
Vol.109 (1) March 2018SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS58

SAM: A META-HEURISTIC ALGORITHM FOR SINGLE MACHINE
SCHEDULING PROBLEMS

Natasha Zlobinsky1,2 and Ling Cheng1

1School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg
2Meraka, Council for Scientific and Industrial Research, Meiring Naude Road, Pretoria

Abstract: The main contribution of this work is to investigate the hypothesis that the performance
of the Simulated Annealing (SA) algorithm can be improved by combining it with other sampling
methods in solving the single machine weighted earliness and tardiness scheduling problem. In
this paper we present the formulation of our novel hybrid algorithm, SAM, and the main results.
The algorithm SAM, which stands for Simulated Annealing with Metropolis-Hastings, is a two-step
process. To initialise, the search space of possible feasible schedules is divided into a number of
sections. In the first step Metropolis-Hastings sampling is performed over the sections in order to
obtain characteristics of a likelihood function over the sections so that a section with a high likelihood
of containing the optimal schedule is chosen for step two. In step two SA is run on the pruned search
space to find a solution schedule. This relies on a novel way of visualising the search space in a
geometric way as a wheel of indices. The results show that low deviation solutions can be obtained in
significantly shorter runs with SAM than seen in the literature or required of the basic SA algorithm.
We can achieve a 4.5 times reduction in required algorithm run time to achieve a less than 2% deviation
from the optimum value. SAM even enables us to find the optimal solution in as few as 1000 iterations
of SA in some cases.

Keywords: Simulated Annealing, scheduling, single-machine, earliness-tardiness, multi-objective,
MCMC, Metropolis-Hastings, meta-heuristic

1. INTRODUCTION

Scheduling can be described as the allocation of a set of
tasks over any sparse resource in order to optimise certain
objectives [1]. Numerous applications in a wide variety
of fields has resulted in a rich history of research into
optimisation for scheduling. Although it is a fundamental
form of the problem, the single machine scheduling
problem with two or more objectives is known to be
NP -hard or NP -complete [2], and so meta-heuristic
algorithms such as Genetic Algorithms (GAs), Tabu search
and Simulated Annealing (SA) are the accepted solution
technique since no optimal polynomial time algorithm
exists (unless P = NP) [3]. These meta-heuristic
algorithms may provide acceptable answers in a much
shorter time than exhaustive search or exact methods, but
there is still a time cost to pay.

Consider the problem of finding the optimal schedule
according to specific objectives in the case of only 10
tasks. The search space has an overwhelming size of
over 3.6 million options. Now consider another very
modest problem with 100 different-sized tasks. This has
of the order of 10157 possible solutions. With a history
of research mainly centred around the manufacturing
industry, traditional scheduling methods may come short
of meeting the needs of more modern applications,
where results may be more time-sensitive. In wireless
communications networks, for instance, tasks such as data

packets ought to be cleverly scheduled in time or frequency
domains or both in order to maximise data throughput
whilst optimising use of spectrum resources in a context
where the tolerance for computational delays is very low.
The issue of spectrum scarcity has become increasingly
contentious and expensive. The algorithms developed in
this work if applied to scheduling packets for wireless
communications can help to improve spectral efficiency.
In this application algorithms must find solutions quickly
enough to ensure the user experience is not negatively
affected. With such a large search space, more efficient
ways to obtain good quality solutions are required. There
is great practical necessity and potential benefit if a general
way can be found to reduce the solution search space and
shorten run times without significantly compromising the
quality of solutions, where good solutions are those that
are minimally deviant from the optimal value.

In this work we investigate if the performance of Simulated
Annealing in solving the single machine weighted
earliness-tardiness scheduling problem can be improved by
combining the SA algorithm with other sampling methods
in a two-step process, the first step being a pre-sampling
step to reduce the search space, and the second being
to run SA on the reduced search space. One of the
most powerful sampling methods available at this time is
Markov Chain Monte Carlo methods based on Bayesian
inference, which we have chosen for pre-sampling. For
our experiments we have generated thirteen problem

Vol.109 (1) March 2018 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 59

instances with different parameters, which we contend
are sufficiently representative for the results here to be of
more general significance. Performance is evaluated in
terms of running time and quality of the solution: on the
basis of required total number of iterations, and percentage
deviation from the optimum value respectively.

The contributions of this work are:

• to present the first hybrid MH-SA algorithm for use in
optimisation of scheduling problems that improves on
the efficiency of existing algorithms.

• to investigate the performance of SA in solving the
single machine scheduling problem and compare with
the new SAM algorithm.

• to present a unique application method of
Metropolis-Hastings Monte Carlo to a problem
that has not been done in the literature before, in a
way that recognises and uses specific properties of the
search space in solving this particular problem. It also
relies on a new perspective of the search space.

Despite its ability to specialise to the characteristics of the
search space, it is also a general method applicable to a
wide range of different problems and objectives.
The remainder of the document is structured as follows:
Section 2. presents some of the most pertinent work related
to the present work, the problem and solution models and
approaches are detailed in Section 3., experimental results
are presented in Section 4. before concluding in Section 5..

2. REVIEW OF RELATED WORK

2.1 Simulated Annealing

Using SA, Tan and Narasimhan investigate minimising
tardiness on a single machine with the addition of
sequence-dependent setup times [4]. A rather unique
situation is investigated by Jozefowska et al., where each
task can be executed in one of several modes, which are
divided according to activity resource requirements and
duration [5]. They use SA for minimising the makespan
with no pre-emption allowed. The researchers also
perform pre-processing on the search space to eliminate
various options. For 10-job schedules average relative
deviation without penalty functions is 0.93% but increasing
significantly to 110% maximum, in 60 000 iterations, with
performance generally improving for larger problem
instances. This trend may suggest that the results presented
in Section 4. may also be improved in larger problem
instances. Wu at al.’s experiments on SA with learning
effect had results ranging from an average percentage
deviation of 1% to maximum 1371% and even 3867% for
12-job instances [6]. Such large discrepancies indicate
that more research is required on scheduling using the SA
algorithm to get more consistent results.

