
AJIC Issue 30, 2022 1

A word embedding trained on South African news data

Martin Canaan Mafunda
Doctoral Candidate, Department of Physics, University of KwaZulu-Natal, Westville
Campus, Durban

 https://orcid.org/0000-0001-9008-5834

Maria Schuld
Senior Researcher and Software Developer, Xanadu Quantum Technologies, Toronto; and
Researcher, University of KwaZulu-Natal, Westville Campus, Durban

 https://orcid.org/0000-0001-8626-168X

Kevin Durrheim
Distinguished Professor, Department of Psychology, University of Johannesburg

 https://orcid.org/0000-0003-2926-5953

Sindisiwe Mazibuko
Doctoral Candidate, Department of Psychology, University of KwaZulu-Natal,
Pietermaritzburg Campus, South Africa

 https://orcid.org/0000-0003-4376-4230

Abstract
This article presents results from a study that developed and tested a word
embedding trained on a dataset of South African news articles. A word embedding
is an algorithm-generated word representation that can be used to analyse the corpus
of words that the embedding is trained on. The embedding on which this article is
based was generated using the Word2Vec algorithm, which was trained on a dataset
of 1.3 million African news articles published between January 2018 and March
2021, containing a vocabulary of approximately 124,000 unique words. The efficacy
of this Word2Vec South African news embedding was then tested, and compared to
the efficacy provided by the globally used GloVe algorithm. The testing of the local
Word2Vec embedding showed that it performed well, with similar efficacy to that
provided by GloVe. The South African news word embedding generated by this
study is freely available for public use.

Keywords
natural language processing (NLP), word embedding, Word2Vec, GloVe, news data,
South Africa

The African Journal of Information and Communication (AJIC) 2

Mafunda, Schuld, Durrheim and Mazibuko

Acknowledgements
The authors thank Media Monitoring Africa (MMA) for making the data used
for this project freely available. We are also grateful for support from the University
of KwaZulu-Natal’s Big Data and Informatics’ Research Flagship, South Africa’s
National Research Foundation (NRF-Grant UID: 137755), and the South African
Centre for Digital Language Resources (SADiLaR-Grant #OR-AAALV).
SADiLaR is a national centre supported by the South African Department of
Science and Innovation (DSI).

DOI: https://doi.org/10.23962/ajic.i30.13906

Recommended citation
Mafunda, M. C., Schuld, M., Durrheim, K., Mazibuko, S. (2022). A word
embedding trained on South African news data. The African Journal of Information
and Communication (AJIC), 30, 1-24. https://doi.org/10.23962/ajic.i30.13906

This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence:
https://creativecommons.org/licenses/by/4.0

1. Introduction
Word embeddings are finding increasing use in the social sciences as tools to analyse
social groups through the language they produce. They are computer models that
use machine learning to develop representations of words as vectors or points in
a high-dimensional space. The points are constructed so that relations between
words, such as the use of two words in a similar semantic or grammatical context,
can be measured as a distance between two points in the space. This gives rise to an
“arithmetic of meaning”.

The use of word embeddings as tools for studying culture and language is acknowledged
as a new, emerging field of research (Arseniev-Koehler & Foster, 2020; Kozlowski
et al., 2019). The ever-growing existence of large but “messy” pools of textual data
harvested from social and traditional media is driving interest in word embeddings as
key mechanisms for natural language processing (NLP). Word embeddings are used
by companies such as Facebook to tag harmful posts, e.g., content written with the
sole purpose of spreading false or misleading information on COVID-19 vaccination
programmes. Badri et al. (2022) have demonstrated the role of word embeddings in
text tagging or text detection. Their study uses fastText and GloVe word embeddings
to detect offensive and hate speech in social media content.

The meaning captured by word embeddings is specific to the data that the machine-
learning algorithm (model) is trained on. The development, training, and evaluation

AJIC Issue 30, 2022 3

A word embedding trained on South African news data

of word embedding models must therefore be context-specific. Examples of word
embeddings linked to a certain domain are: the NukeBERT model (Jain et al., 2020)
that is trained on texts from the nuclear and atomic energy section; specialised
embeddings for finance (Theil et al., 2020); and embeddings trained on certain
languages, such as Setswana and Sepedi (Marivate et al., 2020) or Croatian (Svoboda
& Beliga, 2017).

Even when a widely spoken language such as English is used in a dataset, geographic
contexts will induce specific terms or relationships between words that are of critical
importance to researchers in fields such as social and political sciences. For instance,
political scientists have used word embeddings to recover rich knowledge, through
semantic projections, about the behaviour of the main political parties in South Africa
in respect of illegal foreign nationals (Grand et al., 2022). In addition, Durrheim et
al. (2022) have demonstrated how word embeddings provide a useful tool to study
cultural bias, showing that calculating the difference between two bipolar bias vectors
(centroids) gives rise to another vector which represents a bias dimension. Other
researchers have used the bias dimension to study stereotypes in word embeddings
(Kozlowski et al., 2019).

The need to gather knowledge that is unique to a specific field or research area is
what motivated us to carry out this study, which developed and evaluated a new
word embedding trained on a large corpus of online South African news articles
from outlets including Daily Maverick, News24 and Independent Online (IOL). The
embedding was trained using Word2Vec’s Skip-Gram algorithm (Mikolov et al.,
2013), and the dataset used was provided by Media Monitoring Africa (MMA).
The word embedding we generated is publicly available via a github repository.1
It is, to the best of our knowledge, the first publicly available word embedding
trained on South Africa news article data, and thus forms a valuable addition to
the field of NLP in African contexts (Marivate et al., 2020). The embedding will
allow researchers to investigate the meanings of numerous words from within a
South African context and to seek answers to culturally or politically oriented South
African research questions—such as, to give but one small example, how the African
National Congress (ANC) and Democratic Alliance (DA) relate to terms such as
“corruption” and “white monopoly capital”.

