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Abstract 
This article presents results from a study that developed and tested a word 
embedding trained on a dataset of South African news articles. A word embedding 
is an algorithm-generated word representation that can be used to analyse the corpus 
of words that the embedding is trained on. The embedding on which this article is 
based was generated using the Word2Vec algorithm, which was trained on a dataset 
of 1.3 million African news articles published between January 2018 and March 
2021, containing a vocabulary of approximately 124,000 unique words. The efficacy 
of this Word2Vec South African news embedding was then tested, and compared to 
the efficacy provided by the globally used GloVe algorithm. The testing of the local 
Word2Vec embedding showed that it performed well, with similar efficacy to that 
provided by GloVe. The South African news word embedding generated by this 
study is freely available for public use.
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1. Introduction 
Word embeddings are finding increasing use in the social sciences as tools to analyse 
social groups through the language they produce. They are computer models that 
use machine learning to develop representations of words as vectors or points in 
a high-dimensional space. The points are constructed so that relations between 
words, such as the use of two words in a similar semantic or grammatical context, 
can be measured as a distance between two points in the space. This gives rise to an 
“arithmetic of meaning”.

The use of word embeddings as tools for studying culture and language is acknowledged 
as a new, emerging field of research (Arseniev-Koehler & Foster, 2020; Kozlowski 
et al., 2019). The ever-growing existence of large but “messy” pools of textual data 
harvested from social and traditional media is driving interest in word embeddings as 
key mechanisms for natural language processing (NLP). Word embeddings are used 
by companies such as Facebook to tag harmful posts, e.g., content written with the 
sole purpose of spreading false or misleading information on COVID-19 vaccination 
programmes. Badri et al. (2022) have demonstrated the role of word embeddings in 
text tagging or text detection. Their study uses fastText and GloVe word embeddings 
to detect offensive and hate speech in social media content. 

The meaning captured by word embeddings is specific to the data that the machine-
learning algorithm (model) is trained on. The development, training, and evaluation 
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of word embedding models must therefore be context-specific. Examples of word 
embeddings linked to a certain domain are: the NukeBERT model ( Jain et al., 2020) 
that is trained on texts from the nuclear and atomic energy section;  specialised 
embeddings for finance (Theil et al., 2020); and embeddings trained on certain 
languages, such as Setswana and Sepedi (Marivate et al., 2020) or Croatian (Svoboda 
& Beliga, 2017). 

Even when a widely spoken language such as English is used in a dataset, geographic 
contexts will induce specific terms or relationships between words that are of critical 
importance to researchers in fields such as social and political sciences. For instance, 
political scientists have used word embeddings to recover rich knowledge, through 
semantic projections, about the behaviour of the main political parties in South Africa 
in respect of illegal foreign nationals (Grand et al., 2022). In addition, Durrheim et 
al. (2022) have demonstrated how word embeddings provide a useful tool to study 
cultural bias, showing that calculating the difference between two bipolar bias vectors 
(centroids) gives rise to another vector which represents a bias dimension. Other 
researchers have used the bias dimension to study stereotypes in word embeddings 
(Kozlowski et al., 2019). 

The need to gather knowledge that is unique to a specific field or research area is 
what motivated us to carry out this study, which developed and evaluated a new 
word embedding trained on a large corpus of online South African news articles 
from outlets including Daily Maverick, News24 and Independent Online (IOL). The 
embedding was trained using Word2Vec’s Skip-Gram algorithm (Mikolov et al., 
2013), and the dataset used was provided by Media Monitoring Africa (MMA). 
The word embedding we generated is publicly available via a github repository.1 
It is, to the best of our knowledge, the first publicly available word embedding 
trained on South Africa news article data, and thus forms a valuable addition to 
the field of NLP in African contexts (Marivate et al., 2020). The embedding will 
allow researchers to investigate the meanings of numerous words from within a 
South African context and to seek answers to culturally or politically oriented South 
African research questions—such as, to give but one small example, how the African 
National Congress (ANC) and Democratic Alliance (DA) relate to terms such as 
“corruption” and “white monopoly capital”. 