Mahdavi et al. use SA for the single machine scheduling
problem to minimise total weighted earliness and tardiness
[7]. In their formulation, however, they assume fixed due
dates and controllable processing times where job lengths
can be expanded or compressed within certain limits. They
seek to find an optimal set of expansions and compressions
as well as job sequence. Multiple machine single objective
scheduling is approached using SA by Kim et al. [8].

An attempt is made to find a general solution to
multi-objective scheduling problems with two or more
objectives by Loukil et al. [9]. Their method requires
that a set of “potentially efficient” points be initialised at
the start and a family of weighting functions be defined
to direct the statistical search to potentially more efficient
solutions. It also involves a filtering procedure where the
solutions in potentially efficient sets undergo pairwise
comparison to remove solutions unfairly dominated by
any one of the objectives. These functions are used
in every iteration of the algorithm to update the set of
potentially efficient points, adding significant complexity.
The choice of weighting functions is both arbitrary and
problem-dependent, and can have a significant impact on
the solution. The authors also concede that a large number
of experiments is necessary to determine the number of
sets of weights that give “good” solutions. It is our opinion
that this method is unnecessarily complex and contains too
many variables that have a large impact on the solution
quality and run time, and that there is space for more
innovation in multi-objective scheduling algorithms.

Neighbour generation is known to be a strategic part of
the implementation of SA having an influence on the
performance [10], yet most commonly in the literature
the same methods are employed i.e. selecting random
positions and performing various shift, swap, and insertion
operations; see, for example [4–6, 8, 9, 11]. These
methods both involve unnecessary complexity and add
to the algorithm run time, necessitating the storage and
generation of a number of arrays and performing numerous
operations on them many thousands of times. We take an
entirely different approach to neighbour generation which
significantly reduces the complexity.

Initial temperature is an important parameter to fix and is
often determined by setting a starting acceptance ratio and
deriving temperature from that [8]. It has been asserted
that initial solution is also an important factor in algorithm
performance and much of the literature sees the use of
priority dispatch rules or other methods to generate a good
starting solution [8, 12, 13]. The effect of starting solution
on the final solution is investigated by Tan and Narasimhan
who find no evidence that “better than randomly selected”
initial solutions lead to lower average objective function
values in the final solution and prompting the researchers to
conclude that a properly tuned SA algorithm can produce
good results regardless of the initial solution.

Vol.109 (1) March 2018SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS60

Some researchers design the algorithm such that a
large number of solution updates is performed at every
temperature value or within a temperature range [4, 10].
This number is yet another variable that is to be determined
experimentally. Tan and Narasimhan conclude that it
would yield better results to use a smaller temperature
decay function than a larger number of updates at each
temperature [14]. We rely on this conclusion and choose
only to do one update at each temperature and use a log
temperature decay function to ensure a gentle reduction.

2.2 Other algorithms

Genetic Algorithms are popular in the scheduling literature
although there are few papers on the same optimisation
objectives as ours. Hamidinia et al. look at a similar
problem of minimising weighted tardiness and earliness
without pre-emption but in a batched delivery system
and with single due dates [15]. Other Genetic Algorithm
approaches have various differences from the problem
of this work [16–19]. Wan and Yen investigate the
performance of Tabu search methods in solving the
weighted earliness-tardiness problem with problem sizes
of 15 to 80 jobs [20]. They claim that the method usually
obtains deviations within 5% of the optimal value, with
an average 2% deviation for 15-job problems. However,
the worst case values or variances are not given. Hino and
Ronconi also solve the earliness-tardiness problem with
Tabu search, including heuristics for finding a suitable
starting schedule [21]. They find deviations ranging
from 0% to 0.25% from the heuristic benchmark (not
the optimal) for 10-job problems, solving 216 of 280
instances optimally. The complexity of this algorithm
is O(n2). Wodecki finds errors below 5% for 40-job
earliness-tardiness problems after 2n2 iterations, but using
another algorithm to find a suitable starting point [22].

Tan et al. find that branch and bound (B&B) would be
the preferred solution for smaller problems compared to
SA and Genetic Algorithms since it yields an optimum
solution in an acceptable time period [14]. Their particular
problem considers sequence-dependent setup times in the
minimisation of total tardiness. Other examples of branch
and bound approaches are [23–26]. Mazdeh et al. compare
the performance of a B&B algorithm with a Dynamic
Programming (DP) method and show that using B&B
gives significantly better efficiency than DP owing to the
time complexity of DP [13]. DP for scheduling is also
investigated in [27–36].

Neighbourhood search [37, 38], particle swarm [39]
and recovering beam search [40] are all examples of
alternative techniques seen in the literature. Problems
modelled as multiple competing agents are presented by
Perez-Gonzalez and Framinan [41] and Mor and Mosheiov
[42] who present a polynomial time solution for a specific
two-agent problem. The proposed Goal Programming

method of Li, Fonseca and Chen promises to ensure a
global optimum solution is found but fails to highlight
the trade-off with computational complexity [43]. Linear
programming solutions that include certain upper bounds
are presented by Ng, Cheng and Kovyalov [44] and an
analysis of a linear programming heuristic by Potts shows
that for the minimisation of maximum completion time on
two parallel machines, a linear time algorithm can be used
[45].

