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Abstract: Power line communication (PLC) channels are prone to multipath propagation due to
impedance mismatch, and impulsive noise whose characteristics are still not well established in the
literature. Moreover, measurements show that this impulsive noise appear in bursts, non-Gaussian
and cyclostationary and as such cannot be modeled as the convenient additive white Gaussian noise
(AWGN). Transceivers optimized for AWGN may not necessarily perform well for the PLC noise.
Therefore, investigating the characteristics of PLC noise is very important for accurate modeling of the
same. This study presents multifractal analysis of bursty impulsive noise measured from power line
networks from three different environments. We employ multifractal detrended fluctuation analysis,
which is a well-developed multifractal analysis technique for non-stationary time series data and easy
to implement to analyze measured noise data. Results show that power line noise exhibits both
long-range dependence (LRD) and multifractal scaling behavior with different strengths depending on
the environments where they were captured. The multiscaling behavior is due to long-range correlation
inherent in the power line noise. The source of this local multiscaling behavior is determined by analysis
a shuffled series of the original data captured from the power network. Multifractal analysis is able to
show clearly both the strengths and frequency of occurrence of bursts occurring in PLC noise which
can then be applied in accurate modeling of the noise. The significance of these results is that new
power line noise models should be developed that captures both LRD and multifractal scaling for more
accurate performance evaluation of power line communication systems. The existing noise models
though able to replicate temporal dependence of PLC noise, are not able to capture this local scaling
behavior which results show is inherent in PLC noise.

Key words: Power Line Channels, Bursty Impulsive Noise, Long range temporal correlations,
Multifractal Analysis.

1. INTRODUCTION & MOTIVATION

Power line communication (PLC) is becoming popular for
broadband applications, multimedia sharing and is part
of smart grid systems due to its ubiquitous nature and it
is economically viable since no extra wiring is required
for communication purposes. However, like any other
communication channel, PLC has challenges of multipath
(due to impedance mismatch), path loss and impulsive
noise [1, 2]. As such high speed data transmission is
still a daunting task. The most difficult challenge is
characterizing and modelling the PLC noise.

Noise in power line communication networks is
non-Gaussian and as such can not be modelled as
the convenient additive white Gaussian noise. The noise is
known to be impulsive and in most cases, occur in bursts.
Therefore, it can be referred as bursty impulsive noise [3].
Due to unique nature of this noise in power line channels,
modulation and decoding schemes optimized for Gaussian
channels may not necessarily work well in PLC systems.
This has contributed to the increased growth in the interest
of PLC noise modelling and analysis. PLC noise is
generated from within and without the network and can be
classified into: coloured background noise, narrowband

interference, periodic impulsive noise synchronous to
mains, periodic impulsive noise asynchronous to mains,
and asynchronous impulsive noise [4]. For convenience
in modelling, these five groups are normally classified
into two major groups; background noise and impulsive
noise [4–6].

A recent survey on impulsive noise modelling groups
the models into models with memory and those without
memory [7]. The popular memoryless models are
Bernoulli-Gaussian, Middleton Class A and symmetric
Alpha-Stable distribution models [6, 7]. Even though the
memoryless models are able to capture the non-Gaussian
and impulsive nature of PLC noise, they fail to capture
the temporal correlation that is inherent in PLC noise.
To model this temporal correlation, Markov chain based
models have been developed. A partitioned Markov
chain model was developed in [4] which is able to
capture the bursty nature of PLC noise by considering
impulsive states and impulsive free states. This model
is a generalization of Gilbert-Eliott model [8]. The main
challenge with this model is that it has binary output and is
only suitable for binary communication channels. In [5],
a Markov-Gaussian model is developed from the same
principle as the Bernoulli-Gaussian model, but with an
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additional parameter which quantifies the channel memory.
Even though Markov-Gaussian model is a continuous
noise model, its main drawback is that it is restricted to
only two states: impulsive free and impulsive sequence
states. In each of the states, noise samples follow Gaussian
distribution with impulsive states having noise variance
which is very high compared to the variance of the
impulsive free state.