This article introduces the word embedding and explains the choices we made in 
data preprocessing and in training of the Word2Vec algorithm that generated the 
embedding. We also present results from extensive validation testing of the embedding, 
and comparative testing between the performance of our locally generated Word2Vec 

1  https://github.com/Mafunda/SouthAfricanNewsEmbeddings 
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embedding and an embedding generated by the internationally recognised GloVe 
algorithm. We conducted the comparison using 14 standard analogy benchmark 
tasks, and found that our local South African Word2Vec embedding scored very 
competitively with the GloVe embedding—and in some cases scored better. 

Section 2 of this article describes the Word2Vec and GloVe algorithms; section 3 sets 
out approaches to evaluating word embeddings;  section 4 describes the preparation 
and configuration of the dataset; section 5 describes the implementation, evaluation, 
and refinement of the word embedding; section 6 describes our work to maximise 
robustness of the embedding through determining variances and testing ensembles 
of embeddings; section 7 provides results from our comparative evaluation of the 
performance of our South African Word2Vec embedding against the performance 
of a GloVe embedding; section 8 provides findings from validation of our local 
embedding against South African benchmarks; and section 9 provides conclusions.

2. The Word2Vec and GloVe algorithms
Word2Vec
Word2Vec is a common algorithm for training word embeddings and is powered 
by the statistical power of neural network models. It was first introduced in 2013 
by Tomas Mikolov and his research collaborators from Google. In our study, the 
Word2Vec algorithm was used to learn a word embedding from a South African 
news articles database. 

This Word2Vec algorithm consists of two model architectures and two training 
methods. The two model architectures are Skip-Gram and CBOW (continuous 
bag of words), while the two training methods are the hierarchical softmax and 
negative sampling. The Skip-Gram model aims to predict context from a given word. 
Skip-Gram is slow, and good at learning infrequent words. On the other hand, the 
CBOW aims to predict a word from a given context of words. CBOW is fast, and is 
good at learning common words. The hierarchical softmax is good at training with 
infrequent words, and negative sampling is good at training with common words and 
low-dimension vectors. 

Word2Vec is similar to other commonly used approaches for learning word 
embeddings such as GloVe (global vectors for word representation) (Pennington et 
al., 2014), BERT (bi-directional encoder representations from transformers) (Devlin 
et al., 2018), GPT (generative pre-trained transformer) (Radford et al., 2018), 
fastText (Bojanowski et al., 2017; Santos et al., 2017), and ELMo (embeddings from 
language model) (Peters et al., 2018), to name just a few. Since one goal of this study 
was to compare the performance of the Word2Vec and GloVe algorithms, we now 
briefly review the GloVe model. 
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GloVe (global vectors for word representation)
GloVe, like Word2Vec, is an unsupervised learning algorithm for generating word 
embeddings. According to the model’s developers, Pennington et al. (2014), GloVe 
is a count-based, global log bilinear regression model that combines two embedding 
methods, namely global matrix factorisation and local context window. The model 
is based on the observation that the most appropriate starting point for word vector 
learning is the ratios of co-occurrence probabilities rather than the probabilities 
themselves. In other words, the GloVe model is built on the intuition that the ratios 
of co-occurrence probabilities among words potentially encode some kind of a 
relation among words. 

3. Evaluation of word embeddings 
To ensure that word embeddings are useful and can be deployed to solve downstream 
NLP tasks, the quality and reliability of a word embedding needs to be assured 
through validation tests. Several approaches to evaluating the quality of word 
embeddings have been reported. Bakarov (2018) divides the methods of evaluation 
into two categories, namely: (1) extrinsic; and (2) intrinsic.