2.3 Other hybrid or combined algorithms

Yannibelli and Amandi combine SA and an evolutionary
algorithm [46]. In their formulation the stage of the evolu-
tionary algorithm and level of diversity of the population
changes the behaviour of the SA algorithm. Gupta and
Smith tackle the single machine scheduling problem for
minimising total tardiness, with the sequence dependent
setup times [47] using a greedy randomised adaptive search
procedure. Other approximation algorithms [48] and
memetic algorithms (which include scatter search) [49, 50]
used are claimed to combine the strengths of a hierarchical
population approach such as in GA, and the “intensification
power” of local search procedures [50] ∗.

2.4 Metropolis-Hastings Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods have
arguably been the most influential algorithms of the
20th century, being used in fields as varied as Physics,
Engineering, Econometrics, Statistics and Computer
Science. Surprisingly, this kind of Monte Carlo does not
appear to have been used in scheduling applications at all.
Developments in MCMC are ongoing with improvements
such as adaptive MCMC [52, 53], Hamiltonian Monte
Carlo [55] and various papers on convergence diagnostics
[57–60].

3. FORMULATION OF THE MODEL

3.1 The Scheduling Problem

Figure 1 illustrates elements of the general scheduling
problem. The single machine scheduling problem is
defined by a set of n jobs or tasks J = (J1, J2, ..., Jn) to
be processed by a single machine. Each job j ∈ J can
be characterised by its processing time (pj), due window
beginning at ej and ending at dj , and possible weightings
(wj) which indicate relative importance. The unique
weighted earliness of job j is w′

jEj and the weighted
tardiness is w′′

j Tj . The job’s start time is denoted sj
and completion time is Cj . We assume pre-emption is

∗ Many researchers use mean CPU run times of their algorithms as
a performance measure (examples are [6, 7, 15]) but neglect to present
the complexity order of their algorithms. This makes comparisons fairly
meaningless as myriad factors affect run times, including the platform,
other software running on the platform, the language in which the
algorithms are coded, and the developer’s coding technique. This is why
we have opted not to record running times.

Vol.109 (1) March 2018 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 61

Figure 1: Example representation of a schedule

not allowed, i.e. the job must be completed without
interruption, so we can define completion time as

Cj = sj + pj

Earliness (Equation (1)) and tardiness (Equation (2)) are
defined for a job with due window as

Ej = max{ej − Cj ; 0} (1)

and
Tj = max{Cj − dj ; 0} = max{Lj ; 0} (2)

The scheduling objective of our work is Equation (3)

min γ = min
∑
j∈J

(w′
jEj + w′′

j Tj) (3)

and we seek a solution that has a small deviation from the
optimum (less than 5%) in an efficient way.

A feasible schedule has no overlapping jobs and no job
starting earlier than the schedule start time, i.e condition
Equation (4) is met.

{si ≥ Cj ∀ i > j } ∧ {si ≥ t0} ∀ i, j ∈ J (4)

We assume the processing times of jobs are known a priori
to the scheduling activity and all jobs are available from the
start of the scheduling activity, that machine idle time is not
allowed and no setup time is considered, pre-emption is not
allowed, and there are no precedence relationships between
jobs. Therefore the scheduling decision involves only the
order in which jobs are to be scheduled.

3.2 Solution Approach

The solution approach relies on a novel way of visualising
the search space not as n! schedules consisting of
permutations of n jobs, but as an array of indices 0 to n!−1
arranged radially similar to the hours of a clock, as shown
in Figure 2. The indices are keys to the permutations of
the base schedule {1, 2, ..., 10} sorted into lexicographical
order.
In order to find our proverbial needle in a haystack we
introduce a two-step process, outlined as:

226800

1

453600

680400

907200

1134000

1360800

1587600

1587600

1814400

2041200

2268000

2494800

2721600

2948400

�

Figure 2: Representation of the search space as schedule
indices arranged radially in a similar manner to the hours
of a clock

• In the first step the search space of schedule indices
is divided into m equal sections. We then perform
pre-sampling by Metropolis-Hastings Markov Chain
Monte Carlo on the sections to obtain a distribution of
the likelihood of each section containing an optimal
solution.

• In the second step we select the section with the
highest apparent likelihood of containing an optimum
schedule and perform SA searching for a schedule
index only within the bounds of the chosen section.

We call this hybrid algorithm SAM (SA with
Metropolis-Hastings). Using SAM we are able to
reduce the search space by a factor of 20 or even 100
so that SA can find a minimally deviant, or in many
cases the optimum solution, significantly faster than when
performed on the complete search space. The circular
representation of schedule indices enables us to use
any sampling procedure that is not bounded by simply
continuing around the clock by however many revolutions

Vol.109 (1) March 2018SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS62

are required for values sampled over n!− 1.

Pre-sampling: Formally, in the first step each index i ∈ I
maps to the set of schedules S(i) ⊂ S within a section i of
size |S|

m as per Equation (5).

i → S(i) = Sx, Sx+1, ..., Sx+[n!
m]−1 (5)

Metropolis-Hastings MCMC requires the definition of
three functions, a target distribution p(x), a proposal
distribution q(·) from which to sample and a sampling
distribution. The Markov Chain then evolves by choosing
a candidate point from the proposal distribution using the
sampling distribution and calculating whether to reject
or accept the candidate sample (state) according to the
acceptance probability (Equation (6)).

α =
p(i(t))q(i(t)|i(t−1))

p(i(t−1))q(i(t−1)|i(t))
(6)

In this implementation the Metropolis-Hastings sampling
involves samples drawn from section indices instead of
schedules, starting with the uniform prior distribution on
the set of section indices I = {1, 2, . . . ,m}

I ∼ P (I) : p(i) =
1

m
∀ i ∈ I (7)

The target distribution is the posterior distribution of I ,
which is inferred from data gathered about the schedules
within the section after every sample drawn from P (I).
Every time a section i is sampled, uniform inner sampling
is performed within the section and every inner sample
adds to the evidence dataset Di ∈ D. Once a section has
been sampled we use a function to calculate the likelihood
L(S(i) | i) using Di. The likelihood is a representation of
our belief that the optimal schedule lies within the section
i. We have defined the likelihood as Equation (8)).

