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Abstract: Cooperative spectrum sensing (CSS) alleviates the problem of imperfect detection of primary
users (PU)s in cognitive radio (CR) networks by exploiting spatial diversity of the different secondary
users (SUs). The efficiency of CSS depends on the accuracy of the SUs in detecting the PU and accurate
decision making at the fusion center (FC). This work exploits the higher order statistical (HOS) tests
of the PU signal for blind detection by the SUs and combination of their decision statistics to make a
global decision at the FC. To minimize energy, a two stage optimization paradigm is carried out, firstly
by optimal iterative selection of SUs in the network using Lagrange criterion and secondly optimized
fusion techniques achieved by Neyman Pearson. The probability of detecting the PU based on HOS and
hard fusion schemes is investigated. The results indicate that the Omnibus HOS test based detection
and optimized majority fusion rule greatly increases the probability of detecting the PU and reduces the
overall system energy consumption.
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1. INTRODUCTION

Cooperative spectrum sensing (CSS) utilizes multiple
secondary users (SUs) to sense the vacant spectrum and
send their decision to the fusion center (FC) for a final
global decision to be made regarding the presence of
the primary user (PU) on the channel. CSS overcomes
the challenges of wireless channel characteristics such as
multipath fading, shadowing or hidden terminal problem
experienced when only one SU is employed to detect the
PU. This is due to the spatial diversity of the different SUs
cooperating to make the final decision on the status of the
PU on the channel [1, 2]. A number of spectrum detection
schemes have been proposed to detect the presence or
absence of PU, among them include energy, matched filter
and cyclostationary methods [3]. In most practical systems
the transmission channels are usually noisy hence causing
tremendous reduction in signal to noise ratio (SNR) of the
PU received signals. This has prompted the need for the
higher order statistical (HOS) detection techniques which
have very high sensitivity at low SNR signal condition
while maintaining reasonable circuit complexity [4]. CSS
can generally be divided into two detection stages; local
update stage and global fusion stage. At the local update
stage, the individual SUs detect the received PU’s signals
based on HOS. The SU then computes a local decision
and sends it to the FC for fusion. The commonly used
metrics that utilize the HOS properties to detect the PU’s
received signals include Jarque-Bera, kurtosis, skewness
and omnibus tests. These statistical tests are utilized to
determine the probability distribution function (PDF) of a
group of data samples. This is crucial for benchmarking
the distribution in order to make an informed inference on
a physical phenomena (existence of PU on the channel) [5].

In this paper, the performance analysis of the HOS tests on
the PU signal is investigated with aim of selecting the best
statistical technique in determining the status of the PU on
the channel. This has not been adequately addressed in
literature.
The global fusion stage is performed at the fusion
centre where either soft or hard combination schemes are
employed to fuse the received signals from individual
SUs [6]. Furthermore to reduce energy consumption in
the cooperative network not all the SU need to report
their individual decisions. To optimize on the number
of SUs selected to participate in the fusion process, this
paper proposes a two stage optimization strategy. The
first stage is to select the SUs which qualify to transmit
their individual decision data to the fusion center. To
achieve this an iterative optimization threshold algorithm
is employed and determined based on the SUs’ SNR.
However, this is at the cost of minimizing on the
error probability formulated by the Lagrange optimization
criterion. The rest of SUs that do not meet this threshold
are rejected at this sensing point in time (they are not
allowed to transmit). Those SUs selected during the
first optimization stage are subjected to the second stage
optimization process, realized by a prudent and optimal
choice of hard fusion criteria taken to fuse the SUs
binary decisions. A strategic k out of n counting rule
is adopted to determine the optimal combinatorial order
of the SUs to be considered for final global fusion. To
realize this, Neyman-Pearson optimization criterion is
employed through an iterative Bisection numerical search
algorithm formulated on k out of n rule. The cost function
is to maximize the probability of detection subject to
minimizing of the probability of false alarm. In summary,
a hybrid detection strategy of HOS local detection test and
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optimal global fusion technique was implemented. The
simulated results show that an optimal k out of n fusion rule
based on omnibus test perform better than other HOS tests
in terms of detection probability. In this model, not all
SUs participate in detection at any one sensing time frame
hence great energy cost saving in the whole cooperative
spectrum sensing network.
The rest of the paper is organized as follows. Section
II presents the related work, section III describes the
system model, section IV is devoted on local spectrum
sensing, section V focuses on the fusion techniques,
section VI presents the energy efficiency. Simulation
results illustrating the effectiveness of the scheme are
given in section VII and finally, section VIII, draws the
conclusions.

