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Abstract: Power system state estimation is a fundamental computational process that requires both
speed and reliability. To meet the needs, some variants of the constant Jacobian methods have been
used in the industry over the last several decades. The variants work very well under normal operating
conditions with nominal values of the states. However, the convergence of the methods are not
analysed mathematically and it may contain pitfalls. In this study, the convergence of the constant
Jacobian methods are analysed and it is shown that the methods fail under high variations of the states.
To increase the reliability of the processes, a multi-Jacobian method is proposed. Through simulation,
a special case is shown for IEEE 68, and IEEE 118-bus systems where the Jacobian calculated with
the nominal value fails, and the proposed multi-Jacobian method succeeds.
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1. INTRODUCTION

Proper operation of the power system largely depends
on proper monitoring. State estimation is a core part
of the monitoring system. The purpose of estimation
is to remove errors from an overdetermined set of
measurements. It yields a noise-free consistent set of state
variables that is used for contingency analysis, optimal
power flow, load forecasting etc [1, 2]. As a large number
of applications depend on the output of the estimator, it is
very important to ensure it’s reliability.
Due to the high accuracy, Weighted Least Squares (WLS)
estimator became the universally accepted solution for
state estimation [3, 4]. It was originally developed by
Carl Friedrich Gauss in 1795 [5] and was proposed
for power systems by Fred Schweppe in 1970 [6, 7].
The most time-consuming part of the WLS estimator
is the computation of the Jacobian matrix. To avoid
matrix inversion, Cholesky decomposition is used and it
is followed by a back substitution. Though it makes
the process quite fast, it is not suitable for parallel
implementation [8].
One of the major variants of the WLS estimator that is very
popular in the industry is the fast decoupled (FD) estimator
[9]. It takes the advantage of the constant Jacobian as well
as the decoupling of the real and reactive powers [10].
Keeping the Jacobian constant is generally known as the
dishonest Gauss Newton method [11]. If the Jacobian is
kept constant for all the samples of measurements, it is
called Very DisHonest Newton (VDHN) method [12]. The
FD estimator exploits the advantages of decoupling with
the advantages of VDHN.

In VDHN, the Jacobian is calculated at a nominal value
[13]. The calculated Jacobian is used until there is any
change in the topology. Though the method is very
popular, the convergence is not analysed in the literature.
It may be due to the difficult nature of the multi-state
nonlinear estimators.
In this study, the nature of convergence of VDHN is
analysed and it is found that the constant Jacobian
calculated at the nominal values may fail under specific
circumstances. It is also shown that the range of
convergence can easily be extended with some simple
modifications. Though extended convergence takes a
longer time, it can be very useful at times. The speed
and the reliability can be achieved at the same time with a
multi-Jacobian solution.
The analysis of convergence is shown with a single state.
The issue of constant Jacobian for multi-state estimation is
shown through simulation of IEEE 68, and IEEE 118-bus
test systems. A single case of failure can pose a potential
threat for the power system. As the advantage of the
dishonest method comes with the parallel implementation,
the estimations are executed on a GPU platform [14].
The main contribution of the paper is as follows,

• The nature of convergence of the dishonest Gauss
Newton method is analysed geometrically for a single
state. It is shown that the constant Jacobian taken at
a higher slope can increase the range of convergence
significantly.

• Through simulation, it is shown that the constant
Jacobian taken at the flat start can work well for
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normal operations on the linear range. But, it fails
to converge for high diversity of the states.

• A multi-Jacobian method is proposed for secure
operation. It is able to withstand disturbances in the
power system.

The rest of the paper is organized as follows. The
backgrounds of the concerned estimation methods, i.e.
WLS, and the dishonest method, are described in Section
2. The convergence of the dishonest method for a single
state is analysed in Section 3. The required time for
the constant Jacobian methods for different slopes are
shown and a simple multi-Jacobian estimator is proposed
in Section 4. A special case of failure for the nominal
Jacobian is shown in Section 5. The paper is concluded
with plan for future works in Section 6.