L(S(i)|Di) =

(
min
s∈Di

γ(Ss)

)−1

∑
j∈D

(
min
s∈j

γ(Ss)

)−1 (8)

The evidence dataset Di is drawn from a uniform
distribution since no further information is available about
the distribution of cost values in each section to justify
any other distribution. This assumption of a uniform
distribution is maintained throughout the procedure as it
is not the goal in this pre-sampling process to define
the nature of the function within each section precisely.
The posterior (Equation (9)) is updated at every iteration
and eventually the actual distribution emerges from the
Metropolis-Hastings (MH) procedure after a sufficient
number of iterations.

P (I|D) =
L(D|I)×P(I)

P(D)
(9)

Once the algorithm has suitably converged, the section
with the highest likelihood is determined, which forms the
bounds of the search space for the second step, i.e. SA.

Reduced search SA: SA is also a form of Monte Carlo
and so after choosing a starting point schedule with energy
cost E0 the algorithm progresses by generating a candidate
schedule index, calculating the energy cost of the candidate
section (Ei) and accepting if the energy cost is lower or, if
not, accepts or rejects the sample according to the condition
on the Boltzmann distribution (Equation (10)).

u < exp (−∆E/kTi) (10)

where ∆E = Ei −E0, k is the Boltzmann constant and Ti

denotes temperature at iteration i. The term u is a random
real number generated from a uniform distribution in the
interval (0, 1). This process continues until termination
conditions are met.

We generate new candidate schedules in a unique way,
based on Figure 2. The temperature T is related to how
different the new candidate schedule is from the current.
As mentioned, schedule indices are keys to the schedule
permutations sorted in lexicographical order. The set of
permutations is generated once and stored. Generating a
new candidate then requires only a lookup. This eliminates
the need to perform shift, insertion or swapping operations
every iteration as has been done in all the literature we
have seen (see Section 2.).

Two indices that are far apart refer to correspondingly
very different schedule permutations whereas indices closer
together refer to schedules that are more alike owing to the
lexicographical ordering. [−T ;T] as indicated by the arrow
in Figure 2 gives the bounds of the uniform distribution
from which the new candidate schedule is selected so we
see that a larger temperature is more likely to generate
more different candidate solutions than lower temperatures
as the bounds are closer for lower temperatures. The
temperature follows a logarithmic relationship relative to
the starting temperature T0, and changes value every
iteration i according to Equation (11).

Ti =
T0

ln(i)
(11)

4. SIMULATION RESULTS

The most common problem instance generation technique
used in the literature is that proposed by Potts and Van
Wassenhove [45], or similarly by Hall and Posner [61],
which is considered the classical approach [6, 26] and is
also the method we use. The method is adapted to generate
due windows instead of due dates. We use a range of
tardiness factor and relative due date values to generate
the problems so we contend that the 13 problem instances
tested are sufficiently representative of real problems in as
far as proving the algorithm and methodology we present
are valid and for these performance evaluations to be at
least indicative of expected results for any given problem
instance.

Vol.109 (1) March 2018 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 63

The experiments compare the performance of our two-step
SAM algorithm with basic SA run on the complete search
space. The quality of the solution obtained by the tested
algorithm is measured by the percentage deviation from the
optimal, defined in Equation (12).

% dev =
x− x∗
x∗

(12)

where x∗ is the absolute optimal solution for the problem
set and x is currently obtained solution.

Basic SA with two different starting temperatures (0.5n!
and 0.25n!) was run on all 13 problem sets, 50 times per
unique combination of parameters. Average, minimum
and maximum values were recorded as well as variance.
Experiments were performed on SAM with 20, 50 and
100 section divisions and the results compared against one
another and against basic SA. The starting temperature of
reduced search SA in SAM was half the size of a section.
The starting point for all SA runs was the median point of
the search space.

Table 1 shows that shorter runs of our SAM algorithm
yield significantly better results than basic SA of the
same length. In particular because the variances are much
smaller for SAM than basic SA (maximum variance of
29% for SAM vs. maximum variance of 47% for basic SA
in 1000 iteration run length), the worst case values of SAM
are significantly better. This can also be seen graphically
in Figure 3b and is true up to 5000 iteration run lengths.
If this algorithm is to be deployed in network managers
for scheduling packets in wireless networks the time cost
impact is of utmost importance. In this situation our SAM
algorithm would be the preferred choice over basic SA
since it can yield low deviations and near-optimal values
as close as 0.03% deviation and in a large number of cases
the optimal value, in a mere 1000 iterations.

However, there is a point in run lengths where the two
methods cross over and it is more effective to run basic
SA longer than to use SAM with longer runs. We see
from Table 1 and Figure 3a that the differences in %
deviation results are likely to be significantly better for
SAM than basic SA on the lower iteration count spectrum
and significantly better for basic SA than SAM at the
high iteration counts but in the middle iteration count
ranges the performance is not generally statistically
significantly different. This point where the difference
becomes statistically insignificant (t-test returns false) is
generally between 100 000 and 150 000 iterations. If the
accuracy of the MH results is good then SAM can provide
significant improvements but when a bad suboptimal
section is chosen, such as when the algorithm does not
escape from a local minimum, the deviation can be quite
large – as large as 24% in one of our experiments.

