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Introduction
Liddle syndrome, the most common monogenic cause of hypertension,1 is an autosomal 
dominantly inherited disorder typified by salt-sensitive hypertension, hyporeninaemia, 
hypoaldosteronism, metabolic alkalosis and variable hypokalaemia.2 Even though symptoms and 
signs may present in infancy, the diagnosis is often significantly delayed.3

Sodium reabsorption in the epithelial cells of the distal renal tubule is regulated by the epithelial 
sodium channel (ENaC).4 Liddle syndrome arises from activating mutations of the SCNN1A, 
SCNN1B and SCNN1G genes,5 which encode for the intracellular carboxy-terminal domains of the 
alpha, beta and gamma ENaC subunits. This results in an elevated number of channels and 
markedly increased independent activity with consequent sodium and water retention, 
hypertension and negative feedback suppression of renin and aldosterone secretion.2,3

Ethical considerations 
Written consent was obtained from the child’s parents and ethics approval obtained from the 
Research and Ethics Committee at the University of Pretoria (No. 536/2020). Confidentiality was 
ensured in the preparation of this case study.

Introduction: Liddle syndrome is an autosomal dominantly inherited disorder usually arising 
from single mutations of the genes that encode for the alpha, beta and gamma epithelial 
sodium channel (ENaC) subunits. This leads to refractory hypertension, hypokalaemia, 
metabolic alkalosis, hyporeninaemia and hypoaldosteronism, through over-activation of the 
ENaC.

Case presentation: We describe a 5-day old neonate who presented with severe hypernatraemic 
dehydration requiring admission to Steve Biko Academic Hospital in South Africa in 2012. 
Further evaluation revealed features in keeping with Liddle syndrome. Two compound 
heterozygous mutations located at different subunits encoding the ENaC were detected 
following genetic sequencing done in 2020. The severe clinical phenotype observed here could 
be attributed to the synergistic effect of these known pathological mutations, but may also 
indicate that one of the other variants detected has hitherto undocumented pathological 
effects.

Management and outcome: This child’s treatment course was complicated by poor adherence 
to therapy, requiring numerous admissions over the years. Adequate blood pressure control 
was achieved only after the addition of amiloride at the end of 2018, which raised the suspicion 
of an ENaC abnormality.

Conclusion: To our knowledge, this is the first Liddle syndrome case where a combined 
effect from mutations resulted in severe disease. This highlights the importance of early 
recognition and management of this highly treatable genetic disease to prevent the grave 
sequelae associated with long-standing hypertension. Whole exome sequencing may assist 
in the detection of known mutations, but may also unveil new potentially pathological 
variants.

What this study adds: This study highlights the importance of developing a high index of 
suspicion of tubulopathy such as Liddle syndrome for any child presenting with persistent 
hypertension associated with hypokalaemic metabolic alkalosis.

Keywords: Liddle syndrome; epithelial sodium channels; genetic sequencing; hypertension; 
hyporeninaemia; hypoaldosteronism.
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Case presentation
A male patient of Ethiopian descent, born in November 
2012, presented on day five of life with severe hypernatraemic 
dehydration and acute renal failure requiring admission. On 
examination, he appeared severely wasted and dehydrated 
with absent femoral pulses. Abdominal ultrasound revealed 
a thrombus in the aorta, attributed to the hyperviscosity 
associated with the severe dehydration. The thrombus 
resolved following heparin therapy and the child was 
discharged upon resolution of his renal failure with 
rehydration in December 2012.

He was reviewed a week after discharge and found to have 
hypertension. During subsequent admissions over the years 
of follow-up, no clotting abnormalities were found and renal 
ultrasonography revealed no new thrombus nor renal 
abnormalities. No cardiac abnormalities were detected on 
sonography. There was no history of consanguinity.