2. BACKGROUND

Measurements are collected from different parts of the
system in the forms of power flows, power injections,
voltage magnitudes, and current magnitudes [15]. The
collected measurements contain errors of different levels
that needs to be removed to get a clearer view of the
system. Let, z denotes an ms × 1 measurement vector
with errors. So, the relation between z, the nonlinear
function of the measurements h(.), the state vector x, and
the measurement error e is written as,

z = h(x) + e (1)

In power system state estimation, voltage magnitudes
and angles are considered as the state variables as they
form the set with minimum cardinality that can describe
the whole system [3]. The angle of the reference bus is
taken as the reference angle and all other bus angles are
determined with respect to that. If there are N buses, the
state vector x is represented as,

x = [θ2 θ3..θN V1 V2..VN]T (2)

Here, θ and V , with proper subscripts, represent voltage
angles and magnitudes respectively. A system with N
buses will have 2N − 1 state variables. In the process
of estimation, the number of measurements exceeds the
number of states to form an overdetermined system [16].
The accuracy is measured by the L2-norm of the residues
that are calculated as the difference between the original
measurements and the estimated measurements [17].
Minimizing the norm is the objective of the optimization
problem,

min
x̂

||z− h(x̂)|| (3)

where, x̂ is the estimated state vector.

2.1 Weighted Least Squares Estimation

Like other nonlinear problems, WLS estimator linearises
the system over a small range. Then it applies linear
operations to get an updated value. The system is
linearised again based on this updated value and uses the
linear estimation. This process is repeated unless the
estimated value converges. In this method, x is started
with a close value to the solution. In the beginning, when
there is no previous value, all voltage magnitudes start as 1
and all voltage angles as 0 which is known as flat start [18],

x = [0 0...0 1 1...1]T

After collecting the measurements and constructing the
Jacobian matrix H(x) at flat start, the following steps are
repeated until the state vector converges to a solution,

• step 1: ∆x = [HT(x)WH(x)]−1HT(x)W(z −
h(x))

• step 2: x = x+∆x

• step 3: update h(x) with new x

• step 4: update H(x) with new x

Here, the matrix, W denotes the relative weights of the
measurements that are usually taken as the inverse of the
corresponding error variances [19]. The WLS method is
also known as the honest Gauss Newton method.

2.2 Dishonest Gauss Newton Method

In the dishonest Gauss Newton method, step 4 of the WLS
method is not executed [11]. H is calculated for flat
start at the beginning and updated after a certain period.
As mentioned earlier, if H is kept constant until there
is any change in the topology, the method is called very
dishonest.
The constant H reduces the computation of step 1. As H
remains constant, (HTWH)−1HTW does not change.
Therefore, a constant matrix can be multiplied with the
vector z − h(x) to complete step 1. The matrix-vector
multiplication is very suitable for parallel implementation
on a GPU. The steps can be reorganized as,

• Before estimation: Calculate M =
(HTWH)−1HTW for flat start

• During estimation:

– Take previous estimation, x and new measure-
ment set, z

– Repeat the following steps till convergence,

∗ step i: Calculate residuals, r = z− h(x)

∗ step ii: Calculate ∆x = Mr

∗ step iii: Calculate x = x+∆x
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Though the method described in [11] proposes the flat
start values for calculating H before estimation, it will be
shown that it is not mandatory for convergence. In fact,
instead of using one Jacobian, different Jacobians can be
used for handling different situations of the system such as
large changes in real and reactive power flows.