Large deviations after long runs are more prevalent in
SAM with 20 and 50 sections where the section and SA

search space size is larger than in those with 100 section
divisions, as can be seen in both Figure 3a and Figure
3b. However, even in this instance it must be noted that
the deviation on average does not exceed 3.5% in the
cases where the deviation is larger than that of basic SA.
This performance is still acceptable (we define up to 5%
deviation as “low”). On the other end of the spectrum
even for large sections (20 sections) very small deviations
(less than 0.2% deviation) or even the optimal value can
be obtained. The optimal value was found in 103 of 130
instances (79% of instances). For different datasets and
depending on the sections chosen by MH there is no
clear winner between 20, 50 or 100 sections as they each
perform differently on the datasets tested but SAM is the
clear winner over basic SA when run time is an important
factor as is the case in the communications application for
which we intend the algorithm.

In summary it is observed that if the coarse MH algorithm
is run for 1000 iterations, reducing the search space by a
factor of 20 and then running SA on the reduced search
space for 10 000 iterations, a similar deviation can be
achieved as running SA on the full search space for
50 000 iterations (about 5%). The improvement achieved
is reducing the run time by a factor of 4.5. While this
may seem modest, it must be noted that job sets to be
scheduled will typically be far larger than ten as used
in our experiments. For 50 jobs, let us assume that the
full search will require 1 million iterations. The cost
calculation is an unavoidable bottleneck with a complexity
O(n), which would need to be calculated 1 million times.
The combined algorithm we have presented would reduce
this to 222 223, a significantly more realistically acceptable
value for practical applications.

5. CONCLUSION

In this paper the results of the investigation into the
hypothesis that the performance of Simulated Annealing
can be improved by combining it with other sampling
methods are presented. The review of current literature has
shown that the work has importance and fills part of a gap
in the literature of finding more efficient solutions to the
single machine weighted earliness-tardiness problem for
current applications.

We present the problem and formulate our solution
approach called SAM, including a novel implementation
of Metropolis-Hastings Monte Carlo to get a coarse but
sufficiently accurate distribution over the search space that
enables a 20-100 times reduction in the size of the search
space, and a unique way of visualising the search space
that facilitates a much simplified neighbour generation
method.

While worst case computational complexity is not lower
for SAM than SA if the same neighbour generation method

Vol.109 (1) March 2018SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS64

(a) Average values

(b) Maximum values

Figure 3: Histogram of the results of SAM, taken over all problem sets, shown for SAM with 20 MH sections (SAM20),
50 sections and 100 sections (SAM50 and SAM100). The results of basic SA for two different starting temperatures are
also shown for ease of comparison.

Vol.109 (1) March 2018 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 65

Table 1: Average percentage deviation of SAM results compared with basic SA

Basic SA T1 Basic SA T2 SAM20 SAM50 SAM100
N Avg % Var Avg % Var Avg % Var Avg % Var Avg % Var
1k 7.84 168.78 6.98 47.72 6.19 19.74 5.82 29.03 1.83 9.89
2k 5.31 39.80 5.06 33.42 5.48 16.94 5.20 17.43 1.34 5.60
5k 3.57 13.53 3.51 12.01 4.82 8.33 4.59 12.07 0.91 2.87
10k 2.52 9.77 2.57 7.87 4.48 6.24 4.36 11.13 0.71 1.92
50k 1.23 2.00 1.16 2.00 4.03 4.21 4.06 10.12 0.52 1.25
100k 0.83 1.14 0.82 0.96 3.94 3.78 4.01 9.84 0.50 1.12
150k 0.64 0.64 0.60 0.70 3.91 3.70 4.00 9.88 0.50 1.10
200k 0.51 0.48 0.49 0.43 3.89 3.65 3.99 9.81 0.50 1.08
500k 0.25 0.21 0.25 0.26 3.86 3.46 3.99 9.80 0.50 1.08
1M 0.16 0.16 0.14 0.12 3.85 3.39 3.99 9.80 0.50 1.08

is used, the actual required run time is lower. We are
able to find low-deviation solutions in much shorter runs
than seen in the literature (as highlighted in Section 2.) or
required of the basic SA algorithm, as shown by our results.
We estimate a conservative 4.5 time reduction in required
algorithm run time can be achieved. SAM enables us to
find the optimal solution in as few as 1000 iterations. Our
neighbour generation method also displays significantly
reduced complexity. We conclude that benefit can indeed
be derived in obtaining faster solutions using SAM than
basic SA and possibly other algorithms. An extension of
this work using larger problem instances with 100 or more
jobs is recommended.

REFERENCES

[1] R.L. L. Graham, E.L. L. Lawler, J.K. K. Lenstra,
and A.H.G. H G Rinnooy Kan. Optimization
and approximation in deterministic sequencing and
scheduling: a survey. Annals of Discrete
Mathematics, 5(C):287–326, 1979. ISSN 01675060.
doi: 10.1016/S0167-5060(08)70356-X.

[2] Michael L. Pinedo. Scheduling Theory, Algorithms,
and Systems. Springer Science+Business MediA,
New York, USA, third edition, 2008. ISBN
9780387789347.

[3] M.R. Garey and D.S. Johnson. Computers
and intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and company, New
York, 1979. ISBN 0716710447.

[4] K.C. Tan and R. Narasimhan. Minimizing tardiness
on a single processor with sequence-dependent setup
times: a simulated annealing approach. Omega,
International Journal of Management Science, 25(6):
619–634, 1997. ISSN 03050483. doi: 10.1016/
S0305-0483(97)00024-8.

[5] Jan Weglarz Joanna Jozefowska, Marek Mika,
Rafal Rozycki, Grzegorz Waligora. Simulated
Annealing for Multi-Mode Resource-Constrained
Project Scheduling. Annals of Operations Research,
102:137–155, 2001.