2. RELATED WORK

Cooperative spectrum sensing schemes have not
exhaustively been studied in the current literature.
In [7], authors investigated the performance of energy
based CSS scheme where a group of SUs cooperated to
detect the presence or absence of primary user (PU) in
fading channel environment. They also made comparative
study on the three main hard fusion techniques i.e.
OR-logic, AND-logic and Majority-logic to make global
decisions at the fusion center. In [8], authors proposed
selection technique based on iteratively setting different
thresholds for different signal to noise ratio (SNR) of SUs
in cooperative spectrum sensing with OR logic fusion
technique done at the fusion centre. This scheme highly
outperformed the traditional energy spectrum sensing
with the same threshold in terms of reduced probability
of false alarm. Higher order test (HOS) have been
utilized in literature to analyze data distribution and its
degree of departure from the normal distribution. The
concept of separation is based on the maximization of the
non-Gaussian property of separated signals to improve the
robustness against noise uncertainty. The authors in [9],
proposed kurtosis and skewness (goodness-of-fit) test to
check the non-Gaussianity of an averaged periodogram
of received SUs signal. This is computed from the Fast
Fourier transform (FFT) of the PU signal to justify its
existence and hence the availability or not of the spectrum
for a cognitive radio transmission. Their findings showed
improved detection of the PU signals especially under
very low SNR conditions i.e. the SUs are able to detect
the primary channel with certainty even under very noisy
environment. In [10], authors proposed Jarque-Bera tests
based spectrum sensing algorithm and compared it to a
kurtosis & skewness combination test statistics. From
their simulated results they concluded that Jarque-Bera
showed better detection performance than the kurtosis
& skewness in terms of the reliability i.e. improved
probability of detection for different values of SUs’ SNR.
In the emerging research on spectrum sensing schemes,
researchers considered a number of modulation schemes
on multipath fading channel based on Jarque-Bera test
in detection of the primary user. These schemes were
considered to transcend the absence of a priori information

of the spectrum occupancy under additive white Gaussian
noise channel [4]. In [11], authors showed Jarque-Bera
as having rather poor small data sample properties,
slow convergence of the test statistic to its limiting
distribution. In their findings the power of the statistical
tests showed the same eccentric form, the reason being
skewness and kurtosis are not independently distributed,
and the sample kurtosis especially attains normality very
gradually. However, the JB test is simple to calculate and
its power has proved to match other powerful statistical
tests. A genuine omnibus tests should be consistent
to any departure from the null hypothesis. In [12],
authors formulated omnibus test which is based on the
standardized third and fourth moments. This was done to
assess the normality of random variables by calculating
the transformed samples of kurtosis & skewness. In the
computational economics these authors showed omnibus’s
simplicity provided by the chi-squared framework. In this
work the omnibus test is applied in CSS and compared
to other well known Jarque-Bera, kurtosis and skewness
tests. Fusion of the decisions received at the fusion center
with a view to make the final global decision on the status
of the primary user is also another important challenge
that has not been exhaustively studied. Fusion techniques
are classified into soft and hard combination schemes. In
hard decision strategy the FC combines binary decisions
using standard hard decision rules to achieve the global
decision. Three hard combining decision rules used to
arrive at the final decision are classified as AND, OR and
majority also called k out of n counting rule [13]. In [14],
authors made a comparative study of the performance of
the three hard fusion techniques. In their findings they
concluded that AND rule was the most reliable fusion
scheme followed by majority and the lastly the OR rule.
Another comparative study on the performance of hard
fusion schemes and soft decision schemes was done by
authors in [15]. In their study they confirmed earlier
research done to justify that soft fusion decision reported
better PU signal detection, albeit having significant data
communication overheads. Hard combination schemes
however have attracted most attention from researchers
since these fusion schemes are easy to implement by
simple logics gates. The authors in [16], proposed
strategies on how the AND, majority and OR fusion
rules are optimized based on the Neyman-Pearson
criterion. Under this strategy the sensing objective was to
maximize the probability of detection with the constraint
on the probability of false alarm of less than 10 percent.
Their findings showed AND rule had higher detection
performance than the other two. Spectrum sensing in
the IEEE 802.22 standard, for example requires stringent
sensing of a false alarm probability of less than 0.1 for
a signal as low as -20 dB (SNR) [17]. In [18], authors
proposed an the iterative threshold cooperative spectrum
technique. Their objective was to optimize the thresholds
of the cooperative spectrum sensing with different fusion
rules including AND logic & OR logic. This was done in
order to obtain the optimal SUs in cooperative spectrum
sensing and their optimal thresholds. Their algorithm
achieved better detection performance for SUs’ with
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different SNR. The optimal scheme also employed fewer
SUs in collaborative sensing at the fusion center. In [19],
the authors proposed an optimized detection threshold in
order to minimize both the error detection probabilities
of single-channel and multichannel cooperative spectrum
sensing. In single-channel cooperative spectrum sensing,
they performed an iterative optimal thresholds with
AND logic, OR logic and k out of n rule respectively.
Their findings showed a great decrease in the error on
detecting PU status on the channel. Energy efficiency
in the cognitive radio network is defined as the ratio of
throughput (average amount of successfully delivered
bits transmitted from SUs to the fusion centre) to the
total average energy consumption in the system [20]. In
order to reduce the energy consumed in spectrum sensing
network, not all SUs in each cluster send their sensed
results to the fusion center of local cluster. In [21], authors
optimized k out of n by allowing those SUs with reliable
sensing results to transmit to the FC. This showed some
reduction in energy consumption of the cognitive radio
network. In this paper an optimal k out of n is applied to
improve on the probability of detection and reduce on the
energy system consumption by employing fewer SUs in
the final detection on the presence or absence of the PU.

Notations : E[·] is the expectant operator, var is the
variance, Im[·]andRe[·] are the imaginary and real parts
of the signal X(·), erfc(·) is complementary error function
and h is the circular Gaussian channel.