3. CONVERGENCE ANALYSIS OF DISHONEST
METHOD

Before analysing the nature of convergence of the
dishonest method, it is important to illustrate the
difference between the honest and the dishonest method.
To make it simpler, a single variable function, y =
f (x ) is analysed. The applicability of this analysis
on multi-variable functions will be made clear through
simulations.
Let, the iterations start at x = x0 with an objective of
y = yf (Fig. 1(a)). The slope at x0 is denoted with m0. In
the honest method, m0 is used with the difference between
f(x0) and yf to find the new position, x1. For x1, the slope
is calculated as m1 and the process is repeated to find the
solution.
On the other hand, the dishonest method starts with a
fixed slope, m. The difference is always multiplied with
this constant to find the new position of x as shown
in Fig. 1(b). The use of a constant slope, m does
not only eliminate the calculation of m, but it also
changes the division operation to multiplication (m−1).
The contribution is not significant for a single variable
system, but it becomes an important improvement for
multi-dimensional large-scale systems.
However, the dishonest method does not ensure conver-
gence for any slope, m. The choice of m depends on the
functions, the region of operations, the target values, and
on the starting values. Calculating the Jacobian for the
extreme target and extreme starting values can make the
process slow. So, for each function, the Jacobian can be
developed for a normal, and some extreme conditions.
In power system state estimation, there exist a few specific
types of functions between the state variables and the
measurements. It is sufficient to find a suitable m for these
functions. From the standard power flow equations, the
major functions can be written as,

• Pij , Qij = a1Vj + b1 = f1 (Vj )

• Pij , Qij = a2V
2
i + b2Vi = f2 (Vi)

• Pij , Qij = a3sin(θij) + b3cos(θij) + c3 = f3 (θij )

• θij = θij (PMU based phase difference)

• Vi = Vi (PMU based values)

Here, the flows are measured from bus i to bus j.
The measurement of current is excluded in this study. As
the last two equations do not include any function, they
are skipped in this analysis as well. The power injections
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m
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yf=f(xf)

yf=f(xf)

Figure 1: The working principle of Gauss Newton method,
(a) honest, and (b) dishonest.

are the combinations of power flows; so their analysis
resemble that of the flows. Before jumping to the specific
functions, the nature of convergence is discussed first.

3.1 Nature of Convergence

The state can converge under two major scenarios. They
are referred as the underdamped and the overdamped case.
In the first case, there is an overshoot and it follows a
zigzag path to reach the final value. In the overdamped
case, there is no overshoot, and x changes monotonically
to reach the final value as shown in Fig. 2. In some
situations, a mixture of the two cases appears in the same
problem.

3.2 Linear Functions

The analysis of the linear function is simple. The
overdamped and the underdamped cases are shown in
Fig. 3. There is no event where both cases can appear
simultaneously.
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Figure 2: Two ways of convergence of dishonest Gauss
Newton method, underdamped and overdamped case.

To analyse the condition for convergence, the value of m
is started with the maximum. For m → ∞, the process
reduces to an incremental search method. By reducing the
slope, the convergence can be made faster. It stays under
overdamped case for a1 < m < ∞, where a1 is the slope
of the line. With further reduction, the process converges
up to a certain limit under underdamped case. After that,
it fails to converge.

Lower Limit of m: In Fig. 3(b), if the process starts
with x0 to find yf = f (xf ), it changes according to the
following equations,

at k = 0, x0 = x0

at k = 1, x1 =
yf − f (x0 )

m
+ x0

at k = 2, x2 =
yf − f (x1 )

m
+ x1

(4)

If x2 is closer to xf than x0, it will be able to converge.
In case of xf > x0, the condition of convergence can be
written as,

x2 > x0

⇒ m >
yf − f (x0 )

f −1 (2yf − f (x0 ))− x0

(5)

The expression of (5) is common for any system with
monotonically increasing slope. For linear functions, it
can be written as,

m >
a1(yf − f (x0 ))

−b1 − a1x0 + 2yf − f (x0 )
(6)

x0 x1

xf

x0 x1x2

x2 x3

x3x4

(a)

(b)

y=a1x+b1

y=a1x+b1

yf=f(xf)

yf=f(xf)