[6] Chin Chia Wu, Hung Ming Chen, Shuenn Ren Cheng,
Chou Jung Hsu, and Wen Hung Wu. Simulated
annealing approach for the single-machine total
late work scheduling problem with a position-based
learning. 2011 IEEE 18th International Conference
on Industrial Engineering and Engineering Manage-
ment, IE and EM 2011, pages 839–843, 2011. doi:
10.1109/IEEM.2011.6035289.

[7] Iraj Mahdavi, Vahid Kayvanfar, and G. M. Komaki.
Minimizing total tardiness and earliness problem
with controllable processing times using an effective
heuristic. 40th International Conference on Com-
puters and Industrial Engineering: Soft Computing
Techniques for Advanced Manufacturing and Service
Systems, CIE40 2010, 2010. doi: 10.1109/ICCIE.
2010.5668166.

[8] Dong-Won Kim, Kyong-Hee Kim, Wooseung Jang,
and F Frank Chen. Unrelated parallel ma-
chine scheduling with setup times using simulated
annealing. Robotics and Computer-Integrated
Manufacturing, 18:223–231, 2002. ISSN 07365845.
doi: 10.1016/S0736-5845(02)00013-3.

[9] T. Loukil, J. Teghem, and D. Tuyttens. Solving
multi-objective production scheduling problems us-
ing metaheuristics. European Journal of Operational
Research, 161:42–61, 2005. ISSN 03772217. doi:
10.1016/j.ejor.2003.08.029.

[10] João Tomé Saraiva, Marcelo Leandro Pereira,
Virgı́lio Torrado Mendes, and José Carlos Sousa. A
Simulated Annealing based approach to solve the

Vol.109 (1) March 2018SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS66

generator maintenance scheduling problem. Electric
Power Systems Research, 81:1283–1291, 2011. doi:
10.1016/j.epsr.2011.01.013. URL www.elsevier.com/
locate/epsr.

[11] Sergio Fichera, Fulvio Cappadonna, Antonio Costa,
and Alberto Fichera. A Simulated Annealing
Algorithm for Single Machine Scheduling Problem
with Release Dates, Learning and Deteriorating
Effects. Proceedings of the World . . . , I:6–8, 2013.
ISSN 20780958. URL http : / / www. iaeng . org /
publication/WCE2013/WCE2013{ }pp584-586.pdf.

[12] W. H M Raaymakers and J. a. Hoogeveen. Scheduling
multipurpose batch process industries with no-wait
restrictions by simulated annealing. European
Journal of Operational Research, 126:131–151,
2000. ISSN 03772217. doi: 10.1016/S0377-2217(99)
00285-4.

[13] Mohammad Mahdavi Mazdeh, Mansoor Sarhadi, and
Khalil S. Hindi. A branch-and-bound algorithm
for single-machine scheduling with batch delivery
minimizing flow times and delivery costs. European
Journal of Operational Research, 183:74–86, 2007.
ISSN 03772217. doi: 10.1016/j.ejor.2006.09.087.

[14] K Tan. A comparison of four methods for minimizing
total tardiness on a single processor with sequence
dependent setup times. Omega, 28:313–326, 2000.
ISSN 03050483. doi: 10.1016/S0305- 0483(99)
00050-X.

[15] Amir Hamidinia, Sahand Khakabimamaghani, Mo-
hammad Mahdavi Mazdeh, and Mostafa Jafari.
A genetic algorithm for minimizing total tardi-
ness/earliness of weighted jobs in a batched delivery
system. Computers and Industrial Engineering, 62
(1):29–38, 2012. ISSN 03608352. doi: 10.1016/j.cie.
2011.08.014. URL http://dx.doi.org/10.1016/j.cie.
2011.08.014.

[16] Amir Ebrahimy Zade and Mohammad Bagher
Fakhrzad. A Dynamic Genetic Algorithm for Solving
a Single Machine Scheduling Problem with Periodic
Maintenance. ISRN Industrial Engineering, 2013,
2013.

[17] Mahesh C. Gupta, Yash P. Gupta, and Anup Kumar.
Minimizing flow time variance in a single machine
system using genetic algorithms. European Journal
of Operational Research, 70:289–303, 1993. ISSN
03772217. doi: 10.1016/0377-2217(93)90240-N.

[18] Murat Köksalan and Ahmet Burak Keha. Using
genetic algorithms for single-machine bicriteria
scheduling problems. European Journal of Op-
erational Research, 145(3):543–556, 2003. ISSN
03772217. doi: 10.1016/S0377-2217(02)00220-5.
URL http://www.sciencedirect.com/science/article/
pii/S0377221702002205.

[19] Fariborz Jolai, M. Rabbani, S. Amalnick, a. Dabaghi,
M. Dehghan, and M. Yazadn Parast. Genetic
algorithm for bi-criteria single machine scheduling
problem of minimizing maximum earliness and
number of tardy jobs. Applied Mathematics and
Computation, 194:552–560, 2007. ISSN 00963003.
doi: 10.1016/j.amc.2007.04.063.

[20] Guohua Wan and B. P C Yen. Tabu search for single
machine scheduling with distinct due windows and
weighted earliness/tardiness penalties, 2002. ISSN
03772217.

[21] Celso M. Hino, Débora P. Ronconi, and André B.
Mendes. Minimizing earliness and tardiness penalties
in a single-machine problem with a common due
date. European Journal of Operational Research,
160:190–201, 2005. ISSN 03772217. doi: 10.1016/j.
ejor.2004.03.006.

[22] Mieczysław Wodecki. A block approach to
earliness-tardiness scheduling problems. Interna-
tional Journal of Advanced Manufacturing Technol-
ogy, 40(7-8):797–807, 2009. ISSN 02683768. doi:
10.1007/s00170-008-1395-7.