3. SYSTEM MODEL

3.1 Practical cooperative sensing model

The system model in figure 1 shows a practical CSS
network. In this scheme, a group of SUs sense the
spectral band to determine the presence or absence of
PU. They receive this information through the control
channel and independently analyze it by utilizing the
statistical properties of the received PU’s signal, and
subsequently communicate their individual decisions
through the reporting channel to the FC. At the fusion

Figure 1: A practical cognitive radio network

center, the decisions from individual SUs are integrated
together to finally make the global decision on whether the
PU is transmitting on the channel or not. The SUs can
then opportunistically access and transmit on the channel
if found idle.

3.2 Proposed Cooperative Spectrum Model

In the proposed lower level system model of figure 2,
the secondary users (SU1,SU2, ...,SUn) collectively sense
the PU channel based on HOS tests namely, kurtosis &
skewness (kurt &skew), omnibus (omnb) and Jarque-Bera
(JB) statistics tests. The hard binary local decisions made
by SUs are transmitted over wireless Gaussian channel
represented as (CH1,CH2, ...,CHn) to the data FC. The
binary data (b1,b2, ...,bn) is fused to achieve the final
global decision on the presence or absence of the primary
user.

Figure 2: Proposed cooperative spectrum sensing model

4. LOCAL SPECTRUM SENSING

4.1 Spectrum sensing hypothesis

Generally the spectrum sensing problem can be formulated
by the following two hypothesis [4, 9]

H0 : x(t) = w(t) t = 0, ...,T −1 (1)

H1 : x(t) = s(t)+w(t) t = 0, ...,T −1, (2)

where H0 and H1 are null and alternative hypothesis
respectively, t is the digital samples numbering T , w(t) is
the additive white Gaussian noise, s(t) is the PU’s signal
and x(t) is the signal received at the fusion center. The
received signal plus additive white Gaussian noise x(t) as
function of SNR (γ) is given as

x(t) = f ([s(t)+w(t)] ,γ) , (3)

where γ is the PU signal to noise ratio (SNR).
The probability of detection is formulated as hy-
pothesis test Pd = Prob(Signal Detected |H1), whereas
the probability of false detection is determined as
Pf = Prob(Signal not Detected |H1). Another form of
formulation is thresholding on the statistical test parameter.
To detect the PU’s spectrum effectively there is need to
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first estimate and analyze the power spectral density (PSD)
of the SUs received signal. A strategic periodogram PSD
estimation technique can be used to accurately present
the frequency-domain statistical properties of a signal [9].
Based on the periodogram method and as formulated in
algorithm 1, the received signal x(t) of T samples is firstly
subdivided into L smaller segments. Then the i-th segment
signal can be formulated as [9]

xi(t) = x[t + iM], (4)

where i = 0, ...,T −1 is the number of data samples, M =
T/L is the length of each segment and t = 0, ...,M−1 are
the Fast Fourier transforms (FFT) points in one segment.
Performing FFT on signal sample xi(t), periodogram of the
i-th SU, yi(t) is given by

yi(t) =
1
M

M−1

∑
t=0

xi[t] e−
j ω t
M

2

, (5)

where i∈ [t,T ] is the number of samples, M is the length of
each segment representing the elements of discrete Fourier
transform (DFT) and ω = 2π f . The function yi(t) is
modeled as the PU signal and is utilized in the next section
to determine the skewness and kurtosis.

4.2 Spectrum sensing HOS techniques

Skewness and kurtosis: The estimated skewness (skew)
is defined as third standard moment of a random variable
xi(t) of a Gaussian distribution. Estimated kurtosis (kurt)
on the other hand is given by fourth standard moment
of a random distribution. The value tends to 3 as the
sample size considered for the test increases [20]. For
given sample set of yi(t) the estimated sample of skew is
given as

skew(y(t)) =
1
M ∑M−1

i=0 (yi(t)− y)3

( 1
M ∑M−1

i=0 (yi(t)− y)2
) 3

2
, (6)

where y is the mean of a given signal data. Similarly, the
estimated kurt of a random sample is formulated as

kurt(y(t)) =
1
M ∑M−1

i=0 (yi(t)− y)4

( 1
M ∑M−1

i=0 (yi(t)− y)2
)2 . (7)

The test statistics ST (st) of the periodogram (power
spectral density) is represented as the square root of the
sum of squares of skew(y(t) and kurt(y(t)) as calculated in
algorithm 1. When the value of test statistics is larger than
a set threshold Tλ, the distribution of the received signals
averaged periodogram deviates from the AWGN’s power
spectral density, which is an indicator of the presence of
PUs signal. The test statistics of the periodogram estimate
can be formulated as

ST (St) =
√

skew(y(t))2 + kurt(y(t))2, (8)

where skew(y(t)) and kurt(y(t)) are the test statistics for
skew and kurt respectively of the signal x(t). For a given
probability of false alarm (Pf ), the threshold (Tλ) for
skew and kurt tests the null hypothesis (H0). This is a
chi-squared distribution defined as Pf = 1− f (Tλ : H0) and
hence is formulated as [9]

Tλ =
√

− log(Pf ). (9)

In order to derive the probability of detection (Pd) and
(Pf ), the PDF for the test statistic is developed for both
H0 and H1 as

{
ST (St) ≥ Tλ H1

ST (St) < Tλ H0
. (10)