This article introduces the word embedding and explains the choices we made in
data preprocessing and in training of the Word2Vec algorithm that generated the
embedding. We also present results from extensive validation testing of the embedding,
and comparative testing between the performance of our locally generated Word2Vec

1 https://github.com/Mafunda/SouthAfricanNewsEmbeddings

The African Journal of Information and Communication (AJIC) 4

Mafunda, Schuld, Durrheim and Mazibuko

embedding and an embedding generated by the internationally recognised GloVe
algorithm. We conducted the comparison using 14 standard analogy benchmark
tasks, and found that our local South African Word2Vec embedding scored very
competitively with the GloVe embedding—and in some cases scored better.

Section 2 of this article describes the Word2Vec and GloVe algorithms; section 3 sets
out approaches to evaluating word embeddings; section 4 describes the preparation
and configuration of the dataset; section 5 describes the implementation, evaluation,
and refinement of the word embedding; section 6 describes our work to maximise
robustness of the embedding through determining variances and testing ensembles
of embeddings; section 7 provides results from our comparative evaluation of the
performance of our South African Word2Vec embedding against the performance
of a GloVe embedding; section 8 provides findings from validation of our local
embedding against South African benchmarks; and section 9 provides conclusions.

2. The Word2Vec and GloVe algorithms
Word2Vec
Word2Vec is a common algorithm for training word embeddings and is powered
by the statistical power of neural network models. It was first introduced in 2013
by Tomas Mikolov and his research collaborators from Google. In our study, the
Word2Vec algorithm was used to learn a word embedding from a South African
news articles database.

This Word2Vec algorithm consists of two model architectures and two training
methods. The two model architectures are Skip-Gram and CBOW (continuous
bag of words), while the two training methods are the hierarchical softmax and
negative sampling. The Skip-Gram model aims to predict context from a given word.
Skip-Gram is slow, and good at learning infrequent words. On the other hand, the
CBOW aims to predict a word from a given context of words. CBOW is fast, and is
good at learning common words. The hierarchical softmax is good at training with
infrequent words, and negative sampling is good at training with common words and
low-dimension vectors.

Word2Vec is similar to other commonly used approaches for learning word
embeddings such as GloVe (global vectors for word representation) (Pennington et
al., 2014), BERT (bi-directional encoder representations from transformers) (Devlin
et al., 2018), GPT (generative pre-trained transformer) (Radford et al., 2018),
fastText (Bojanowski et al., 2017; Santos et al., 2017), and ELMo (embeddings from
language model) (Peters et al., 2018), to name just a few. Since one goal of this study
was to compare the performance of the Word2Vec and GloVe algorithms, we now
briefly review the GloVe model.

AJIC Issue 30, 2022 5

A word embedding trained on South African news data

AJIC Issue 30, 2022

GloVe (global vectors for word representation)
GloVe, like Word2Vec, is an unsupervised learning algorithm for generating word
embeddings. According to the model’s developers, Pennington et al. (2014), GloVe
is a count-based, global log bilinear regression model that combines two embedding
methods, namely global matrix factorisation and local context window. The model
is based on the observation that the most appropriate starting point for word vector
learning is the ratios of co-occurrence probabilities rather than the probabilities
themselves. In other words, the GloVe model is built on the intuition that the ratios
of co-occurrence probabilities among words potentially encode some kind of a
relation among words.

3. Evaluation of word embeddings
To ensure that word embeddings are useful and can be deployed to solve downstream
NLP tasks, the quality and reliability of a word embedding needs to be assured
through validation tests. Several approaches to evaluating the quality of word
embeddings have been reported. Bakarov (2018) divides the methods of evaluation
into two categories, namely: (1) extrinsic; and (2) intrinsic.

According to Bakarov (2018), methods of extrinsic evaluation are anchored on the
idea that every downstream NLP task is a form of word embedding evaluation.
In other words, methods of extrinsic evaluation entail leveraging the potential of
word embeddings to be used as feature or input vectors when training supervised
machine-learning algorithms (like the maximum entropy model). Therefore, a rule
of thumb for methods of extrinsic evaluation is that any downstream NLP task can
be considered as an evaluation method, e.g., for the task of sentiment analysis, text
classification, or part-of-speech tagging, to mention only a few (see Bakarov (2018)
for more examples).

The methods of intrinsic evaluation, on the other hand, involve experiments which
are designed to compare word embeddings with human judgments on word relations.
This was of particular interest to our study because we made use of locally inspired
analogy tasks—e.g., matching politicians to political parties—for model evaluation
based on South African news article data. According to Bakarov (2018), methods of
intrinsic evaluation are divided into four sub-categories: (1) methods of conscious
evaluation; (2) methods of subconscious evaluation; (3) thesaurus-based methods;
and (4) language-driven methods. In this study, we used methods of conscious
evaluation to evaluate the South African news word embedding and therefore we
now limit our discussion to describing those methods.

The African Journal of Information and Communication (AJIC) 6

Mafunda, Schuld, Durrheim and Mazibuko

According to Bakarov (2018), the core methods of conscious evaluation are (1) word
semantic similarity, (2) word analogy, (3) thematic fits, and (4) synonym detection.
The word semantic similarity method is based on the idea that distances between words
in an embedding space can be evaluated through the human heuristic judgments on
the actual semantic distances between these words. For example, we would expect
the distance between cup and mug defined by a number from the interval [0, 1] to be
in the region of 0.8 since these words are nearly synonymous, that is, they are used
similarly in language.