Figure 3: Two cases of convergence for a linear function
when the objective value is higher than the starting value,
(a) overdamped, (b) underdamped.

as, f −1 (x ) =
x − b1
a1

By replacing y = f (x ) = a1 x + b1 in (6), the final
expression can be derived as,

m >
a1
2

(7)

For linear functions, (7) shows that the minimum slope
does not depend on the starting or the final value. It
only depends on the slope of the line. If the quadratic
and sinusoidal functions can be linearised over a small
portion, it is also applicable for that. This is the proof
why a constant Jacobian always works for a change over
the linear region of the system.
However, it is noticeable that the best value for m is not
the value given by (5) or (7). Using a marginal value can
lead to a very large number of iterations. Those are the
minimum values for which convergence can be secured.
The best value for a linear function is the constant slope, i.
e., m = a1.

3.3 Quadratic Functions

The underdamped and the overdamped cases for the
positive side of a quadratic function are shown in Fig. 4.
By taking a large value for m, convergence can always be
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ensured. But, having a big m makes the steps small and
the number of iterations increases. The slope should be
taken in such a way that it ensures convergence within a
limited number of iterations.

x0' x0 x1x2

x0 x1 x2 x3

y=a2x +b2x2

y=a2x +b2x2

yf=f(xf)

yf=f(xf)

(a)

(b)

Figure 4: Convergence of a quadratic function in two
different ways when the objective is higher than the
starting value, (a) overdamped, (b) underdamped.

If the slope is reduced, a mixture of the overdamped and
the underdamped response is found first. With further
reduction, a complete underdamped case is found as
shown in Fig. 4(b).

Lower Limit of m: The analysis is the same as the linear
functions. For quadratic functions of Pij , and Qij , f −1 (.)
can be written as,

f −1 (x ) =
−b2 ±

√
b22 + 4a2 x

2a2
(8)

where, f (x ) = a2 x
2 + b2 x (9)

As the voltage magnitude can only be positive, the

expression of (5) can be written as,

m >
2a2(yf − f (x0 ))

−b2 − 2a2x0 +
√
b22 + 4a2(2yf − f (x0 ))

(10)

Any value of m above this value will make the system
converging. The minimum value depends on yf , x0, a2,
and b2. The value increases with the increase of yf . The
relation between m, and x0 is complicated. To avoid the
complication, the slope at maximum possible xf is taken
as the value of m that works for every x0. If x0 is close
to xf , it is the most efficient slope as analysed in Section
3.2. If not, the process operates in the overdamped case
that is inefficient, but it is still better than calculating a
new Jacobian for practical power systems as shown in
Section 4.1. For the 118-bus system, one iteration of the
WLS estimator takes around 42 times more time than the
dishonest one, while around six iterations of dishonest
method gains the same accuracy of the WLS method.
It is not expected that the starting point will always be
lower than the target value; it may also be at a higher
position. In case of xf < x0, the searching occurs in the
downward slope. The two cases are shown in Fig. 5. The
analysis is very much similar to the upward case, and a
similar expression can be derived.

x0x1

xf

x0

x1

x2

xf

(a)

(b)

Figure 5: Convergence of a quadratic function for two
different ways of convergence when the objective value
is lower than the starting value, (a) overdamped, (b)
underdamped.

However, there has to be a single m irrespective of the
position of xf . The problem is resolved by taking the
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solution for the upward search. It is evident from the fact
that for any xfu, xfd, and x0, if xfd < x0 < xfu, then,
mu > md. It can also be inferred that there will be only
the overdamped case for the downward search with this
value of m.

3.4 Sinusoidal Functions

Though the two typical cases can appear in sinusoidal
operations, it is a bit complicated, as the slope of
the function does not increase monotonically. The
overdamped case is simple as shown in Fig. 6(a). In the
underdamped case, if the slope at x1 is less than m, the
convergence cannot be ensured. So, (5) is applicable in a
range of x where the slope is greater than m.

x0

x1

xf

x0

x1

xf

(a)

(b)

Figure 6: Two cases of convergence for sinusoidal function,
(a) overdamped, (b) underdamped. As the slope at x1 cuts
the function at another point, the convergence cannot be
ensured.