The authors in [3] extended Middleton Class A model
by incorporating an additional parameter that allows for
controlling noise impulse memory. The model known
as Markov-Middleton introduces noise memory through
hidden Markov chain and it is a continuous noise model
with finite states and the same PDF as the Middleton Class
A model. In each of the finite states, the noise variance is
a function of the physical parameters of the noise (number
of simultaneous impulsive emissions, impulsive index and
strength of the impulsive noise). The noise can be assumed
to be a superposition of impulsive source emissions
that are Poisson distributed both in space and time and
have temporal correlation. In all the memory models,
the additional parameter capturing the noise memory is
determined from noise measurements and details can be
found in [4], [5] and [3].

There are also other studies on the characteristics of PLC
noise which have concentrated on amplitude distributions,
impulse width and impulse rate (see [4, 9–12]) without
considering much the frequency and strength of bursts
which are prevalent in PLC noise and impacts heavily
on communication system development and performance
analysis. Even though our interest is on indoor low-voltage
PLC applications, it should be noted that impulsive noise
is a challenge even in other applications (e.g., see [13]).
A shift of focus has recently turned into models and
analysis considering the cyclostationary nature of PLC
noise [14–19]. This resurgence of interest in PLC noise
modelling shows the importance as well as complexity of
noise experienced in power line channels.

Fractal structure of PLC noise and its impacts on PLC
systems is not yet well published in the literature. The
authors in [20] have done studies on self-similarity and
fractal analysis of PLC noise and they observe that PLC
noise exhibits long-range dependence (LRD). Long-range
dependence can be determined by estimating the Hurst
parameter H, which is a measure of intensity of LRD.
LRD measures high variability in flow or arrival in time
series data/signal. There is a relationship between channel
memory and H parameter. The questions that this studies
is trying to answer is whether the Hurst parameter (derived
from second order moment) alone is good enough to
characterize the correlation structure of PLC noise. In
other words, in this study, we perform multifractal analysis
to PLC noise measured from three different locations
(University Electronic Laboratory, Postgraduate Office,
and stand-alone Apartment). Multifractal analysis is
superior to LRD analysis. It is a statistical tool that is able
to measure the frequency with which bursts of different
strengths occur in a signal [21].

Multifractal theory is a well developed technique and has
been used in various fields in analysis and modelling of
scaling behaviour of measures/functions in time series
processes. Some of the signal and processing analysis
based on multifractal include bit error rate process analysis
of 11 Mbps wireless MAC-to-MAC channels [22], internet
traffic and network traffic measurement estimations [21,
23], image feature extraction [24], stock market analysis
[25, 26], biomedical analysis [27, 28] and so on. We stress
that in this study, noise model is not being developed,
but the study is concerned with investigating multifractal
nature of PLC noise and the origins of these multifractals
in PLC noise. Noise model that captures the multifractal
nature of PLC noise and its impact on the performance
analysis of PLC systems is still work in progress and will
be published later. To the best of knowledge of the authors,
this is the first paper addressing the issue of multifractal
analysis of PLC noise and sets a very good background
into multiplicative cascades modelling of PLC noise.

The rest of paper is organized as follows: Section 2. details
the methodology employed in this study; Section 3., the
procedure for obtaining noise measurements used in the
study is outlined and noise measurement samples are also
provided to show the different data being analysed. Results
and discussion are in Section 4., where we specifically
show that PLC noise is long-range correlated and exhibits
multifractal scaling behaviour. The models discussed from
the previous section even though have been extensively
utilized in error performance analysis in PLC networks,
they do not capture this new finding. In Section 5.,
conclusion of the paper is presented with a proposal for
further study emanating from the results in this paper.