The word analogy method is the second most popular method for evaluating word
embeddings (Bakarov, 2018). First introduced by Mikolov et al. (2013), word
analogies are based on the idea that arithmetic operations in a word vector space can
be predicted by humans. For instance, given a set of three words or word pairs—e.g.,
the two politicians “Julius Malema” and “Jacob Zuma”, as well as the party “EFF”
(Economic Freedom Fighters, founded by Malema)—the task would be to predict
the word D such that the relation Julius_Malema : EFF is the same as the relation
Jacob Zuma : D (Pereira et al., 2016; Turian et al., 2010). In this case, the target word
would be “ANC” (African National Congress), which is the party of ex-President
Jacob Zuma. Word analogies are also known as “analogical reasoning”, “linguistic
regularities”, and/or “word semantic coherence”. In this study, we used both word
semantic similarity and word analogy methods to evaluate the quality of our South
African news embedding.

4. Dataset preparation and configuration
Data
This study used a text corpus of 1,312,125 news articles, which were provided, upon
request, by MMA from its news database. The text dataset consisted of news articles
that were published between 1 January 2018 and 17 March 2021. It should be noted
that the database was not in the public domain, and access was granted in response
to our individual request.

Data preparation
Raw texts are by nature “noisy” and therefore require some text preprocessing before
they can be used to train machine-learning algorithms such as the Word2Vec model.
Text preprocessing for this study was done with the help of several open source

AJIC Issue 30, 2022 7

A word embedding trained on South African news data

Python software packages, including the natural language toolkit (NLTK) (Loper
& Bird, 2002), beautifulsoup (Richardson, 2007), and gensim (Řehůřek &, Sojka,
2011a). The sequence of preprocessing steps included: splitting documents (multi-
sentences) into single sentences (also known as sentence tokenisation); removing
all words containing single uppercase letters surrounded by lowercase letters in
order to remove JavaScript; and converting all words to lowercase letters. Further,
preprocessing included the removal of: html tags; expressions such as “\xad” and
“displayad”; words that contained substrings (“windowtextcolor”), and punctuation
and digits.

We did not remove stopwords, following a growing trend in the machine-learning
literature. Rahimi and Homayounpour (2022) recommend the retention of stopwords
when learning word representations for solving sentiment classification problems.
This is because the removal of stopwords such as “no” and “don’t” can potentially
change the polarity of words in documents.

Data preparation also included the creation of n-grams (bigrams and trigrams)
using the Phraser model of the gensim package. Bigrams are pairs of words that
are repeatedly mentioned together in a given text corpus. For example, during our
data preparation, words such as Jacob and Zuma were joined to produce a bigram
Jacob_Zuma because they occurred together more than our determined minimum
threshold of collocations. Similarly, we joined three words together into a trigram if
they consecutively and consistently occurred together within the news articles corpus.
For example, the word combination President Jacob Zuma was joined to produce a
President_Jacob_Zuma trigram.

We conclude this section with an example of a “messy” text followed by its “clean”
version after data preprocesing:

• Before preprocessing: PRESIDENT Jacob Zuma has declared a special official
funeral for renowned author and poet, Prof. William Keorapetse Kgositsile,
a renowned veteran activist and a giant of the liberation struggle who died
on Wednesday.

• After preprocessing: president jacob zuma has declared a special official funeral
for renowned author and poet prof william keorapetse kgositsile a renowned
veteran activist and a giant of the liberation struggle who died on Wednesday.

The African Journal of Information and Communication (AJIC) 8

Mafunda, Schuld, Durrheim and Mazibuko

Hyperparameter settings
Table 1 shows the hyperparameter names and values used to train the embedding
(with Python’s gensim package). As mentioned in section 2, the Word2Vec algorithm
learns word embeddings using one of its two model architectures: Skip-Gram or
CBOW. In our study, we used Skip-Gram. Also as mentioned above, Word2Vec uses
two training methods to learn word embeddings: hierarchical softmax (Goodman,
2001) and negative sampling (Mikolov et al., 2013). We adopted negative sampling,
and a hyperparameter negative value of 10. The role of the hyperparameter “negative”
is to specify the number of “noise words” that the model is allowed to draw on during
model training.

Table 1: Hyperparameter settings used to train the embedding
Parameter name Value

minimum word count (m) 50

window size 10

architecture Skip-Gram (s1)

training method negative sampling (h0)

negative 10

vector dimension size (d) 250

For two of the hyperparameters—minimum word count and vector dimension—
the hyperparameters seen in Table 1 (50 and 250, respectively)—were only finalised
through experiments conducted on the initial embedding (see section 5).

5. Implementation, evaluation, and refinement of the word embedding
Implementation of the embedding
The gensim package (Řehůřek & Sojka, 2011b), implementable in the Python
environment, was used to build and train the Word2Vec algorithm. The popularity
and convenience of implementing the Word2Vec algorithm with gensim influenced
our decision to select this implementation framework.

We used Google Colaboratory, an online environment for Python programming,
to implement the Word2Vec algorithm with gensim. It took approximately eight
hours to implement the embedding, starting from data preparation until the model
finished training. Due to the large dataset size, we used a procedure in which data

AJIC Issue 30, 2022 9

A word embedding trained on South African news data

was read in chunks of 10,000 sentences into a buffer holding 100,000 sentences, and
after each read-in, the buffer was shuffled. This introduced a pseudo-randomness
in which the first sentence in the corpus had a greater chance of being fed to the
training procedure early on.