Jarque-Bera (JB): The Jarque-Bera statistic has

Algorithm 1 Algorithm for kurtosis and skewness test
Input: M = MFFT , T = 3000, γ j =−30 : 5, Pf = 0.1 : 1
Output: Pd,kurt &skew,Pd,JB,Pd,omnb

x(t)← generate T random data, eqn. (2)
xi(t)← modulate x(t) (16 QAM) plus noise, eqn. (4)
fast Fourier transform on modulated signal

yi(t)← FFT on xi(t)(mod), eqn. (5)
yFFT ← break(yi(t), MFFT , T )
yi(t)← concatenation of yFFT
yi(t) = real parts (yFFT )+ imaginary parts (yFFT )
for j = length (γ) , i = length (MFFT )
Calculate kurtosis & skewness
skew(y(t))← skewness test, eqn. (6)
kurt(y(t))← kurtosis test, eqn. (7)
while γ j ≤ 0, n ← 0 do

St ← the test statistics, eqn. (8)
Tλ ← the threshold, eqn. (9)
if ST (St)≥ Tλ then

decision = H1
increment counter ← H1 = H1 +1

else {ST (St)≤ Tλ}
decision = H0
increment counter ← i = i+1, j = j+1
Pd,kurt/skew = sum( H1

MFFT )
end if

end while

asymptotic chi-squared distribution with two degrees of
freedom [10], formulated by considering the estimated
skew and kurt on the transmitted PU signal, defined as [11]

JB =
M
6

[
skew2 +

(
kurt2 −3

)2

4

]
, (11)

where M=MFFT is the number FFT points. In order to
derive the Pd and Pf the hypothesis tests H1 and H0 are



Vol.109 (1) March 2018SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS40

formulated as
{

JB ≥ JBλ H1

JB < JBλ H0
. (12)

For a given probability of false alarm (Pf ), the threshold
for JB test based on null hypothesis (H0), for an MFFT
points is expressed as [12]

JBλ = 0.0688 MFFT . (13)

For the null hypothesis to be accepted the test statistics
must be smaller than a critical value that is positive and
near zero. Higher values of JB indicate the sample do
not follow the Gaussian distribution. The probability of
detection is iteratively determined as shown in the pseudo
code for algorithm 2.

Algorithm 2 Algorithm for Omnibus and Jarque-Bera
Input: M = MFFT , T = 3000, γ j =−30 : 5
Output: Pd,JB,Pd,omnb

Calculate Jarque Bera test
while γ j ≤ 0, n ← 0 do

JB ← the test statistics, eqn. (11)
JBλ ← the threshold, eqn. (13)
if JB ≥ JBλ then

decision = H1
increment counter ← H1 = H1 +1

else {JB ≤ JBλ}
decision = H0
increment counter ← i = i+1, j = j+1
probability of detection(Pd,JB) = sum( H1

MFFT )
end if

end while
Calculate omnibus K2 test

while γ j ≤ 0, m ← 0 do
K2 ← the test statistics, eqn. (14)
K2

λ ← the threshold, eqn. (16)
if K2 ≥ K2

λ then
decision = H1
increment counter ← H1 = H1 +1

else {K2 ≤ K2
λ}

decision = H0
increment counter ← i = i+1, j = j+1
probability of detection(Pd,omnb) = sum( H1

MFFT )
end if

end while

Omnibus (K2) test: Omnibus is defined as the square root

of a transformed skewness (skewT) and kurtosis (kurtT)
test statistics. The asymptotic normal values for (skew)
and (kurt) are used to construct a chi-squared test involving
the first two moments of the asymptotic distributions [12],
mathematically expressed as

K2 =
√

skewT 2 + kurtT 2, (14)

The hypothetical omnibus test is derived by comparing to
defined threshold (K2

λ) formulated as
{

K2 ≥ K2
λ H1

K2 < K2
λ H0

. (15)

For a predetermined Pf the threshold for omnibus test is a
fixed value determined by

K2
λ = 0.0688 MFFT , (16)

where MFFT is the number of FFT points. The skewT on
the estimated data sample is given as [11, 12]

skewT = δ log


Y

Φ
+

√(
Y
Φ

)2

+1


 , (17)

where Φ =
√

2
W 2−1 is a small deviation from the critical

value on the skewness of the estimated distributed random
data, W 2 = (

√
4B2 −4− 1) is a constant of normalization

on skewness, δ = 1√
logW is the skewness parameter

and (Y ) is the estimated skewness value of the random
distributed data given as

Y = skew
[
(M+1)(M+3)

6(M−2)

]
, (18)

where skew = skew(y(t)) is estimated skewness of the
sampled signal data as given in equation (7), M is the
number FFT data sample points. The skewness as a
function of the variance µ2(skew) is formulated as

µ2(skew) = B2 =
3(M2 +27M−70)(M+1)(M+3)
(M−2)(M+5)(M+7)(M+9)

.

(19)
The transformed kurtosis (kurtT ) on the random
distributed received PU’s signal is also formulated as
[11, 12]

kurtT =

(1− 2
9D )

[
1− 2

D

1+x
√

2
D−4

] 1
3

√
2

9D

, (20)

where D is a constant that denotes the degrees of freedom
for the chi-squared distribution. Solving for D to equate
the third moment of theoretical and sampling distributions,
it is possible then to compute D as follows

D = 6+
8

B1

[
2

B1
+

√
1+

4
B1

]
, (21)

where B1 = µ1(kurt) is the kurtosis as a function of the
mean (µ1), given as

µ1(kurt) = B1 =
6(M2 −5M+2)
(M+7)(M+9)

√
6(M+3)(M+5)
M(M−2)(M−3)

,

(22)
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where kurt = kurt(y(t)) is the estimated kurtosis given in
equation (7) and M is the number of samples. It is possible
to standardize kurtosis by formulating the expression as

x =
kurt −E[kurt]√

var[kurt]
, (23)

where the mean as a function of kurtosis is given as
E[kurt] = 24M(M−2)(M−3)

(M+1)2(M+3)(M+5) and variance as a function

of kurtosis is expressed as var[kurt] = 3(M−1)
M+1 , are all

computed to determine transformed estimated kurtosis s
shown in algorithm 2.