2. MULTIFRACTAL ANALYSIS

Multifractal spectrum provides a good measure of
characterizing non-stationary time series signals. Methods
for estimating multifractal spectrum are well developed
and continue to excite much research. Selection of
methods to be used for analysis depend on the required
precision, type of data and computational speed [24].
Moreover, the methods are not equivalent and quite often
produce different results. The interest is normally to
extract fractal/multifractal properties of a given signal
rather than seeking for exact fractal dimension. Among
the well developed and most accurate is the wavelet
transform modulus maxima (WTMM) [29–32]. However,
its computational cost is the major hindrance to its
application.

This paper is an extension of [33] in which preliminary
results of multifractal analysis were reported. Here we
apply two methods: multifractal detrended fluctuation
analysis (MDFA) [34] and multifractal detrending moving
average analysis (MDMA) [26]. Their choice is due to ease
of implementation and fast computational applicability.
Again, their accuracy have been seen to be comparable
to WTMM [34, 35]. Both have been developed for
non-stationary time series signals and there are MATLAB
codes available on-line that can be modified by the
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intended users for their implementation [26, 36].

2.1 Autocorrelation Function

Autocorrelation function (ACF) can be a good starting
point for correlation analysis of time series data. It
provides correlation of ith measurement with that of
(i + l)th one for different time lags l. It can be used
as a preliminary indicator of existence of long-range
dependence in a time series data. Considering a time series
data {xi}N

i=1 with i = 1, · · · ,N, N representing the length of
the series, the auto-covariance function is given by

R‘(l) = 〈x̄ix̄i+l〉=
1

N − l

N−l

∑
i=1

x̄ix̄i+l (1)

where x̄i = xi − 〈x〉 and 〈x〉 is the mean of the series.
The ACF Rxx(l) is then given by R‘(l) normalized by the
variance of the series 〈x̄2

i 〉. The time series is short range
dependent when its ACF declines exponentially (Rxx(l) ∝
exp(−l/lo)) for l → ∞. When ACF declines as power-law
(Rxx(l) ∝ l−γ) for l → ∞ and 0 < γ < 1, then the series is
said to have long-range dependence.

Due to unknown trends and noise in time series data, direct
calculations of Rxx(l) is usually not advisable. Moreover,
autocorrelation analysis and power spectrum analysis fail
to capture the correlation behaviour in most non stationary
time series due to unknown trends that might be in the
time series. However, there are methods available for
determining the local scaling behaviour of time series
data. These methods differ in the way fluctuations are
determined and the type of polynomial trend eliminated in
each window size [37].

2.2 Multifractal Detrended Fluctuation Analysis

Multifractal Detrended Fluctuation Analysis is a gener-
alization of DFA to cater for non-stationary time series
data and the procedure consists of five steps [34]. Let us
consider a series xi of length n and is of compact support,
the procedure for MDFA involves the following: The first
step involves the construction of time series ‘profile’ (this
step converts the noise time series to random walk-like
series) from the original data as

y(k)≡
k

∑
i=1

(xi − x̄) k = 1, · · · ,n (2)

where x̄ is the mean of the time series.

In the second step, the profile y(k) is then divided into
non-overlapping segments of equal length s, that is, ns
=int(n/s). If the length n of the series is not a multiple
of s, then a small portion of it may remain. To utilize this
portion also, the procedure is repeated from the opposite
end, making 2ns segments altogether.

In the third step, local trend for each of the 2ns segments
is determined by least-square fit of the series. Then the

variance is determined as

F2(s, l) =
1
s

s

∑
k=1

{y[(l −1)s+1]− yl(k)}2 (3)

for each segments, l = 1, · · · ,ns and,

F2(s, l) =
1
s

s

∑
k=1

{y[n− (l −ns)s+1]− yl(k)}2 (4)

for each segments l = ns + 1, · · · ,ns, where yl(k) is the
polynomial fit in segment l.

The qth order fluctuation function can then be obtained by
averaging of all the segments in the fourth step as

Fq(s) = { 1
2ns

2ns

∑
v=1

[F2(s,v)]q/2}1/q (5)

where q is a variable that can take any value apart from
zero. Steps (2) to (4) are repeated for several different time
scales s.