Laboratory results (analysed on an Abbott Architect ci8200 
(Abbott Laboratories, Chicago, Illinois, United States) up to 
8 years of age revealed potassium values ranging from 
2.0 mmol/L to 3.0 mmol/L (reference interval [RI]: 
3.7 mmol/L – 5.9 mmol/L) and sodium levels 159 mmol/L – 
171 mmol/L (RI: 136 mmol/L – 145 mmol/L) (Table 1). 
Metabolic alkalosis was also present (HCO3

- = 29 mmol/L to 
34 mmol/L [RI: 23 mmol/L – 29 mmol/L]). Random urine 
potassium was elevated (12.0 mmol/L – 22.0 mmol/L 
[RI: < 10 mmol/L]) despite the low serum potassium on 
presentation.

Initial investigations in 2019, for the specific R563Q mutation 
and mutations on exon 13 of the beta subunit of the ENaC (most 
common causes of Liddle syndrome in South Africa), were 
negative. Further investigation was undertaken, with the aid of 
external funding, of all exons and exon-intron boundaries of the 
alpha (SCNN1A [GenBank NM_001038.5]), beta (SCNN1B 
[GenBank NM_000336.2]) and gamma (SCNN1G [GenBank 
NM_001039.3]) subunits encoding for the ENaC; these were 

amplified by polymerase chain reaction and sequenced using 
the Nimagen, BrilliantDye™ Terminator Cycle Sequencing Kit 
V3.1, BRD3-100/1000 (NimaGen, Nijmegen, the Netherlands), 
according to manufacturer’s instructions, in 2020.

Two sets of compound heterozygous transition mutations 
were found in the coding regions of the SCNN1A and 
SCNN1B genes (Figure 1). In SCNN1A, c.1000G>A in exon 5 
resulted in Ala334Thr substitution and c.1987A>G in exon 13 
led to Thr663Ala amino acid change. In the SCNN1B gene, 
there was a c.7G>A mutation in exon 2 leading to a Val3Met 
substitution, and a c.1325G>T mutation in exon 9 leading to 
a Gly442Val substitution. No mutations were detected in the 
coding region of the SCNN1G gene.

Management and outcomes
The patient was initially managed on multiple 
antihypertensive drugs and potassium supplementation, but 
the treatment course was complicated by poor adherence to 
therapy and follow-up, resulting in numerous re-admissions 
over the years to achieve blood pressure control. Effective 
blood pressure control was only achieved on commencement 
of amiloride in 2018, years after the initial presentation. This 
prompted the investigations for an ENaC abnormality.

Discussion
In a neonate presenting with hypernatraemia and 
hypokalaemic metabolic alkalosis, the use of diuretics, 
persistent vomiting, nasogastric free drainage losses or a 
tubular disorder such as Gitelman or Bartter syndrome should 
be considered. If hypertension is also present, secondary 
causes such as congenital adrenal hyperplasia, primary 
hyperaldosteronism, syndrome of apparent mineralocorticoid 
excess, glucocorticoid-remediable aldosteronism, renal artery 
stenosis and a deoxycorticosterone-producing tumour should 
be included in the differential diagnosis.6

The presence of persistent hypertension with hypokalaemic 
metabolic alkalosis should raise the suspicion of unregulated 

TABLE 1: Laboratory results trends during follow-up at Steve Biko Academic Hospital in South Africa, 2020.
Analyte Reference 

ranges
Age

At birth
Nov 2012

1 day
Nov 2012

4 months
Mar 2012

8 months
Jul 2013

10 months
Sept 2013

2 years
Jan 2015

4 years
Feb 2017

5 years
May 2018

8 years
Aug 2020

Sodium (mmol/L)
(ISE)

136–145 171 161 139 141 143 136 135 150 137

Potassium (mmol/L)
(ISE)

3.7–5.9 5.5 3.1 3.6 2.5 1.7 1.3 6.1 2.4 1.8

Chloride (mmol/L)
(ISE)

98–113 129 131 107 94 94 99 100 104 99

Bicarbonate (mmol/L)
(ISE)