For power system, the phase angle of a bus with respect
to the reference bus can vary a lot. Two connected
buses usually keep a constant phase difference to maintain
an expected real power flow between them. In case of
typical faults, disturbances, or sudden load changes, the
phase difference of the connected buses can change, but
it usually does not exceed ±20◦. In this short region,
the sinusoidal function can be considered linear and the
analysis for linear function can be applied. An easier
choice is the maximum slope of this region that can ensure
convergence. The maximum slope for a sine function
occurs at θ = 0 and that for a cosine function occurs
at θ = π

2 . Due to the comparative values of a3, and
b3, a value close to zero is preferred. However, taking
the maximums slope can make it a slower process, and
a better value can be obtained by choosing the closest
possible value. For any transmission line ij, the angle

corresponding to the maximum slope, θm can be found
with Algorithm 1.

Algorithm 1 Selection of θij

1: θmin = min(possible values of θij)
2: θmax = max(possible values of θij)
3: if θmin > 0 then
4: θm = θmin // closest to zero
5: else if θmax < 0 then
6: θm = θmax // closest to zero
7: else
8: θm = 0
9: end if

4. MULTI-JACOBIAN METHOD

In the previous section, it is shown that the constant
Jacobian calculated at the nominal values can fail with
diverse states. On the other hand, a Jacobian with higher
slopes can converge slower than the Jacobian with the
nominal slope. A combined effort yields the proper
solution.

4.1 Timing Profile of Constant Jacobians

To develop a comprehensive approach, it is important
to have a practical view on the required time of the
estimations using constant Jacobians. As mentioned
earlier, the main advantages of the constant Jacobian
methods come from the parallel implementation. So, the
profiling is executed with parallel implementation on a
GPU.

Setup of the Experiment: To test the dishonest method
based state estimation, it is implemented on IEEE 118-bus
test system with 186 transmission lines. Measurement
errors are added artificially that vary in between 0.25-4%
of the original values. The original values are collected
under typical conditions of the states, i.e. |Vi| → 1.0, and
θi → 0, for i = 2..N . For parallel estimation, an NVIDIA
Tesla K20c GPU card with compute capability 3.5 is used.
Based on the three steps, three different kernels are written
that use different numbers of blocks and threads [20]. One
of the major advantages of GPU is that it does not require
any extra time to launch and finish a kernel. Therefore,
the kernels can be executed sequentially without any delay
[21]. The details of the GPU implementation can be found
in [22].
For simulation, three sets of magnitudes are chosen to
build the Jacobian matrix, |Vi| = 0.9 pu, 1.0 pu, and 1.2
pu. For all cases, the angle is set according to Section 3.4.
The required time is the product of the required number
of iterations and the execution time of each iteration.
The communication time is added with it. The trend of
convergence of the WLS and the dishonest methods are
shown in Fig. 7.
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Figure 7: The trend of norms of the estimations with (a)
iterations, (b) time. The required time is taken from the
serial implementation. It is very low for dishonest method
in parallel programming with CUDA.

Analysis of the Results: It can be seen that the WLS
method converges very close to the final value within only
one iteration. On the other hand, the dishonest method
with |Vi| = 1.0 converges faster than other values of
|Vi|. None of the dishonest methods take more than four
iterations to achieve the same accuracy of one iteration of
the WLS method.
However, due to the non-parallelisable part of the WLS
estimator, one iteration of the WLS method takes around
2.7 ms while one iteration of the dishonest method takes
around 64µs. The communication time is around 26µs
that is added to each measurement sample with multiple
number of iterations. As a result, around 42 iterations
of the dishonest method can run at the same time of one
iteration of the WLS estimator. In serial implementation,
around six iterations can run and the required time looks
like Fig. 7(b).