[23] Adam Janiak, Władysław a Janiak, Tomasz Krysiak,
and Tomasz Kwiatkowski. A survey on scheduling
problems with due windows. European Journal of
Operational Research, 242:347–357, 2015. doi: 10.
1016/j.ejor.2014.09.043.

[24] Candace A. Yano and Y. D. Kim. Algorithms
for single machine scheduling problems minimizing
tardiness and earliness. Technical report, 1986.

[25] Bora P Ronconi and Rcio S Kawamura. The single
machine earliness and tardiness scheduling problem
: lower bounds and a branch-and-bound algorithm *.
Computational & applied mathematics, 29:107–124,
2010. ISSN 01018205. doi: 10 .1590/S1807-
03022010000200002.

[26] Guohua Wan and Benjamin P.-C. C Yen. Single
machine scheduling to minimize total weighted
earliness subject to minimal number of tardy jobs.
European Journal of Operational Research, 195(1):
89–97, may 2009. ISSN 03772217. doi: 10.1016/
j.ejor.2008.01.029. URL http://www.sciencedirect.
com/science/article /pii /S0377221708001628http: / /
dx.doi.org/10.1016/j.ejor.2008.01.029.

[27] Candace Arai Yano and Yeong-dae Kim. Algorithms
for a class of single-machine weighted tardiness and
earliness problems. European Journal of Operational
Research, 52:167–178, 1991.

[28] Suresh Chand, Hans Schneeberger, and West
Lafayette. Theory and Methodology Single machine
scheduling to minimize weighted earliness subject
to no tardy jobs. European Journal of Operational
Research, 34:221–230, 1988.

Vol.109 (1) March 2018 SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS 67

[29] Wooseung Jang. Dynamic scheduling of stochastic
jobs on a single machine. European Journal of
Operational Research, 138:518–530, 2002. ISSN
03772217. doi: 10.1016/S0377-2217(01)00174-6.

[30] Toshihide Ibaraki and Yuichi Nakamura. A dynamic
programming method for single machine scheduling.
European Journal of Operational Research, 76:
72–82, 1994. ISSN 03772217. doi: 10.1016/0377-
2217(94)90007-8.

[31] Valery S. Gordon and Vitaly a. Strusevich. Single
machine scheduling and due date assignment with
positionally dependent processing times. European
Journal of Operational Research, 198(1):57–62,
2009. ISSN 03772217. doi: 10.1016/j.ejor.2008.
07.044. URL http://dx.doi.org/10.1016/j.ejor.2008.
07.044.

[32] Min Ji and T.C.E. Cheng. Batch scheduling of
simple linear deteriorating jobs on a single machine
to minimize makespan. European Journal of
Operational Research, 202(1):90–98, apr 2010. ISSN
03772217. doi: 10.1016/j.ejor.2009.05.021. URL
http : / /www.sciencedirect . com/science / article /pii /
S0377221709003518.

[33] Francis Sourd. Optimal timing of a sequence of tasks
with general completion costs. European Journal
of Operational Research, 165:82–96, 2005. ISSN
03772217. doi: 10.1016/j.ejor.2004.01.025.

[34] W. K. Yeung, Ceyda Oguz, and T. C Edwin Cheng.
Single-machine scheduling with a common due
window. Computers and Operations Research, 28:
157–175, 2000. ISSN 03050548. doi: 10.1016/
S0305-0548(99)00097-0.

[35] Shunji Tanaka. An Exact Algorithm for the
Single-Machine Earliness Tardiness Scheduling
Problem. pages 21–41, 2012. doi: 10.1007/978-1-
4614-1123-9.

[36] Dvir Shabtay. The single machine serial batch
scheduling problem with rejection to minimize total
completion time and total rejection cost. European
Journal of Operational Research, 233(1):64–74,
2014. ISSN 03772217. doi: 10.1016/j.ejor.2013.
08.013. URL http://dx.doi.org/10.1016/j.ejor.2013.
08.013.

[37] Marcelo Ferreira Rego, Marcone Jamilson, Freitas
Souza, Marcone Jamilson Freitas Souza, and José
Elias Claudio Arroyo. Multi-objective algorithms
for the single machine scheduling problem with
sequence-dependent family setups. Proceedings -
International Conference of the Chilean Computer
Science Society, SCCC, pages 142–151, 2013. ISSN
15224902. doi: 10.1109/SCCC.2012.24.

[38] Zhao Ruiguo Zhao Ruiguo and Li Jiejia Li Jiejia.
Neighborhood search algorithm for one-machine
scheduling problem with time lags. 2009 Chinese
Control and Decision Conference, pages 1937–1940,
2009. doi: 10.1109/CCDC.2009.5191609.

[39] Davide Anghinolfi and Massimo Paolucci. A
new discrete particle swarm optimization approach
for the single-machine total weighted tardiness
scheduling problem with sequence-dependent setup
times. European Journal of Operational Research,
193:73–85, 2009. ISSN 03772217. doi: 10.1016/j.
ejor.2007.10.044.

[40] B. Esteve, C. Aubijoux, A. Chartier, V T Õ, and
V. T’kindt. A recovering beam search algorithm for
the single machine Just-in-Time scheduling problem.
European Journal of Operational Research, 172(3):
798–813, aug 2006. ISSN 03772217. doi: 10.1016/
j.ejor.2004.11.014. URL http://www.sciencedirect.
com/science/article/pii/S0377221704008574.

[41] Paz Perez-Gonzalez and Jose M. Framinan. A
common framework and taxonomy for multicriteria
scheduling problems with interfering and competing
jobs: Multi-agent scheduling problems. European
Journal of Operational Research, 235(1):1–16, 2014.
ISSN 03772217. doi: 10.1016/j.ejor.2013.09.017.
URL http://dx.doi.org/10.1016/j.ejor.2013.09.017.