23–29 8 19 23 34 37 26 14 34 27

Anion gap (mmol/L)
(calculated)

9–16 40 17 13 16 14 12 27 - 13

Urea (mmol/L)
(urease)

0.7–4.6 58.1 29.4 1.4 2.8 2.1 5.5 3.3 1.3 1.78

Creatinine (μmol/L)
(kinetic alkaline picrate)

14–34 530 182 13 18 19 27 58 39 45

Urine sodium (mmol/L)
(ISE)

< 10 - - 42 - - 69 - - -

Urine Potassium (mmol/L)
(ISE)

< 10 - - 18 - - 22 - - -

ISE, ion selective electrode.
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ENaC activation.4 Sodium reabsorption in the epithelial cells 
of the distal renal tubule is regulated by the ENaC, which is 
activated through the renin-angiotensin-aldosterone system6 
(Figure 2). It is important to determine if the hypertension is 
associated with low renin levels. In this instance, both serum 
aldosterone (< 27.0 pmol/L [RI: 49–643 pmol/L, supine], 

measured by Diagnostic Products Corporation Aldosterone 
Coat-a-count Kit, Diagnostic Products Corporation, Los 
Angeles, California, United States) and plasma renin 
concentration (0.5 mIU/L [RI: 6.5–36.2 mIU/L, supine], 
measured by CIS BIO Active Renin assay, Cisbio Bioassays, 
Codolet, France) levels were suppressed.

a

b

c

d

R, A/G; K, G/T.

FIGURE 1: Sanger Sequencing electropherogram results of subunits SCNN1A and SCNN1B of the ENaC indicating mutations (arrow). (a) Sequence electropherogram 
showing a heterozygous c.1000G>A mutation (chr12:6355415 [GRCh38.p14]) in exon 5 of SCNN1A. (b) Sequence electropherogram showing a heterozygous 
c.1987A>G mutation (chr12:6347896 [GRCh38.p14]) in exon 13 of SCNN1A. (c) Sequence electropherogram showing a heterozygous of SCNN1A c.7G>A 
(chr16:23348606 [GRCh38.p14] in exon 2 of SCNN1B. (d) Sequence electropherogram showing a heterozygous c1325G>T mutation (chr16:23377219 [GRCh38.p14]) 
in exon 9 of SCNN1B. 
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When the ENaC is activated independently of aldosterone 
stimulation, treatment with aldosterone antagonists has no 
effect. However, the use of amiloride or triamterene can lead 
to complete resolution of symptoms, as they are direct 
antagonists of the renal tubular ENaC and cause natriuresis 
while being both potassium and magnesium sparing.3 If 
there is a suspicion of an ENaC mutation based on the 
response to these drugs,3 whole exome sequencing should be 
undertaken.

The very rare missense single nucleotide variant (for which 
our patient is heterozygous), that causes the substitution of 
glycine to valine (p.Gly442Val), has been linked to 

hypertension with increased ENaC activity.7,8 The effect of 
this polymorphism has been assessed by measuring the 
urine-aldosterone to -potassium ratio.7 Increased ENaC 
activity would decrease this ratio as excess sodium 
absorption results in reduced aldosterone production and 
elevated urinary potassium excretion.7 This phenomenon 
has been confirmed in Liddle syndrome patients where the 
urine-aldosterone to -potassium ratio was lower in subjects 
with the polymorphism than in normal subjects.9 The 
association of the alpha ENaC polymorphism (for which 
our patient is heterozygous), that causes the substitution of 
alanine to threonine (pAla334Thr), has been related to 
hypertension in certain studies10 and is associated with 

Renal perfusion
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Angiotensin I