Algorithm 3 First Stage Optimal Selection of SUs
Input: N = 15, SNR =−30 : 2 : −5.0
Output: λopt

n , n, r = N
2

intialize: n= 1← sort all SUs in descending order SNR
calculate the following
step1: λ∗

i ← the threshold of ith SU, eqn. (33)
step2: Pr,n

e ← the error detection, eqn. (27)
step3: Pf ,1|γ,θ and Pd,1|γ,θ ← 1st iterate, eqn. (26) & (30)
step4: Qr,n

d ← the detection prob, eqn. (34)
step5: Qr,n

f ← the false alarm , eqn. (35)
step6: Qr,n

e ← the decremental error , eqn. (40)
for i = length (n) and r = length(N

2 )
while n ≤ m, n ← 0 do

if Qr,n
e ≥ 0 then

i = n+1
increment counter ← n = n+1
λopt

n ← the optimal threshold, eqn. (39)
go to step 4

else {Qr,n
e ≤ 0}

n = n−1 ← delete the SU
go to step 4 otherwise have attained the solution

end if
end while

5. FUSION SCHEMES

5.1 Fusion strategy hypothesis tests

The null hypothesis (H0) for decision statistics of the
omnibus test can be derived as

{
K2 ≥ H1 λ
K2 < H0 λ

, (24)

where λ is the decision threshold which has to be
optimized. The cost functions are formulated in terms of
probability of misdetection and false alarm as conditioned
on the channel, the probability of misdetection is
formulated as [22]

Pm,i|γ,θ = 1− 1
2

erfc
(

λi −K2
√

2σ1(γ,θ)

)
+

1
2

erfc
(

λi +K2
√

2σ1(γ,θ)

)
,

(25)

where γ = |h|2
(

E[ |x(t)|2 ]
E[ |w(t)|2 ]

)
is given as the instantaneous

SNR. The instantaneous channel phase angle θ is defined

as θ = tan−1
(

Im[x(t)2 ]

Re[w(t)2 ]

)
, w(t) is the AWGN. The

probability of misdetection (Pm,i|γ,θ) is the sum of

the lower bound probability Pm,1|γ,θ = 1
2 erfc

(
λi−K2

√
2σ1(γ,θ)

)

and upper bound probability Pm,2|γ,θ = 1
2 erfc

(
λi+K2

√
2σ1(γ,θ)

)
.

Unlike in [22], this paper uses omnibus test (K2) instead
of kurtosis. λi is the decision threshold, σ1(λ,θ) = a00 +
a10γ +

[
a20 +a21 sin2(2θ)

]
γ2 +

[
a30 +a31 sin2(2θ)

]
γ3 +[

a40 +a41 sin2(2θ+a42 sin4(2θ)
]

γ4 is expressed in terms
of instantaneous SNR and phase angle of a cir-
cular Gaussian channel. The following constants;
a00,a10,a20,a21,a30,a31,a40,a41 &a42 are given in table 1.
The conditional (on the channel) probability of false alarm
is given as

Pf ,i|γ,θ =
1
2

erfc
(

λi −µ0√
2σ0

)
+

1
2

erfc
(

λi +µ0√
2σ0

)
, (26)

where θ is the phase angle, γ is the SNR of the signal, σ0
is the modulation constant and µ0 is the mean of the data
distribution as given in table 2.

5.2 First stage optimization on SU selection criteria

The aim of the first stage optimization is to iteratively
select n SUs in ∀ n ∈ [1,N] SUs, in an r out of n
counting rule where r is the number of SUs that form the
combinatorial n fusion order and N is the total number of
SUs in CSS network. The criteria on selection is based on
SUs decrementing SNR as formulated in algorithm 3. The
error probability is further expressed as

Pe,i = P(H0)Q f +P(H1)Qm, (27)

where P(H0) is the null hypothesis, P(H1) is the alternative
hypothesis, Q f is the global probability of false alarm and
Qm is probability of misdetection. The sum of probability
of false alarm and misdetection is derived as a cost function
to determine the global decremental error probability (Qe)
in the detection of the primary user in CSS network. The
minimization problem is formulated as [15, 16, 18, 19]

min
λ

(
Qm(λopt) and Q f (λopt)

)

Subject to Qe > 0
, (28)

where λopt is the optimal decision threshold. Considering
equation (25) and equation (26), the optimal threshold is
formulated as

λ∗
i =arg min

λ

(
Pe,i = (βPf ,i|γ,θ +Pm,i|γ,θ)P(H1)

)
, (29)

where β = P(H0)
P(H1)

is the detection factor, Pf ,i|γ,θ is the false
alarm and Pm,i|γ,θ is the misdetection of the ith SU. From
equation (25), the probability of detection is similarly
given as

Pd,i|γ,θ = 1−Pm,i|γ,θ. (30)
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Consequently from equation (29), the threshold is
maximized as follows

λ∗
i =arg max

λ

(
(Pd,i|γ,θ −βPf ,i|γ,θ −1)P(H1)

)

=arg max
λ

(
Pd,i|γ,θ −βPf ,i|γ,θ

)
.

