the median point of
the search space.

Table 1 shows that shorter runs of our SAM algorithm
yield significantly better results than basic SA of the
same length. In particular because the variances are much
smaller for SAM than basic SA (maximum variance of
29% for SAM vs. maximum variance of 47% for basic SA
in 1000 iteration run length), the worst case values of SAM
are significantly better. This can also be seen graphically
in Figure 3b and is true up to 5000 iteration run lengths.
If this algorithm is to be deployed in network managers
for scheduling packets in wireless networks the time cost
impact is of utmost importance. In this situation our SAM
algorithm would be the preferred choice over basic SA
since it can yield low deviations and near-optimal values
as close as 0.03% deviation and in a large number of cases
the optimal value, in a mere 1000 iterations.

However, there is a point in run lengths where the two
methods cross over and it is more effective to run basic
SA longer than to use SAM with longer runs. We see
from Table 1 and Figure 3a that the differences in %
deviation results are likely to be significantly better for
SAM than basic SA on the lower iteration count spectrum
and significantly better for basic SA than SAM at the
high iteration counts but in the middle iteration count
ranges the performance is not generally statistically
significantly different. This point where the difference
becomes statistically insignificant (t-test returns false) is
generally between 100 000 and 150 000 iterations. If the
accuracy of the MH results is good then SAM can provide
significant improvements but when a bad suboptimal
section is chosen, such as when the algorithm does not
escape from a local minimum, the deviation can be quite
large – as large as 24% in one of our experiments.

Large deviations after long runs are more prevalent in
SAM with 20 and 50 sections where the section and SA

search space size is larger than in those with 100 section
divisions, as can be seen in both Figure 3a and Figure
3b. However, even in this instance it must be noted that
the deviation on average does not exceed 3.5% in the
cases where the deviation is larger than that of basic SA.
This performance is still acceptable (we define up to 5%
deviation as “low”). On the other end of the spectrum
even for large sections (20 sections) very small deviations
(less than 0.2% deviation) or even the optimal value can
be obtained. The optimal value was found in 103 of 130
instances (79% of instances). For different datasets and
depending on the sections chosen by MH there is no
clear winner between 20, 50 or 100 sections as they each
perform differently on the datasets tested but SAM is the
clear winner over basic SA when run time is an important
factor as is the case in the communications application for
which we intend the algorithm.

In summary it is observed that if the coarse MH algorithm
is run for 1000 iterations, reducing the search space by a
factor of 20 and then running SA on the reduced search
space for 10 000 iterations, a similar deviation can be
achieved as running SA on the full search space for
50 000 iterations (about 5%). The improvement achieved
is reducing the run time by a factor of 4.5. While this
may seem modest, it must be noted that job sets to be
scheduled will typically be far larger than ten as used
in our experiments. For 50 jobs, let us assume that the
full search will require 1 million iterations. The cost
calculation is an unavoidable bottleneck with a complexity
O(n), which would need to be calculated 1 million times.
The combined algorithm we have presented would reduce
this to 222 223, a significantly more realistically acceptable
value for practical applications.

5. CONCLUSION

In this paper the results of the investigation into the
hypothesis that the performance of Simulated Annealing
can be improved by combining it with other sampling
methods are presented. The review of current literature has
shown that the work has importance and fills part of a gap
in the literature of finding more efficient solutions to the
single machine weighted earliness-tardiness problem for
current applications.

We present the problem and formulate our solution
approach called SAM, including a novel implementation
of Metropolis-Hastings Monte Carlo to get a coarse but
sufficiently accurate distribution over the search space that
enables a 20-100 times reduction in the size of the search
space, and a unique way of visualising the search space
that facilitates a much simplified neighbour generation
method.

While worst case computational complexity is not lower
for SAM than SA if the same neighbour generation method
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(a) Average values

(b) Maximum values

Figure 3: Histogram of the results of SAM, taken over all problem sets, shown for SAM with 20 MH sections (SAM20),
50 sections and 100 sections (SAM50 and SAM100). The results of basic SA for two different starting temperatures are
also shown for ease of comparison.
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Table 1: Average percentage deviation of SAM results compared with basic SA

Basic SA T1 Basic SA T2 SAM20 SAM50 SAM100
N Avg % Var Avg % Var Avg % Var Avg % Var Avg % Var
1k 7.84 168.78 6.98 47.72 6.19 19.74 5.82 29.03 1.83 9.89
2k 5.31 39.80 5.06 33.42 5.48 16.94 5.20 17.43 1.34 5.60
5k 3.57 13.53 3.51 12.01 4.82 8.33 4.59 12.07 0.91 2.87
10k 2.52 9.77 2.57 7.87 4.48 6.24 4.36 11.13 0.71 1.92
50k 1.23 2.00 1.16 2.00 4.03 4.21 4.06 10.12 0.52 1.25
100k 0.83 1.14 0.82 0.96 3.94 3.78 4.01 9.84 0.50 1.12
150k 0.64 0.64 0.60 0.70 3.91 3.70 4.00 9.88 0.50 1.10
200k 0.51 0.48 0.49 0.43 3.89 3.65 3.99 9.81 0.50 1.08
500k 0.25 0.21 0.25 0.26 3.86 3.46 3.99 9.80 0.50 1.08
1M 0.16 0.16 0.14 0.12 3.85 3.39 3.99 9.80 0.50 1.08

is used, the actual required run time is lower. We are
able to find low-deviation solutions in much shorter runs
than seen in the literature (as highlighted in Section 2.) or
required of the basic SA algorithm, as shown by our results.
We estimate a conservative 4.5 time reduction in required
algorithm run time can be achieved. SAM enables us to
find the optimal solution in as few as 1000 iterations. Our
neighbour generation method also displays significantly
reduced complexity. We conclude that benefit can indeed
be derived in obtaining faster solutions using SAM than
basic SA and possibly other algorithms. An extension of
this work using larger problem instances with 100 or more
jobs is recommended.
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