4.2 Proposed Method

The proposed method is a simple addition to the existing
method. From Fig. 7, it is clear that there exists a trade-off
between the range and the speed of convergence for the
dishonest method. The higher the slope, the bigger the
range, and the slower the speed. As the power system
rarely runs into any non-converging situation with nominal
Jacobian, the main process runs with the existing method.
At the same time, a few optional Jacobians are added in the

process. The optional Jacobians are calculated with larger
slopes (|Vi| = 1.2, 1.4 etc.) and saved before starting the
process. In case the nominal Jacobian fails, the options
can be tried one by one as shown in Fig. 8. The number of
options can be set with practical experiences.

5. ILLUSTRATIVE EXAMPLES OF FAILURE

It is already shown that a higher slope ensures convergence
of the dishonest method. Though it is easy to derive
the expression for the range of convergence for a single
state, it is difficult for the multi-state case. However, the
importance of the proposed method for the multi-state case
can be realized through simulation.

Estimation with 
Jacobian at |V|=1.0

Converged?

Estimation with 
Jacobian at |V|

Take new sample

yes

yes

no

no

Start

Define, incr=0.2

System 
online?

|V|       |V|+incr

Stop

Converged?

yes

no

Figure 8: A simplified flowchart of the proposed
multi-Jacobian method.

To show the case of failure, two Jacobians (at |Vi| = 1.0
and at |Vi| = 1.2) are applied on IEEE 68, and IEEE
118-bus test systems operating under disturbances. The
68-bus system has 16 machines with 83 transmission lines.
The details of the systems can be found in [23] (68-bus),
and [24] (118-bus). The states for the failed cases are
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shown in Table II, and III of the Appendix. As the angles
stay very close to zero, the nominal Jacobian is taken at
the highest slopes at θ = 0. The voltage magnitudes vary
a lot under the specified case.
The norms of the residues over the iterations of estimation
are shown in Figs. 9, and 10. For both cases, it can be
seen that the norms decrease in the beginning for both
Jacobians. Then the nominal Jacobian (|Vi| = 1.0) starts
a gradual increase after around ten iterations. It continues
increasing and the process explodes eventually. On the
other hand, the Jacobian with |Vi| = 1.2 converges with
the iterations. These two examples clarify the importance
of the proposed method.
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Figure 9: The trends of convergence for a special
case of 68-bus system where the nominal Jacobian
fails to converge and the Jacobian at |V|=1.2 converges
successfully.

An important point to be noted that the norm can increase
after a low value for |Vi| = 1.0. This means that a
short distance with the starting value of the states, x0

does not ensure convergence. The convergence depends
on the closeness of the point of Jacobian and the point of
operation.
As analysed in Section 3., the Jacobian should require
higher |Vi| for higher variations of the voltage magnitudes
of the buses. The minimum required |Vi|s are shown for
different standard deviations of the magnitudes in Fig. 11.
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Figure 10: The trends of convergence for a special
case of 118-bus system where the nominal Jacobian
fails to converge and the Jacobian at |V|=1.2 converges
successfully.

It can be seen that the nominal Jacobian fails for a standard
deviation more than 0.1222. It is also observable that the
minimum |Vi| keeps a linear relation with the standard
deviation of the states.
It is important to remember that, the existing method with
the Jacobian calculated at |Vi| = 1.0 that worked upto a
variance of 0.1222 is still a very strong tool. Because,
under normal operating conditions, the variance usually
does not exceed 0.05. Even with 10-20% load change of
the 68-bus system, the magnitudes does not change much
and they can be easily estimated. However, with very low
probability, the states may reach some values that may
not be possible to estimate using |Vi| = 1.0. Two such
cases are shown in the Appendix. In one study, one out
of 20000 samples failed to converge with |Vi| = 1.0.
Though the probability of such cases is low, it can be
crucial as the states may undergo very high change during
that time. Under these failed cases, the safer choice will
be to calculate the Jacobian with a higher value of |Vi|, not
with a lower one.
The single and the multi-Jacobian methods are compared
in Table I. The range of convergence refers to the
maximum variation of the states with which the method