Performance evaluation measures
We measured the performance of the embedding using both “similarity” and “analogy”
measures.

Similarity measure
The similarity measure probes the extent to which words are similar or dissimilar
by measuring the distance between their respective vector representations in an
embedding. More precisely, this measure typically uses the cosine similarity, or the
size of the angle between two vectors belonging to any two given words, as a proxy
for measuring the degree to which the two words are related. Given any two word
vectors vec(word1) and vec(word2), where vec(wordi) is the vector corresponding to a
given word, the similarity value is computed as follows:

(1)

Note that we normalised word vectors in the embedding, so that their norm is always
1. Equation (1) implies that highly similar words (or synonyms) have similarity
values that are closer to 1, while highly dissimilar words have similarity values closer
to –1. We used the WordSim353 dataset to evaluate our embedding. WordSim is a
test dataset for measuring word similarity or relatedness (Agirre et al., 2009). The
WordSim dataset consists of word pairs such as soccer and football, baseball and
netball, etc. and their similarity scores. (The WordSim353 dataset is freely available
for public use.2)

Analogy measure
Analogy measurement tasks ask the embedding to predict the fourth word in
a relational equation of the form “ANC is to Jacob_Zuma as EFF is to Julius_
Malema”. In a relational task, the model is given the first three words and asked to
predict the fourth word that will solve the relational equation, i.e., Jacob_Zuma –
ANC = [predict word] – EFF. A prediction is computed by retrieving the 10 nearest
neighbours to the vector vec(Jacob_Zuma) − vec(ANC) + vec(EFF). If the correct
word is found to be among these 10 nearest neighbours, the model is given a score
of 1 (correct prediction). Otherwise, a score of 0 (incorrect prediction) is given. This

2 The WordSim353 dataset is at http://alfonseca.org/pubs/ws353simrel.tar.gz

The African Journal of Information and Communication (AJIC) 10

Mafunda, Schuld, Durrheim and Mazibuko

method is commonly known as the accuracy@k method (Xu, 2018). It is called the
accuracy@k method because the value of k is arbitrarily chosen and it measures the
extent to which the model is penalised for producing k nearest neighbours.

The precision score for a set of analogies is then computed as follows:

(2)

For analogy measurement, we used the GloVe word analogy dataset. Publicly
accessible via the GloVe website,3 the dataset is made up of 14 analogy tasks, which
are named as follows:

• capital-common-countries;
• capital-world;
• city-in-state;
• currency;
• family;
• adjective-to-adverb;
• opposite;
• comparative;
• superlative;
• present participle;
• nationality adjective;
• past tense;
• plural; and
• plural verbs.

Word analogies are relational equations of the form word1:word2::word3:word4
(translated verbally as word1 is to word2 as word3 is to word4). To restate, our goal
in testing the South African news embedding’s ability to solve analogy tasks was to
measure how well the embedding predicted the fourth word (“word4”).

In reporting the experiment results in this article, we use the following notations:

• “p” stands for %;
• “d” stands for dimension size; and
• “m” stands for “minimum word count”.

3 https://github.com/stanfordnlp/GloVe/tree/master/eval/question-data

AJIC Issue 30, 2022 11

A word embedding trained on South African news data

For example, the notation “100p 100d 50m” denotes our word embedding trained
on 100% (p) of the training dataset, with a word vector dimension size (d) of 100,
and with words (tokens) with a minimum word count (m) of 50 (meaning that
words not appearing 50 or more times were ignored during training). The reason
for adopting 50 as the minimum word count is given below in the “determining a
suitable minimum word count” sub-section.

Determining whether to train with sentences or documents
We conducted an experiment in order to determine whether the optimal training
approach for our embedding was: (1) training based on data split into documents of
news articles; or (2) training based on data split into sentences. As seen in Figure 1,
we found that the precision of the word embedding trained on sentences was always
the same or better than that of the word embedding trained on documents, with the
sentence-contexts outperforming document-contexts in 11 (almost 80%) of the 14
analogy tasks. This finding was consistent with emerging best practices in the NLP
literature (Gu et al., 2018).

Figure 1: Training with sentences versus documents (evaluated via 14 analogy tasks)

Ref inement of hyperparameters through testing
As mentioned above, two of the hyperparameters could only be finalised once the
embedding had been generated—allowing testing of the influence of different
parameter settings on the embedding. We conducted experiments that measured the
embedding’s precision in conducting 14 analogy tasks when the value of a certain
hyperparameter was varied.

The African Journal of Information and Communication (AJIC) 12

Mafunda, Schuld, Durrheim and Mazibuko

Determining a suitable vector dimension size
We conducted a second experiment in order to determine the optimal dimension
size, i.e., the size or dimensionality of the word vectors in the trained embedding.
Identifying optimal dimensionality is important since it influences the space available
to “encode meaning”: a low dimension may result in under-fitting, a situation where
there is not enough space to reflect the subtle levels of meaning, while a dimension
that is too large may lead to model over-fitting, where all words are positioned
far from each other and relational meaning is lost (see also Yin & Shen, 2018).
To understand the impact of the vector dimension, we trained and compared four
versions of our word embedding, with each version having the same training settings
except for the dimension size, which was varied for the values 100, 200, 300 and 400.