(31)

By the Lagrange theorem, the maximum threshold is
obtained by differentiating by parts as follows

∂Pd,i|γ,θ
∂λi

λ∗i = β
∂Pf ,i|γ,θ

∂λi
λ∗ , (32)

where i = 1, ...,n is the number of SUs selected to
participate in fusion and λ∗

i is the initial optimal threshold
derived as

λ∗
i =

σ2
s

2
+σ2

s

√
1
4
+

γi

2
+

4γi +2
Mγi

log
(

β
√

2γi +1
)
, (33)

where σ2
s is the noise variance, γi is the SNR of the i-th

SU and M is the number of signal data samples. The global
probability of detection in r out o f n rule is derived as

Q(r,n)
d =

n

∑
j=r

(
n
j

) j

∏
i=1

Pd,i|γ,θ

n

∏
i= j+1

(
1−Pd,i|γ,θ

)
, (34)

where n ∈ { j = 1, ..,N}, N is the total number of SUs,
Pd,i|γ,θ = 1 − Pm,i|γ,θ is probability of detection as given
in equation (25), r is the actual number of SUs that form
r out of n counting rule and n is the total number of SUs
selected to participate in decision making. Similarly, the
global probability of false alarm is formulated as

Q(r,n)
f =

n

∑
j=r

(
n
j

) j

∏
i=1

Pf ,i|γ,θ

n

∏
i= j+1

(
1−Pf ,i|γ,θ

)
, (35)

where n ∈ { j = 1, ..,N}, Pf ,i|γ,θ is probability of false
alarm as given in equation (26). The selection criteria
is done by the iterative calculation of global probability
detection and false alarm simultaneously, as performed in
algorithm 3. The minimization problem stated in equation
(28) is formulated mathematically as

Qr,n
d = Q(r−1,n−1)

d (Pd,n|γ,θ)+Q(r,n−1)
d (1−Pd,n|γ,θ), (36)

where Qd = 1−Qm is the global probability of detection,
the probability of false alarm is similarly derived as

Qr,n
f = Q(r−1,n−1)

f (Pf ,n|γ,θ)+Q(r,n−1)
f (1−Pf ,n|γ,θ). (37)

The final iteration gives the optimal threshold λopt
n given

for n number of SUs, formulated as

Q(r,n−1)
d

∂Pd,n|γ,θ
∂λn

λopt
n

= βQ(r,n−1)
f

∂Pf ,n|γ,θ
∂λn

λopt , (38)

where the optimal threshold is given in this scenario as

λopt
n =

σ2
s

2
+σ2

s

√
1
4
+

γn

2
+

4γi +2
Mγn

log
(

β
√

2γi +1∗B
)
,

(39)

where B =
Q(r−1,n−1)

f −Q(r,n−1)
f

Q(r−1,n−1)
d −Q(r,n−1)

d

is the detection factor, γn is the

SNR for the n-th SU, σ2
s is the noise variance and M is the

signal data samples. The decremented detection error is
expressed as

Q(r,n)
e =P(H1)Pd,n|γ,θ

(
Q(r−1,n−1)

d −Q(r,n−1)
d

)

− P(H0)Pf ,n|γ,θ

(
Q(r−1,n−1)

f −Q(r,n−1)
f

)
,

(40)

where the P(H0) and P(H1) are the weights for probability
of false (Pf ,n|γ,θ) and probability of detection (Pd,n|γ,θ)
respectively, n is the number of SUs participating in
detection of the presence or absence of the PU on the
channel, γ is the SNR and θ is the uniformly distributed
phase angle.

5.3 Second stage optimal strategy

At the FC, a specific k out of n strategy is employed to
process the SUs’ received decisions at the FC. Where k is
number of SUs in the range of (1≤ k ≤ n) and n is the total
number of SUs selected from a total of N as realized in the
first optimization stage. The idea behind this rule is to find
the number of SUs whose local binary decisions is 1. If
this number is larger than or equal k, then the spectrum
is said to be used otherwise the spectrum is unused. An
iterative numerical search determined in algorithm 4 is
carried out to find an optimal number of k SUs in k out of n
combinatorial order is done at the FC. To achieve this an
upper-threshold of global probability false alarm (Qf ) of
less than utilization level (ε) is set.
The maximization problem can be formulated as [7,15,16]

max
1≤k≤n

(Qd(k))

Subject to Q f (k) < ε.
(41)

The global probability of false alarm Q f based on
k out of n counting rule is formulated in algorithm 3 and
mathematically derived as

Q f (k) =
n

∑
j=k

(
n
j

)(
Pk

f ,i|γ,θ

)(
1−Pf ,i|γ,θ

)n−k
= ε, (42)

where ε is the utilization level, k is number of SUs selected
to participate in the k out of n fusion process, n is number
of SUs iteratively found in the first optimization stage in
section 5.2. The derivative of global probability of false
alarm (Q f ) as function of (Pf ) is derived as

∂Q f (Pf )

∂(Pf )
=n

(
n−1
k−1

)
Pk

f ,i|γ,θ
(
1−Pf ,i|γ,θ

)n−k−1

=nϕ(k−1,n−1,Pf ,i|λ,θ) > 0.
(43)
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From equation (43) it follows that ϕ is the binomial
cumulative function give as

ϕ =

(
n−1
k−1

)(
Pk

f ,i|γ,θ

)(
1−Pf ,i|γ,θ

)n−k
. (44)

Subsequently the global probability of detection in
k out of n case is given as

Qd(k) =
n

∑
j=k

(
n
j

)(
Pk

d,i|γ,θ

)(
1−Pd,i|γ,θ

)n−k
> 0. (45)

To optimize equation (45), we differentiate by parts the
function as follows

∂Qd(Pd)

∂(Pd)
= n

(
n−1
k−1

)
Pk

d,i|γ,θ
(
1−Pd,i|γ,θ

)n−k−1
> 0.