Table I: Comparison of the Single and the Multi-Jacobian Methods

Qualities Single Jacobian method Multi-Jacobian method
Range of Convergence Limited High and not limited
Speed of Convergence Fast Equal/slower than the single-Jacobian method

Application All cases, except very high variations All cases
of voltages

Computation requirement Low High
Storage requirement Low High
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Figure 11: The minimum voltage magnitude to calculate
the Jacobian that is required for convergence of 68-bus
system. The Jacobian needs to be calculated with higher
slope with increasing standard deviation of the states.

can converge. The speed of convergence is the inverse
of the time required to converge. The computational
requirement is shown for the case where both methods
converge. The storage requirement denotes the memory
needed for saving the M-matrices for different |Vi|.

6. CONCLUSIONS

A special issue of convergence for the traditional constant
Jacobian based estimator for power systems has been
addressed in this study. It is shown that the Jacobian
calculated with the nominal values of the states may fail
under special circumstances. The problem can easily be
solved using an alternative Jacobian taken at a higher
slope. To keep both the speed and the reliability of the
estimator, a multi-Jacobian method is also proposed.
The issue of convergence for large variations of the states
needs to be investigated for all computational processes of
power systems where the Jacobian is kept constant like the
stability analysis or the optimal power flow. The analysis
requires further research to explore the possibility of a
complete expression of convergence for the multi-state
case. It will help us to find more loopholes in the processes
of the constant Jacobian.
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APPENDIX

Table II: Values of the state variables, |V |, and θ for the
failed case of 68-bus system as shown in Fig. 9

Bus |V| θ Bus |V| θ
1 1.000000 0.000000 35 0.903346 0.294854
2 1.123044 -0.290585 36 0.660723 0.412601
3 1.077397 -0.297812 37 1.011343 0.550404
4 1.004883 -0.318400 38 1.042428 0.030962
5 0.958901 -0.312663 39 1.008511 0.554983
6 0.965078 -0.327882 40 1.225189 -0.058275
7 0.912044 -0.262654 41 1.240158 -0.393123
8 0.895098 -0.239621 42 1.339963 -0.143990
9 0.758673 0.152988 43 1.009167 0.549785
10 1.019755 -0.397631 44 1.009798 0.549518
11 0.998357 -0.374395 45 1.071776 0.347421
12 0.943231 -0.378499 46 1.123650 0.084432
13 1.017465 -0.386901 47 1.103357 0.023470
14 1.021613 -0.363019 48 1.161692 0.012454
15 1.052775 -0.386312 49 1.208029 0.091866
16 1.098565 -0.424251 50 1.363774 0.152734
17 1.097677 -0.367931 51 1.190591 0.304066
18 1.085835 -0.333407 52 1.504477 -0.049914
19 1.190758 -0.553913 53 1.125044 -0.289585
20 1.074964 -0.548420 54 0.967078 -0.326882
21 1.099046 -0.493611 55 1.021755 -0.396631
22 1.147669 -0.600822 56 1.192758 -0.552913
23 1.136976 -0.596297 57 1.076964 -0.547420
24 1.109760 -0.433404 58 1.149669 -0.599822
25 1.181595 -0.332462 59 1.138976 -0.595297
26 1.167035 -0.355902 60 1.183595 -0.331462
27 1.120066 -0.331762 61 1.204773 -0.488767
28 1.190985 -0.434027 62 1.043612 0.007477
29 1.202773 -0.489767 63 0.911234 -0.153819
30 0.916075 0.031617 64 0.662723 0.413601
31 1.041612 0.006477 65 1.013343 0.551404
32 0.909234 -0.154819 66 1.242158 -0.392123
33 0.863357 0.014014 67 1.341963 -0.142990
34 0.822119 0.271059 68 1.506477 -0.048914
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Table III: Values of the state variables |V |, and θ for the
failed case of 118-bus system as shown in Fig. 10