Figure 2: Training with 4 different vector dimension sizes (evaluated via 14 analogy tasks)

Figure 2 shows that while the precision consistently increased with higher dimensions,
there was only a small improvement between 200 and 300, as well as a negligible
improvement between 300 and 400. At the same time, due to the large vocabulary,
100 additional dimensions translated to 1.24 x 107 additional values (for a vocabulary
of 124,000 words) that would have to be stored to describe the word vectors. We
therefore decided to fix the vector dimension size at 250 in order to balance the
physical size of the model with performance needs. This decision was justified on the
grounds that we were reliant on the free version of Google’s Colaboratory (Colab)
platform to train and evaluate our models, and thus fixing the vector dimension size
at 250 was necessary in order to reduce computational and time resources required

AJIC Issue 30, 2022 13

A word embedding trained on South African news data

to train and evaluate embeddings. (The free version of Colab is limited in that one
cannot leave the code running without being monitored, i.e., the code has to be
constantly monitored to avoid premature termination of the task being executed.)

Determining a suitable minimum word count
We conducted a third experiment in order to determine the most suitable word count
for the embedding. The minimum word count sets the minimum word frequency for
pruning the vocabulary available for model training. All words with minimum word
count below a given specified threshold are ignored during training (Řehůřek &
Sojka, 2011b). A high minimum word count leads to embeddings with a smaller but
more robust vocabulary. However, such small models may not contain the words that
researchers require in applications, and we found that even words used in the analogy
test set (such as “policewoman”) quickly became ignored if the minimum word count
was too high.

Figure 3 shows the precision results of the four word embeddings, which were trained
using the same hyperparameter settings except for the minimum word counts (which
were set to 5, 10, 50 and 100, respectively).

Figure 3: Training with 4 different minimum word counts (evaluated via 14 analogy tasks)

The African Journal of Information and Communication (AJIC) 14

Mafunda, Schuld, Durrheim and Mazibuko

It is evident in Figure 3 that the quality of the word embedding increased with
increasing minimum word count. Nonetheless, since we intended to make the
embedding publicly available for research, we decided to fix the minimum word
count threshold at 50, which ensured that most of the words found in the vocabulary
were associated with word vectors after building of the Word2Vec embedding. While
the results show that a value of 100 was the optimal value for the minimum word
count hyperparameter setting, the usefulness of our word embedding would be
highly compromised if 100 were used—as only words whose frequency of occurrence
reached 100 or more would appear in the vocabulary.

6. Maximising robustness: Determining variances and testing ensembles of
embeddings
When developing and deploying a word embedding, one must seek to maximise
its robustness. For example, one does not want the distance between word vectors
in an embedding to significantly depend on random initialisation of weights in the
training algorithm, or to depend on random permutations of the data when it is
used during training of the algorithm. Likewise, the results should be robust against
bootstrapping, or subsampling of the data (as long as the overall size or quality of
the dataset—and therefore the information available—does not change). If large
variances are produced by small changes in the training set, then this is evidence that
the embedding does not generalise well (Antoniak & Mimno, 2018).

In order to maximise robustness of our embedding, we conducted tests, as described
below, in order to:

• determine the variances produced by data shuffling, random initialisation
and bootstrapping; and

• determine the degree to which generation of ensembles of embeddings
would reduce variance and improve robustness.

Determining the variances
To understand how training stochasticity (data shuffling and random initialisation)
and subsampling (bootstrapping) influenced the distances between word vectors in
our embedding, we generated three ensemble word embeddings:

• 10p subsampled: This first ensemble consisted of 10 word embeddings
trained on 10% of the sentences in the data corpus that were randomly
subsampled for each word embedding. The resulting word embeddings
therefore had different vocabularies.

AJIC Issue 30, 2022 15

A word embedding trained on South African news data

• 10p shuffled: This second ensemble consisted of 10 word embeddings trained
on the same subset of 10% randomly sampled sentences and the resulting
embeddings therefore shared the same vocabulary. (The differences between
the embeddings stemmed only from the differences in training procedures.)

• 100p shuffled: This third ensemble consisted of five word embeddings (a
smaller number of embeddings, due to their size) that were trained on the
entire training dataset. (Again, the difference in the embeddings stemmed
only from the differences in training procedures.)

In addition to showing the variance of word similarities between different instances of
the embedding, these three ensembles allowed us to study the effect of bootstrapping
(when comparing 10p_subsampled vs 10p_shuffled), as well as the effect of the size
of the training dataset (when comparing 10p_shuffled vs 100p_shuffled). It should
be noted that the vocabulary of the smaller datasets was necessarily smaller as well,
and we ignored analogies if one of the words (or the solution) was not part of the
word embeddings’ vocabulary. We calculated the 360 similarities of word pairs in
the WordSim353 dataset (Agirre et al., 2009)4 for all word embeddings in a set, and
plotted the mean and variance of the results, as shown in Figures 4(a), 4(b), and 4(c).

Figure 4(a): Variance of embeddings based on a 10% subsampled set of 10 embeddings

4 http://alfonseca.org/pubs/ws353simrel.tar.gz

The African Journal of Information and Communication (AJIC) 16

Mafunda, Schuld, Durrheim and Mazibuko

Figure 4(b): Variance of embeddings based on a set of 10 embeddings trained on shuffled
10% of the total training dataset

Figure 4(c): Variance of embeddings based on a set of five embeddings trained on shuffled
full training dataset

The results confirmed our expectation that a variance in the training itself, as
introduced by subsampling, would lead to an even larger variance of the word
similarities. Furthermore, the results showed that a larger dataset led to a much
lower variance. In the 100p model, for example, the variance was in fact low enough
to reliably distinguish distances between words on an order of 0 to 2x10−4. These
results suggested a strategy for how to make our word embedding more robust: build
an ensemble model that united the prediction of several models (which is in fact
standard practice to decrease variance (Antoniak & Mimno, 2018)).