(46)
From equations (25) and (26) the following probabilities
must hold true.

Pd,i|γ,θ
Pf ,i|γ,θ

>
∂(Pd,i|γ,θ)

∂(Pf ,i|γ,θ)
>

1−Pd,i|γ,θ
1−Pf ,i|γ,θ

. (47)

Similarly the above equation can be further formulated as
follows

Qd(k)
Q f (k)

=
∂Qd(k)
∂Pf (k)

∗
∂Pf

∂Q f
=

∂Qd(k)
∂Pd(k)

∗ ∂Pd
∂Pf

∂Q f
∂Pf

. (48)

From the above equation it is true to say Qd(k) is linearly
increasing function of Q f (k). For all k ∈ [1,n] then the
roots of Q f (k,Pf ) are formulated in Bisection algorithm 3.
The algorithm is broken down as follows, for each Pf ,i|γ,θ
determine the corresponding Pd,i|γ,θ and Qd(k,Pf ), select
the highest global probability, the value of k is the optimal
number of SUs.

6. ENERGY EFFICIENCY

Energy efficiency is the ratio of throughput to average
energy consumed during the cooperative spectrum sensing
time. The throughput (T HR) is formulated as [21, 23]

T HR = P(H0)(1−Q f )Rt, (49)

where R is the data rate, t is the transmission time length,
P(H0) is the probability that the spectrum is not being used,
Q f is the global probability of false alarm. The average
energy consumed in the network by all SUs Ec is derived
as

Ec = nesu +Pu est , (50)

where n is the total number of SUs selected from first
optimization stage, esu is the energy consumed during CSS
by all the SUs, est is the energy consumed during data
transmission, Pu is the probability of identifying if the
spectrum is idle, given as

Pu = P(H0)(1−Q f )+P(H1)(1−Qd), (51)

where P(H1) = 1 − P(H0) is the probability of the
spectrum being used, Q f is the global probability of false
alarm and Qd is the probability of detection. Note that the

Algorithm 4 Second Stage Bisection Algorithm
Input: Pf = Pf ,i|γ,θ, ε = 0.001
Output: k, Qd(k)

n ← from algorithm 3
intialize: end points ← Pf ,L = 0.01,Pf ,U = 0.1
for i = length (Pf ) and k = length(n)
while Q f (k)≤ ε, k ← 1 ← from eqn.(42) do

if Pf ,U ≤ Pf ,L, Q f (Pf ,L)≤ 0 and Q f (Pf ,L)> 0 then
mid (Pf ) = Pf ,L−Pf ,U

2
condition: if Q f (mid (Pf )) = 0 then
solution is found else
Determine the following;
Pd,1|γ,θ ← cal. detection probability, eqn. (25)
Q f (1)← cal.the false alarm, eqn. (42)
Qd(1)← cal. detection probability, eqn. (45)

else {Q f (Pf ,L)> 0 and Q f (Pf ,U )< 0}
mid (Pf ) = Pf ,U−mid (Pf )

2
if sign Q f (mid (Pf )) = sign Q f (Pf ,U ) then
Pf ,L ← mid (Pf )
else
Pf ,U ← mid(Pf )
increment counter ← k = k+1 and i = i+0.01
untill Q f (k) < ε
determine the biggest Qd(k)
optimal value of (k) found.
Determine η
for k = 1, ..n
η ← cal. the effeciency eqn.(52)

end if
end while

energy consumption during transmission occurs only if the
spectrum is identified as unused. The efficiency (η) can be
formulated as [20, 21]

η =
T HR

Ec
=

P(H0)(1−Q f )Rt
nesu +(1−P0Q f −P1Qd)est

, (52)

where n is number of SUs in equation (52), computed as

n = ln
(

P(H1)(1−Q f )est

Nesu +P(H1)(1−Qd)est

)
− k ln

(
Py(1−Px)

Px(1−Py)

)
,

(53)
where N is the total SUs in CSS network, k is the
number of SUs in the k out of n counting rule. A noisy
channel is modeled as binary symmetric channel with
error probability (Pe) and it is the same among all SUs.
px = Pd,i|γ,θ(1−Pe)+ (1−Pd,i|γ,θ)Pe is the probability of
receiving a local binary decision of 1 when the spectrum
is busy and py = Pf ,i|γ,θ(1 − Pe) + (1 − Pf ,i|γ,θ)Pe is the
probability of receiving a local binary decision of 1 when
the spectrum is idle.
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Table 1: Modulation constants

Parameters Actual values used

a00, a10, a20, a21
24ρ8

n
M , 96ρ8

n
M , 46ρ8

n
M , −48.96ρ8

n
M

a30, a31, a40, a41
33.28ρ8

n
M , 128.64ρ8

n
M , 10.33ρ8

n
M , −1.93ρ8

n
M

a42, σ0, µ0
1.74ρ8

n
M , 24ρ8

n
M , 1

7. SIMULATION RESULTS

In order to evaluate the HOS test for cooperative
spectrum sensing capability, we considered a cognitive
radio network with 15 SUs transmitting on 16 QAM
constellation modulated signal built in matlab software
for simulation and analysis. It should be noted that any
other modulation scheme can be used to model the PU
signal. In all subsequent figures, the numerical results are
plotted on receiver operating characteristics curves (ROC).
Simulation results are denoted with discrete marks on the
curves. The simulation parameters are give in table 2.