The last step is to determine the scaling behaviour of the
fluctuation functions by plotting on log-log scale Fq(s)
versus scale s for each value of q. If the time series exhibits
long-range correlation, then Fq(s) increases with increase
in scale s as a power-law

Fq(s)∼ sh(q). (6)

The multifractal scaling exponent h(q) in (6) is known
as generalized H exponent and is the well-known H
parameter for q = 2 for stationary time series. For
monofractal series, the exponent h(q) is independent of q
and it is dependent on q for multifractal time series data.
Multifractal scaling exponent h(q) is related to standard
multifractal formalism scaling exponent τ(q) as

τ(q) = qh(q)−D f (7)

where D f is the fractal dimension of the geometrical
support of the multifractal measure and for time series
data, D f = 1 [34] [26]. For multifractal time series,
τ(q) is a non linear function of q. An alternative way
of characterizing multifractal series is by the singularity
strength function α(q) and the multifractal spectrum
function f (α) [26, 34] via Legendre transform

α(q) =
dτ(q)

dq
and f (α) = qα− τ(q) (8)

2.3 Multifractal Detrending Moving Average Algorithm

Multifractal detrending moving average (MDMA) al-
gorithm [26] is a generalization of the detrending
moving average (DMA) algorithm [38] initially designed
for fractal analysis for non-stationary time series data.
MDMA was developed to analyse both multifractal time
series and multifractal surfaces. Its algorithm can be
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summarized as follows [26].

The first step is to construct a sequence of cumulative sums
y(t) assuming a time series x(t)N

1 , where N is the length of
the time series, i.e.,

y(t) =
t

∑
i=1

x(i) t = 1,2, · · · ,N (9)

The second step is to determine the residual sequence
by detrending the signal series by subtracting the
moving average function from the cumulative sums series
computed in step one.

r(i) = y(i)− ỹ(i) (10)

where n−�(n−1)θ� ≤ i ≤ �N − (n−1)θ� and ỹ(t) is the
moving average function in a moving window,

ỹ(t) =
1
n

�(n−1)(1−θ)�

∑
k=−�(n−1)θ�

y(t − k) (11)

where n is the window size and θ is a parameter
determining the position of the window. θ takes values
in the range [0,1]. Mostly, three special cases are normally
considered, namely, θ = 0 (backward moving average), in
which the moving average function is calculated over the
past n− 1 data points of the signal. The second case is
for θ = 0.5 (centred moving average) for which moving
average function is calculated over half past and half future
data points of the signal. The last case is when θ = 1
(forward moving average) on which the moving average
function is calculated on n− 1 data points of the signal in
the future.

In the third step, the residual sequence r(i) is divided
into N non overlapping segments of the same size n,
where N = �N/n− 1�. Denoting each segment by rv, the
root-mean-square function Fv(n) can be calculated by

F2
v (n) =

1
n

n

∑
i=1

r2
v(i) (12)

The forth step involves determining the qth order overall
fluctuation function Fq(n) as

Fq(n) = { 1
Nn

Nn

∑
v=1

Fq
v (n)}

1
q (13)

Finally, in the last step, the values of segment size n can
be varied to determine the power-law relation between the
function Fq(n) and scale n as

Fq(n)∼ nh(q). (14)

When h(q) has been estimated, then scaling exponent
dependent on q can be determined from (7). Similarly,
singularity strength and multifractal spectrum can be

estimated from (8).

3. MEASUREMENT SET-UP AND ACQUISITION
PROCEDURE

Characterization and modelling of noise present in
power line communication system requires rigorous noise
measurement campaign. For this study, PLC noise
measurements were recorded using the set up shown in
Figure 1. The set up comprises a coupling unit used for
protecting Digital Storage Oscilloscope (DSO) from high
power network currents. The coupling unit also acts like
a high pass filter, allowing only signals of interest to pass
through. The DSO employed here as a receiver is capable
of recording 14 million data point samples and was set
to sample noise at a rate of 50 Mega-samples per second.
This implies that we are able to capture noise from lower
cut-off frequency of the coupling unit (100 KHz) to 25
MHz frequency range.