AJIC Issue 30, 2022 17

A word embedding trained on South African news data

Determining eff icacy of ensemble embeddings
We investigated the efficacy of ensemble embeddings using the aforementioned
14 analogy benchmarks. For these benchmarks, averaging over models was not an
option since the result of every analogy was a correct/incorrect answer. We therefore
needed more elaborate rules for turning the decision of a single embedding into
the ensemble decision. The rule we developed to combine analogy decisions into an
ensemble was a rule that (1) computed the list of 10 closest neighbours to the vector
in the analogy equation (such as vec(ANC) − vec(EFF) + vec(Zuma)) for every word
embedding, and then (2) concatenated (joined together) the lists. We then computed
the 10 words that appeared in the largest number of ensembles, and checked whether
the desired result was in the final list (positive outcome) or not in the list (negative
outcome).

Figure 5: Precision values for ensemble word embeddings evaluated on analogy tasks

Figure 5 shows the average performance of ensembles of varying sizes on the analogy
tasks, using the three different strategies mentioned above to create the training sets
for each member of the ensemble. The benchmarks were calculated by randomly
sampling, 10 times, ensemble members from the set of trained models. For example,
the 2X ensemble word embedding in Figure 5 represents an ensemble consisting
of two members, created by randomly sampling two models from a set of 10 word
embeddings. This ensured that the results did not depend on the model used to make
up the ensemble. This evaluation generated four important observations:

• Generation of ensemble embeddings improved the precision of the model’s
results.

The African Journal of Information and Communication (AJIC) 18

Mafunda, Schuld, Durrheim and Mazibuko

• The ensembles of embeddings performed better as they increased in size.
• This trend (improvement with increased ensemble size) was particularly

strong for the 10p models (ensembles trained with smaller datasets), and not
so prevalent for the ensembles trained on the full dataset.

• Significant improvements (over single models) occurred even in ensembles
composed of three or more embeddings, an important finding given that
smaller ensembles are easier to store and use.

As a result, we are able to recommend the use of ensembles of three or more
embeddings when datasets are relatively small, which is common in geographic
areas, such as on the African continent, that are under-represented in terms of data
representation.

7. Performance comparison between South African Word2Vec embedding and a
GloVe embedding
Figure 6 shows a comparison between our South African news Word2Vec embedding
and the GloVe model in performing the 14 analogy tasks. We trained a single
embedding (that is, the “100p_250d_50m” embedding) and a five-member ensemble
of the South African news word embedding for comparison, and, consistent with the
findings above, the ensemble showed a better performance.

Figure 6: Results from comparison between Word2Vec and GloVe embeddings

AJIC Issue 30, 2022 19

A word embedding trained on South African news data

Overall, as seen in Figure 6, our Word2Vec word embedding was competitive
on most tasks when compared to the GloVe embedding. And, interestingly, our
Word2Vec ensemble of embeddings outperformed the GloVe model on four analogy
tasks—remarkable given that the latter has the advantage of a significantly larger
training dataset size and a global training set domain. This finding was surprising
for two reasons. First, the GloVe algorithm is an international benchmark that
has been acknowledged as one of the most stable models for production of word
embeddings (Wendlandt et al., 2018). Second, the GloVe embedding we compared
ours with was trained on a much larger corpus than our local word embedding.
The GloVe embedding had approximately 300,000 unique word tokens in each
embedding—300,000 for the GloVe embedding versus 124,000 for our embedding.
The importance of vocabulary size in ensuring high quality word embeddings is
well-documented (Rodman, 2020). The results are therefore encouraging evidence of
the robustness and performance of our South African news word embedding.

We observed no differences of statistical significance, between the performance of
our Word2Vec word embedding model and the performance of the GloVe model, on
the largely universal grammar tasks among the 14 analogy tasks (such as the present
participle and superlative tasks), or on semantic analogy tasks (such as capital-
common-countries task). (Because we were not able to check the word frequencies
for the corpus used to train the GloVe model, we suspect that the equivalence in
performance for the two models showed that the words used in the evaluation tasks
were sufficiently represented in the corpuses used to train both the GloVe embedding
and our local Word2Vec embedding.)

However, we found that for the capital-world analogy task, the South African news
Word2Vec embedding did not perform well in analogy examples that involved
tokens such as Brussels and Belgium. The results suggested that the news embedding
appeared to have known Brussels more in the context of the European Union (EU).
This inference followed from noting that the EU was predicted with high likelihood
amongst a list of top 10 nearest neighbours as predicted by the news embedding to
solve given relational tasks. Also, the South African news embedding failed to solve
the relational task which involved Madrid and Spain. We observed that the South
African news embedding appeared to know Madrid in the context of Real Madrid,
the Spanish football team. This observation points to the need to build situation-
specific word embeddings whose learned word vectors fully capture and represent
the original views and standpoints expressed by news content creators at the time of
writing.

It should also be noted that, during the comparison, we found that there was a subtlety
that may have influenced the results to a small extent—a subtlety introduced by our
rule that excluded analogies in a task if the embedding (or all of the embeddings
in an ensemble) did not contain a word in the analogy. For example, if the local

The African Journal of Information and Communication (AJIC) 20

Mafunda, Schuld, Durrheim and Mazibuko

embedding did not contain the word “nursultan” (representing “Nur-Sultan”), the
capital-common-countries analogy of guessing Kazakhstan’s capital city did not have
to be solved, while the global embedding had to solve it, even if the global embedding
contained very few examples mentioning the city. Accordingly, we resolved this issue
by evaluating the models using only those relational tasks with words that were
common to both models.