Figure 3: Detection probability for HOS tests against a range of
SNR in 2048 FFT data points

In figure 3, the ROC curves show the performance of
omnibus (omnb), Jarque-Bera (JB), kurtosis & skewness
(kurt &skew) and kurtosis (kurt) test statistics as function
of the SNR. In this scheme 2048 FFT sample points were
considered. From the plot, as expected the probability of
detection increased with increase in SNR starting from a
low SNR. The omnb test displayed the highest probability
of detection progressively from a low SNR up to about -16
dB. The plot shows that omnb perform better at low SNR.
This was followed by JB, then kurt & skew. The results of
the other HOS tests are close to those in [9, 10, 20].
In figure 4, the graph illustrates performance of the four
HOS test considered under a smaller data sample of 512
FFT points. The plot shows omnb still has higher detection
probability for all ranges of SNR and even better under
extremely low SNR (-30dB). The omnb test technique
therefore tends to suppress the Gaussian noise showing an
improved performance. From the two results displayed in

Figure 4: Detection probability for HOS tests against a range of
SNR in 512 FFT data points

figures (3) and (4), it can be concluded that omnibus is a
superior statistical test for both small and big data sample
at low SNRs.

Figure 5: Global probability of detection against false alarm for
HOS tests

In figure 5, the performance of optimal k out of n counting
rule based on all HOS tests is displayed. The rules are for
omnibus and majority rule (omnb and ma j), Jarque-Bera
and majority (JB and ma j), kurtosis & skewness and
majority (kurt & skew and ma j). The optimal number
of 8 out of 10 SUs was realized through a two stage
optimization as given in algorithms (3) and (4). From ROC
curves it can deduced that a combination of omnb and ma j
displayed a higher probability of detection for a false alarm
of less than 0.1. This is as per the requirement of IEE
802.22 standards [17]. The performance was then followed
by JB and ma j and lastly kurt & skew and ma j.
Figure 6, shows a comparative performance HOS based
optimal majority rules; omnb and ma j, JB and ma j,
kurt &skew and ma j and lastly kurt and ma j. The
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Figure 6: Global probability of misdetection against false alarm
for HOS tests

optimal number of 8 out o f 10 SUs was realized in the
algorithm 3. From the plot, it can be deduced that
omnb and ma j combination strategy displayed the lowest
probability of misdetection for all values of probability of
false alarm as compared to the three other combinations. In
conclusion, based on the figure (5) and (6), omnb and ma j
rule showed the highest probability of detection and the
lowest misdetection as compared to all the other HOS
based majority rule for all ranges of false alarm.

Figure 7: Comparative analysis on single and two stage
optimization

Figure 7, shows the performance of hybrid sensing scheme
of k out of n counting rule based omnibus test for different
numbers of SUs was investigated. The plot showed
the comparative performance of different numbers of
SUs as selected in single stage compared to two stage
optimization. Where n = 10, k = 5 and k = 8 respectively.
From this plot, it can be deduced that omnibus a local
detection test based on a two stage optimization global
detection scheme displayed higher probability of detection

to that of single stage optimization for all ranges of false
alarm.

Figure 8: Energy efficiency in k out of n counting rule.

Figure 8, shows the energy efficiency for the different
k out of n counting rules representing three scenarios. The
first case is when all the SUs in the cooperative spectrum
sensing N = 15 participate in the detection of the PU.
The second case is when an optimal number of SUs as
found in the first optimization stage n = 10 and the third
case is when n = 8 just for the purpose of benchmarking.
From this plot the optimal case showed the greatest energy
efficiency of about 2 ∗ 104 Bits per Joule. This was
achieved when k = 8 SUs in the combinatorial order of
8 out o f 10 counting rule. Note that due to the k out of n
rule the number of k can only go up to n number of SUs.

Table 2: Simulation parameters

Simulation parameters Actual values used
P(H0) and P(H1) 0.5
Frequency range 0-800

Monte Carlo trials 103 to 104

Noise variance σn 1
phase angle, Range of δ 0 ≤ θ ≤ 2π, 0≤ δ ≤ 1

mean (µ0) 0
est , esu 1 Joule, 100 mJoule

Tran.time (t), Data rate (R) 0.5 sec, 100 kbps
SNR -30 ≤ γ ≤ 0

8. CONCULSION

In our proposed hybrid model, an optimal k out of n based
omnibus (K2) statistics test was shown to be more superior
to the other HOS tests. This model would be preferred to
detect the PU in cognitive radio networks operating under
noisy conditions. Another advantage of this model is the
overall reduction in energy consumption in the network
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due to the two stage optimization. Fewer SUs make the
final decision on the status of the PU on the channel but
still maintain reliable decision outcomes.
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