[42] Baruch Mor and Gur Mosheiov. Single machine batch
scheduling with two competing agents to minimize
total flowtime. European Journal of Operational
Research, 215(3):524–531, 2011. ISSN 03772217.
doi: 10.1016/j.ejor.2011.06.037. URL http://dx.doi.
org/10.1016/j.ejor.2011.06.037.

[43] Lei Li, Daniel J. Fonseca, and Der S. Chen.
Earliness-tardiness production planning for
just-in-time manufacturing: A unifying approach by
goal programming. European Journal of Operational
Research, 175:508–515, 2006. ISSN 03772217. doi:
10.1016/j.ejor.2005.06.009.

[44] C T Daniel Ng, T C Edwin Cheng, and Mikhail Y
Kovalyov. Single machine batch scheduling with
jointly compressible setup and processing times. 153:
211–219, 2004. doi: 10.1016/S0377-2217(02)00732-
4.

[45] Chris N Potts and Luk N Van Wassenhove. A
Branch and Bound Algorithm for the Total Weighted
Tardiness Problem. Operations Research, 33(2):
363–377, 1985.

[46] Virginia Yannibelli and Analı́a Amandi. Expert Sys-
tems with Applications Hybridizing a multi-objective
simulated annealing algorithm with a multi-objective
evolutionary algorithm to solve a multi-objective
project scheduling problem. Expert Systems

Vol.109 (1) March 2018SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS68

With Applications, 40(7):2421–2434, 2013. ISSN
0957-4174. doi: 10.1016/j.eswa.2012.10.058. URL
http://dx.doi.org/10.1016/j.eswa.2012.10.058.

[47] Skylab R. Gupta and Jeffrey S. Smith. Algorithms
for single machine total tardiness scheduling with
sequence dependent setups. European Journal of
Operational Research, 175(2):722–739, dec 2006.
ISSN 03772217. doi: 10.1016/j.ejor.2005.05.018.
URL http://www.sciencedirect.com/science/article/
pii/S0377221705005060.

[48] Stavros G Kolliopoulos and George Steiner. Ap-
proximation algorithms for scheduling problems
with a modified total weighted tardiness objective.
Operations Research Letters, 35(5):685–692, sep
2007. ISSN 0167-6377. doi: http : / / dx .
doi . org / 10 . 1016 / j . orl . 2006 . 12 . 002. URL
http : / /www.sciencedirect . com/science / article /pii /
S0167637706001337.

[49] J. Talebi, H. Badri, F. Ghaderi, and E. Khosravian.
An efficient scatter search algorithm for minimizing
earliness and tardiness penalties in a single-machine
scheduling problem with a common due date. 2009
IEEE Congress on Evolutionary Computation, CEC
2009, pages 1012–1018, 2009. doi: 10.1109/CEC.
2009.4983056.

[50] Paulo M França, Alexandre Mendes, Pablo Moscato,
Paulo M Franc, Alexandre Mendes, and Pablo
Moscato. A memetic algorithm for the total tardiness
single machine scheduling problem. European
Journal of Operational Research, 132(1):224–242,
jul 2001. ISSN 03772217. doi: 10.1016/S0377-
2217(00)00140-5. URL http://www.sciencedirect.
com/science/article/pii/S0377221700001405.

[51] Gareth O. Roberts and Jeffrey S. Rosenthal. Examples
of Adaptive MCMC. Technical Report 0610,
University of Toronto Department of Statistics, 2008.

[52] David Luengo and Luca Martino. Fully Adaptive
Gaussian Mixture Metropolis-Hastings Algorithm.
arXiv preprint arXiv:1212.0122, (Mcmc):1–10, 2012.
URL http://arxiv.org/abs/1212.0122.

[53] Nimalan Mahendran, Z Wang, F Hamze, and
N. De Freitas. Adaptive MCMC with Bayesian
Optimization. Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics
(AISTATS), 9:152, 2010.

[54] Heikki Haario, Eero Saksman, and Johanna Tammi-
nen. Adaptive proposal distribution for random walk
Metropolis algorithm. Computational Statistics, 14
(3):375, 1999. ISSN 09434062. doi: 10.1007/
s001800050022.

[55] Andrei Kramer, Ben Calderhead, and Nicole Radde.
Hamiltonian Monte Carlo methods for efficient

parameter estimation in steady state dynamical
systems. BMC bioinformatics, 15(1):253, 2014. ISSN
1471-2105. doi: 10.1186/1471-2105-15-253. URL
http://www.biomedcentral.com/1471-2105/15/253.

[56] Peter J Green. Reversible jump Markov chain
Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732, 1995.
ISSN 0006-3444. doi: 10.1093/biomet/82.4.711.

[57] G. O. Roberts, a. Gelman, and W. R. Gilks. Weak
convergence and optimal scaling of random walk
Metropolis algorithms, 1997. ISSN 10505164.

[58] Stephen P Brooks and Gareth O. Roberts. Assessing
Convergence of Markov Chain Monte Carlo Algo-
rithms. Statistics and Computing, 8:319–335, 1997.
ISSN 0717-6163. doi: 10.1007/s13398-014-0173-
7.2.

[59] M Jerrum and A. Sinclair. The Markov chain
Monte Carlo method: an approach to approximate
counting and integration. Approximation algorithms
for NP-hard problems, pages 482–520, 1997. doi:
10.1109/GLOCOM.2004.1377963.

[60] M K Cowles and B P Carlin. Markov chain Monte
Carlo convergence diagnostics: a comparative review.
J. Amer. Stat. Assoc., 91(434):883–904, 1996.

[61] Nicholas G Hall and Marc E. Posner. Generating
Experimental Data for Computational Testing with
Machine Scheduling Applications. Operations
Research, 49(6):854–865, 2001.