Three scenarios are used in this study. First, noise
measurements was done in one of the postgraduate study
offices with electrical loads being fluorescent lights,
desktop computers and air conditioners. Sample is shown
in Figure 2(a). It should be noted that these electric
loads are the PLC noise generators and the adjacent
offices connected to the same bus-bars have similar loads.
Secondly, noise from Electronic Laboratory (Figure 2(b))
was measured when students were undertaking their
practicals. In addition to fluorescent lights and air
conditioners, electronic loads with components like SCRs
and measurement equipment were connected to the power
network. Lastly, PLC noise was measured in a stand-alone
five bedroomed apartment (Figure 2(c)). The electrical
loads here include lights, television set, washing machine,
two fridges and a vacuum cleaner. The first two scenarios
are situated within University of KwaZulu Natal and the
third one is located away from the University. These
scenarios are just representatives of actual PLC channels
and there is nothing so special about their location apart
from the different loads in these locations which also act
as noise generation sources.

Noise measurements were done when all of these loads
were running/switched on, and from Figure 2, it can
be seen that each of the different environments generate
unique noise samples due to different noise sources.
Moreover, the switching times (ON and OFF) of these
loads are also random and the noise is expected to show
this randomness without correlation. However, previous
studies have established that PLC noise though generated
from different sources randomly, is correlated as reported
in the previous section. It is also known that some extra
noise from without the power grid are coupled to the indoor
network via conduction or radiation [4].
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Figure 1: Power line noise measurement set up

4. RESULTS & DISCUSSION

4.1 Unfiltered PLC Noise Analysis

Multifractal spectrum and their corresponding q−order
dependent scaling exponent estimated from two methods
(MDFA and MDMA) for PLC noise data measured from
various environments are shown in Figures 3 and 4
respectively. From these figures, it is evidenced that the
PLC noise has a scaling behaviour that is sensitive to small
fluctuations within its segments. This is characterized by
the left truncated multifractal spectrum shown in each of
the locations by both the methods. The q−order dependent
scaling exponent graphs give an indication that PLC noise
is multifractal as the scaling exponent of the original time
series data is dependent on q−order of the fluctuations, that
is, the scaling exponent is non linear. When the time series
data is shuffled, the scaling exponent is more or less linear,
which implies monofractal behaviour.

Table 1 and Table 2 respectively provide values of
singularity spectrum parameters for Figures 3 and 4. The
most important parameter is the spectrum span (∆α =
αmax − αmin) which is a measure of irregularity of the
signal/time series. From Table 1, the values of span
for noise from various locations show that PLC noise
from office has a spectrum distribution which is more non
uniform than both noise from laboratory and apartment
which seem very close. When the data is shuffled, the
span is negligible except for the one of office data. In the
office data, the span of original data is 0.93 and that of the
shuffled data is 0.41. The implication for these values is
that the shuffled data shows weaker multifractal behaviour
than the original data. Similar results are seen for noise
captured in an apartment, however, for laboratory data, the
shuffled series show no evidence of multifracticity.

Results from second method (MDMA) gives an indication
that it is the laboratory data that show this weak
multifractal behaviour in the shuffled series (Table 2).
Since the multifractal behaviour of PLC noise is not yet
known, we can not conclude from the results which of the
methods gives a better analysis than the other. However, it
is evident from the two methods used in the analysis that
PLC noise exhibits multifractal behaviour but the nature

(a) Office

(b) Laboratory

(c) Apartment

Figure 2: Noise measurement samples
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and source of this behaviour requires further investigation.