Bus |V| θ Bus |V| θ
1 1.000000 0.000000 60 1.308048 0.217817
2 1.254920 0.009599 61 1.337683 0.233351
3 1.164455 0.015533 62 1.269382 0.222704
4 1.001670 0.080460 63 1.370614 0.210836
5 1.179872 0.088314 64 1.233405 0.241728
6 1.295964 0.040666 65 1.320579 0.296357
7 1.415903 0.032987 66 1.356102 0.293390
8 1.227277 0.176278 67 1.313056 0.247313
9 1.459855 0.302815 68 1.410197 0.294612

10 1.494270 0.435285 69 1.468543 0.337372
11 1.164272 0.035779 70 1.094830 0.207869
12 1.118547 0.026704 71 0.980916 0.200364
13 0.958780 0.011868 72 1.329444 0.179943
14 1.352468 0.014486 73 1.279064 0.196699
15 1.122560 0.009774 74 0.989765 0.191463
16 1.309046 0.021642 75 1.153070 0.213628
17 1.218902 0.053582 76 1.357104 0.193732
18 1.156968 0.015010 77 1.022439 0.280125
19 1.041672 0.006632 78 1.280089 0.274889
20 0.970780 0.021991 79 1.053564 0.280125
21 0.943039 0.049742 80 1.302247 0.319221
22 1.339004 0.094422 81 1.254347 0.304211
23 1.115642 0.180293 82 1.156091 0.289201
24 1.275740 0.178373 83 1.260887 0.309796
25 1.051693 0.301244 84 1.149754 0.353953
26 1.256510 0.332311 85 1.357216 0.381180
27 0.971014 0.081681 86 1.287170 0.357269
28 1.032003 0.051487 87 1.177100 0.361807
29 1.115463 0.034208 88 1.243606 0.435809
30 1.271346 0.141721 89 1.272952 0.506495
31 1.347401 0.036303 90 1.375289 0.394793
32 1.317138 0.072082 91 1.422980 0.395143
33 1.034026 -0.000698 92 1.303967 0.403695
34 1.105628 0.010996 93 1.186419 0.351160
35 1.407531 0.003491 94 0.962161 0.313636
36 1.076834 0.003491 95 0.981334 0.296706
37 1.015842 0.019199 96 1.368939 0.293913
38 1.279548 0.108909 97 1.416611 0.300371
39 1.057154 -0.039444 98 1.308081 0.291994
40 1.080127 -0.057945 99 1.188759 0.285710
41 0.913231 -0.065450 100 1.445616 0.302989
42 1.213370 -0.037350 101 0.979749 0.330565
43 1.146151 0.010647 102 1.130653 0.377515
44 1.012095 0.054978 103 0.956386 0.240332
45 1.285239 0.087266 104 1.212708 0.192335
46 1.224372 0.136485 105 1.194589 0.172788
47 1.092231 0.175580 106 0.913465 0.168424
48 1.165665 0.161617 107 1.191761 0.119730
49 1.095608 0.179245 108 1.092674 0.152018
50 1.239512 0.143641 109 0.925283 0.144164
51 0.938937 0.097913 110 1.408138 0.129503
52 1.203241 0.081158 111 0.992275 0.158301
53 0.910561 0.064228 112 1.196231 0.075398
54 1.331205 0.080111 113 1.371510 0.053582
55 1.068414 0.075049 114 1.246506 0.066148
56 0.955070 0.078365 115 0.922720 0.066148
57 1.213467 0.099309 116 1.172455 0.287107
58 1.219227 0.084474 117 1.139809 0.000000
59 1.322104 0.151844 118 1.276773 0.196350