Angiotensin II

Vascular smooth
muscle Posterior pituitary Adrenal cortex
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H2O and Na+
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Note: Decreased blood pressure causing a fall in renal perfusion stimulates the juxtaglomerular cells to secrete renin. Renin then cleaves angiotensinogen, produced by the liver, to angiotensin I. 
Angiotensin I is converted to its active form angiotensin II by angiotensin converting enzyme (ACE) from the lungs. Angiotensin II has numerous effects as illustrated above, one of which is 
stimulating the adrenal gland to release aldosterone. Aldosterone stimulates the insertion of luminal ENaC and renal outer medullary potassium channels as well as basolateral Na+/K+ ATPase. This 
results in Na+, Cl- and water retention with concomitant K+ excretion.
ACE, angiotensin converting enzyme; ADH, antidiuretic hormone.

FIGURE 2: Renin-angiotensin aldosterone system physiology.
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increased ENaC activity of 1.6-fold10 in functional studies. 
These findings in the current patient indicate that the 
severe clinical phenotype observed could be attributed to 
the compound heterozygous mutations located at different 
subunits of the ENaC and may indicate the presence of a 
yet unrecognised pathological variant.

Analogous to disorders caused by mineralocorticoid excess, 
Liddle syndrome classically presents with hypertension, 
hypokalaemia and metabolic alkalosis. These findings are 
not always present, which may lead to under-diagnosis of 
the syndrome.11 Identification of this condition is challenging, 
as the differential diagnosis for secondary hypertension is 
broad and the syndrome may present atypically. Patients 
may have marked variations in phenotype, even with the 
same genotype.3 Liddle syndrome principally arises from a 
transport impairment causing increased sodium reabsorption 
and excretion of potassium and hydrogen ions in the distal 
renal tubule. Invariably, this leads to hypertension due to 
sodium and fluid retention with consequent hypokalaemic 
metabolic alkalosis and the suppression of renin and 
aldosterone through negative feedback.

Rare variants may, autonomously or cumulatively, cause 
hereditary disorders. Liu and colleagues observed substantial 
differences in serum potassium levels and symptom onset in 
rare and non-rare SCNN1B and SCNN1G variant carriers, 
suggesting potential pathogenicity of some variants.12 To date, 
approximately 31 different Liddle syndrome-causing alleles 
have been described in 72 families from four continents.3,10,13

Interpretation of results from next-generation sequencing 
technologies are challenging as they have increased not only 
the diagnostic sensitivity, but also the number of variants 
with uncertain clinical significance. It is feasible that additional 
mutations that increase ENaC activity and result in 
phenotypical Liddle syndrome will be discovered. In a study 
including patients with the Liddle syndrome phenotype from 
Kenya, Nigeria and South Africa, most patients had variants 
of a number of diverse genes that affect the ENaC channel.13 
The authors speculated that certain patients may have 
combinations of variants that predispose to both increased 
aldosterone secretion and increased activity of the ENaC.13

In the assessment of patients with hyporeninaemic 
hypertension, investigation for a mutation in the ENaC 
subunits is recommended since early diagnosis and 
correct management of these patients may improve 
outcomes. Delayed treatment is associated with failure to 
thrive and hypertension-related morbidity and mortality 
from cardiovascular disease, cerebrovascular disease, 
nephrosclerosis and progressive renal failure. Furthermore, 
mutation studies permit clinicians to advocate for family 
screening based on the proband to identify carriers.14

This is the first case where a combined effect from mutations 
resulted in severe disease. Genetic testing (including whole 
exome sequencing) should be performed, when possible, to 

identify mutations in patients with suspected secondary 
hypertension and unusual presentation.14

Conclusion
Liddle syndrome is a poorly understood, but treatable genetic 
disease. Mis- or late diagnosis may lead to unfavourable clinical 
sequelae. Thus, any infant presenting with hypertension and 
metabolic alkalosis, with or without hypokalaemia, should 
raise suspicion for Liddle syndrome, even in patients without a 
family history of hypertension. More functional studies are 
needed to characterise the numerous variants associated with 
the syndrome and their potential pathogenicity.
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