Another important parameter of measure is α0. Viewing
the singularity spectrum as frequency distribution of
singularity strength, α0 provides the value of the
singularity strength which is most frequent in the
distribution. The value of α0 provides the measure of
correlation characteristics of the signal/time series. Both
the methods show that PLC noise exhibits long-range
correlation since the most frequent singularity strength
ranges between 0.5 and 1.

Table 1: Singularity Spectrum Parameters in Figure 3

Location Data Measure Indices
α0 αmin αmax ∆α

Office Original 0.77 0.45 1.38 0.93
Shuffled 0.88 0.73 1.14 0.41

Laboratory Original 0.46 0.37 1.10 0.73
Shuffled 0.50 0.48 0.56 0.08

Apartment Original 0.79 0.64 1.35 0.71
Shuffled 0.76 0.64 0.90 0.26

Table 2: Singularity Spectrum Parameters in Figure 4

Location Data Measure Indices
α0 αmin αmax ∆α

Office Original 0.64 0.38 1.06 0.68
Shuffled 0.50 0.48 0.55 0.07

Laboratory Original 0.63 0.52 1.28 0.76
Shuffled 0.77 0.69 0.84 0.15

Apartment Original 0.79 0.63 1.26 0.63
Shuffled 0.49 0.45 0.51 0.06

4.2 Filtered PLC Noise Analysis

PLC Noise that was captured in the frequency band of
0.1 MHz to 25 MHz was decomposed into low frequency
(0.1 − 10 MHz) and high frequency (10 − 25 MHz)
components. The decomposed components were then
analysed by the MDFA technique with a view to investigate
multifractal characteristics of these noise components.
Interesting results can be seen in Figure 5 where it is
seen that the multifractal characteristics of PLC noise in
general is mainly being contributed by the low frequency
components. In [10], it was reported that noise spectrum
has relatively high values at low frequency than at high
frequencies. This was attributed to many sources of low
frequency noise in the power network and short-wave
radios in the low frequency band. We can also conclude
from the findings in this study that these low frequency
sources are the main contributors of the scaling behaviour
inherent in PLC noise. Again, it is known that man-made
impulsive noise is mainly in the low frequencies [11] and
at these low frequencies, the noise PSD is high [39].

Since the multifractal behaviour of PLC noise is due
to bursty impulsive noise, the results showing that low
frequency components of PLC noise is more multifractal
than the high frequency component (which is monofractal
or very weak multifractal for the cases of office and
apartment scenarios) is valid. Low frequency components
of PLC in from office and laboratory data retain the
same shape (left truncated concave shape) of multifractal
spectrum as the unfiltered time series data. However, the
low frequency component of apartment data has a full
concave multifractal spectrum. These results continue
to confirm that different locations have sources which
contribute to the noise characteristics uniquely. We intend
to isolate the individual noise sources and characterise
their behaviour according to the frequency and strengths
of impulsive noise they generate. Investigating the
characteristic of individual noise sources is a common
practice in PLC communications and will be an interesting
future work.

5. CONCLUSION

Multifractal analysis of PLC noise measured from an
office environment, University electronic laboratory and
a stand-alone apartment reveal that PLC noise exhibits
multifractal behaviour, meaning that it can not be
accurately characterized by a single power-law scaling
exponent. This multifractal characteristics is mainly
encountered in the low frequency band (< 10 MHz) where
there are many sources of bursty impulsive noise. Results
from the findings also show that PLC noise has long-range
dependence behaviour. However, neither of the methods
used in the analysis was able to reveal the source of
multifractal behaviour seen in PLC noise and hence further
analysis will be performed to investigate the source of
multifractal behaviour. It will also be interesting to capture
noise from individual noise generators and investigate their
scaling behaviour. Furthermore, the findings of this study
point to the fact that there is need for new models to be
developed for PLC noise that will be able to capture more
accurately its LRD and multifracticity nature. The impact
of these noise characteristics on performance analysis
of power line communication systems also needs to be
investigated and forms our future research.
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