8. Validation of the embedding against local benchmarks
In addition to testing our South African embedding against the international
benchmarks provided by the GloVe algorithm, it was also necessary to validate
the embedding against local benchmarks that represented local contexts. For this
purpose, we created two local analogy tasks. The first local analogy task involved
matching politicians to political parties—for example, EFF is to Julius_Malema as
ANC is to Jacob_Zuma. This politician-to-political party relational task consisted
of 398 analogy tasks, of which our local Word2Vec South African news embedding
model successfully solved 212 (53%)—according to the performance evaluation
metrics described above. The second local analogy task involved matching cities to
provinces—for example, KZN is to Durban as Western_Cape is to Cape_Town.
This city-to-province analogy consisted of 586 relational tasks, of which our local
Word2Vec model successfully solved 582 (a model performance of 99%). Due to the
fluidity of political affiliations, we were not surprised that the politician-to-political
party task proved to be more difficult than the city-to-province task.

However, we observed that, in certain circumstances, our South African news
embedding failed to solve certain analogy tasks simply because text preprocessing
did not include stemming, a practice that reduces all related tokens to their root
word. As a result, the embedding was penalised for predicting DAS (which stands
for DA’s) instead of DA. When we implemented stemming, that increased the
predictive power of the word embedding for the task of matching politicians with
their respective political parties (predictive accuracy increased from 53% to 59%).
However, stemming proved to be counterproductive for the second task: matching
provinces with their cities (predictive power dropped from 99% to 69%).

The negative effects from stemming arose from the fact that a word stemmer is a
model that is trained to reduce English words to original root words, and therefore
any token that is given to the model will be reduced to the root word that is known
to the model. The work of Al-Shammari and Lin (2008) supports our finding
regarding the drop in model performance, for certain analogy tasks, following
word stemmatisation. Consequently, we recommend development of a full range of
localised NLP tools, including word stemmers and lemmatisers, that are optimised to
handle local contexts, so as to facilitate training of word embeddings whose learned
word vectors truly resemble local contexts.

AJIC Issue 30, 2022 21

A word embedding trained on South African news data

9. Conclusions
In this article, we have presented a word embedding that was trained, using the
Word2Vec algorithm, on South African news article data collated and stored by
MMA. The full corpus consisted of news articles that were published between 1
January 2018 and 17 March 2021. We have presented results from testing of the impact
of varied hyperparameters, changes in the training set, and ensemble-building, on the
performance of the embedding. We have also presented results from comparison
of the performance of our local Word2Vec embedding against the performance of
the GloVe algorithm—results which showed competitive performance, and even
superior performance in some instances, by our local South African embedding.
Furthermore, we have provided results from two tests used to check the performance
of our embedding against South African benchmarks.

We hope that the embedding and benchmarks we have presented promote further
research in South African social sciences, and will help researchers who lack the
resources required to train vast machine learning models for NLP. In particular, the
word embedding contributed by this study presents researchers with an opportunity
to use the word vectors as text encoders. For instance, researchers can use our word
embedding in ways similar to how pre-trained word vectors produced by algorithms
such as Word2Vec, GloVe, BERT and fastText are used to vectorise texts without the
need to train word embeddings from scratch. Consequently, we hope and anticipate
that our word embedding will play a significant role as the “embedding layer” in
similar South African text analysis studies. We believe that contributions such as
these are crucial to unlocking the potential of big data analysis in localised African
contexts.

Disclosure statement
The authors report that there are no competing interests to declare.

Data availability statement
The word embeddings that support the findings of this study are openly available
in figshare.5 The code for reproducing the results is available in a github repository.6

References
Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., & Soroa, A. (2009). A study

on similarity and relatedness using distributional and WordNet-based approaches.
https://doi.org/10.3115/1620754.1620758

Al-Shammari, E. T., & Lin, J. (2008). Towards an error-free Arabic stemming. In Proceedings
of the 2nd ACM Workshop on Improving Non English Web Searching (pp. 9–16). https://
doi.org/10.1145/1460027.1460030

5 https://doi.org/10.6084/m9.figshare.18933728
6 https://github.com/Mafunda/SouthAfricanNewsEmbeddings

The African Journal of Information and Communication (AJIC) 22

Mafunda, Schuld, Durrheim and Mazibuko

Antoniak, M., & Mimno, D., 2018. Evaluating the stability of embedding-based word
similarities. Transactions of the Association for Computational Linguistics, 6, 107–119.
https://doi.org/10.1162/tacl_a_00008

Arseniev-Koehler, A., & Foster, J. G. (2020). Sociolinguistic properties of word embeddings.
https://doi.org/10.31235/osf.io/b8kud

Badri, N., Kboubi, F., & Chaibi, A. H. (2022). Combining FastText and Glove word
embedding for offensive and hate speech text detection. Procedia Computer Science,
207, 769–778. https://doi.org/10.1016/j.procs.2022.09.132

Bakarov, A. (2018). A survey of word embeddings evaluation methods. arXiv preprint
arXiv:1801.09536.

Berardi, G., Esuli, A., & Marcheggiani, D. (2015). Word embeddings go to Italy: A
comparison of models and training datasets. In Proceedings of 6th Italian Information
Retrieval Workshop.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5,
135–146. https://doi.org/10.1162/tacl_a_00051

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Durrheim, K., Schuld, M., Mafunda, M., & Mazibuko, S. (2022). Using word embeddings to
investigate cultural biases. British Journal of Social Psychology, 00, 1–13. https://doi.
org/10.1111/bjso.12560

Goodman, J. (2001). Classes for fast maximum entropy training. In 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing: Proceedings, 1 (pp. 561–564).

Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). Semantic projection recovers
rich human knowledge of multiple object features from word embeddings. Nature
Human Behaviour, 6, 975–987. https://doi.org/10.1038/s41562-022-01316-8

Gu, Y., Leroy, G., Pettygrove, S., Galindo, M. K., & Kurzius-Spencer, M. (2018). Optimizing
corpus creation for training word embedding in low resource domains: A case study
in autism spectrum disorder (ASD). In AMIA Annual Symposium Proceedings, 2018
(pp. 508–517).

Hunt, E., Janamsetty, R., Kinares, C., Koh, C., Sanchez, A., Zhan, F., Ozdemir, M.,
Waseem, S., Yolcu, O., Dahal, B., & Zhan, J. (2019). Machine learning models
for paraphrase identification and its applications on plagiarism detection. In
2019 IEEE International Conference on Big Knowledge (ICBK) (pp. 97–104).
https://doi.org/10.1109/ICBK.2019.00021

Jain, A., Meenachi, D. N., & Venkatraman, D. B. (2020). NukeBERT: A pre-trained language
model for low resource nuclear domain. arXiv preprint arXiv:2003.13821.

Kozlowski, A. C., Taddy, M., & Evans, J. A. (2019). The geometry of culture: Analyzing the
meanings of class through word embeddings. American Sociological Review, 84(5),
905–949. https://doi.org/10.1177/0003122419877135

Loper, E., & Bird, S. (2002). NTLK: The natural language toolkit. arXiv preprint cs/0205028.

AJIC Issue 30, 2022 23

A word embedding trained on South African news data

Marivate, V., Sefara, T., Chabalala, V., Makhaya, K., Mokgonyane, T., Mokoena, R., & Modupe,
A. (2020). Investigating an approach for low resource language dataset creation,
curation and classification: Setswana and Sepedi. arXiv preprint arXiv:2003.04986.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in Neural
Information Processing Systems, 26. https://doi.org/10.48550/arXiv.1310.4546

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP) (pp. 1532–1543). https://doi.org/10.3115/v1/D14-
1162

Pereira, F., Gershman, S., Ritter, S., & Botvinick, M. (2016). A comparative
evaluation of off-the-shelf distributed semantic representations for
modelling behavioural data. Cognitive Neuropsychology, 33(3–4), 175–190.
https://doi.org/10.1080/02643294.2016.1176907

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.
(2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language
understanding by generative pre-training. https://s3-us-west-2.amazonaws.com/
openai-assets/research-covers/language-unsupervised/language_understanding_
paper.pdf

Rahimi, Z., & Homayounpour, M. M. (2022). The impact of preprocessing on word
embedding quality: A comparative study. Language Resources and Evaluation, 1–35.
https://doi.org/10.1007/s10579-022-09620-5

Řehůřek, R., & Sojka, P. (2011a). Gensim – statistical semantics in Python. NLP Centre,
Faculty of Informatics, Masaryk University, Brno, Czech Republic. https://www.
fi.muni.cz/usr/sojka/posters/rehurek-sojka-scipy2011.pdf

Řehůřek, R., & Sojka, P. (2011b). Gensim – Python framework for vector space modelling.
NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic.

Rezaeinia, S. M., Rahmani, R., Ghodsi, A., & Veisi, H. (2019). Sentiment analysis based
on improved pre-trained word embeddings. Expert Systems with Applications, 117,
139–147. https://doi.org/10.1016/j.eswa.2018.08.044

Richardson, L. (2007). Beautiful soup documentation. https://www.crummy.com/software/
BeautifulSoup/bs4/doc/

Rodman, E. (2020). A timely intervention: Tracking the changing meanings of
political concepts with word vectors. Political Analysis, 28(1), 87–111.
https://doi.org/10.1017/pan.2019.23

Santos, I., Nedjah, N., & de Macedo Mourelle, L. (2017). Sentiment analysis using
convolutional neural network with fastText embeddings. In Proceedings of the 2017
IEEE Latin American Conference on Computational Intelligence (LA-CCI) (pp. 1–5).
https://doi.org/10.1109/LA-CCI.2017.8285683

Svoboda, L., & Beliga, S. (2017). Evaluation of Croatian word embeddings. arXiv preprint
arXiv:1711.01804.

The African Journal of Information and Communication (AJIC) 24

Mafunda, Schuld, Durrheim and Mazibuko

Theil, C. K., Štajner, S., & Stuckenschmidt, H. (2020). Explaining financial uncertainty
through specialized word embeddings. ACM Transactions on Data Science, 1(1),
1–19. https://doi.org/10.1145/3343039

Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: A simple and general
method for semi-supervised learning. In Proceedings of the 48th annual Meeting of the
Association for Computational Linguistics (pp. 384–394).

Wendlandt, L., Kummerfeld, J. K., & Mihalcea, R. (2018). Factors influencing the surprising
instability of word embeddings. arXiv preprint arXiv:1804.09692

Xu, R., Yang, Y., Otani, N., & Wu, Y. (2018). Unsupervised cross-lingual transfer of word
embedding spaces. arXiv preprint arXiv:1809.03633.

Yin, Z., & Shen, Y. (2018). On the dimensionality of word embedding. Advances in Neural
Information Processing Systems, 31. https://doi.org/10.48550/arXiv.1812.04224