According to Bakarov (2018), methods of extrinsic evaluation are anchored on the 
idea that every downstream NLP task is a form of word embedding evaluation. 
In other words, methods of extrinsic evaluation entail leveraging the potential of 
word embeddings to be used as feature or input vectors when training supervised 
machine-learning algorithms (like the maximum entropy model). Therefore, a rule 
of thumb for methods of extrinsic evaluation is that any downstream NLP task can 
be considered as an evaluation method, e.g., for the task of sentiment analysis, text 
classification, or part-of-speech tagging, to mention only a few (see Bakarov (2018) 
for more examples). 

The methods of intrinsic evaluation, on the other hand, involve experiments which 
are designed to compare word embeddings with human judgments on word relations. 
This was of particular interest to our study because we made use of locally inspired 
analogy tasks—e.g., matching politicians to political parties—for model evaluation 
based on South African news article data. According to Bakarov (2018), methods of 
intrinsic evaluation are divided into four sub-categories: (1) methods of conscious 
evaluation; (2) methods of subconscious evaluation; (3) thesaurus-based methods; 
and (4) language-driven methods. In this study, we used methods of conscious 
evaluation to evaluate the South African news word embedding and therefore we 
now limit our discussion to describing those methods. 
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According to Bakarov (2018), the core methods of conscious evaluation are (1) word 
semantic similarity, (2) word analogy, (3) thematic fits, and (4) synonym detection. 
The word semantic similarity method is based on the idea that distances between words 
in an embedding space can be evaluated through the human heuristic judgments on 
the actual semantic distances between these words. For example, we would expect 
the distance between cup and mug defined by a number from the interval [0, 1] to be 
in the region of 0.8 since these words are nearly synonymous, that is, they are used 
similarly in language. 

The word analogy method is the second most popular method for evaluating word 
embeddings (Bakarov, 2018). First introduced by Mikolov et al. (2013), word 
analogies are based on the idea that arithmetic operations in a word vector space can 
be predicted by humans. For instance, given a set of three words or word pairs—e.g., 
the two politicians “Julius Malema” and “Jacob Zuma”, as well as the party “EFF” 
(Economic Freedom Fighters, founded by Malema)—the task would be to predict 
the word D such that the relation Julius_Malema : EFF is the same as the relation 
Jacob Zuma : D (Pereira et al., 2016; Turian et al., 2010). In this case, the target word 
would be “ANC” (African National Congress), which is the party of ex-President 
Jacob Zuma. Word analogies are also known as “analogical reasoning”, “linguistic 
regularities”, and/or “word semantic coherence”. In this study, we used both word 
semantic similarity and word analogy methods to evaluate the quality of our South 
African news embedding.

4. Dataset preparation and configuration
Data
This study used a text corpus of 1,312,125 news articles, which were provided, upon 
request, by MMA from its news database. The text dataset consisted of news articles 
that were published between 1 January 2018 and 17 March 2021. It should be noted 
that the database was not in the public domain, and access was granted in response 
to our individual request. 

Data preparation
Raw texts are by nature “noisy” and therefore require some text preprocessing before 
they can be used to train machine-learning algorithms such as the Word2Vec model. 
Text preprocessing for this study was done with the help of several open source 



AJIC Issue 30, 2022        7

A word embedding trained on South African news data 

Python software packages, including the natural language toolkit (NLTK) (Loper 
& Bird, 2002), beautifulsoup (Richardson, 2007), and gensim (Řehůřek &, Sojka, 
2011a). The sequence of preprocessing steps included: splitting documents (multi-
sentences) into single sentences (also known as sentence tokenisation); removing 
all words containing single uppercase letters surrounded by lowercase letters in 
order to remove JavaScript; and converting all words to lowercase letters. Further, 
preprocessing included the removal of: html tags; expressions such as “\xad” and 
“displayad”; words that contained substrings (“windowtextcolor”), and punctuation 
and digits. 

We did not remove stopwords, following a growing trend in the machine-learning 
literature. Rahimi and Homayounpour (2022) recommend the retention of stopwords 
when learning word representations for solving sentiment classification problems. 
This is because the removal of stopwords such as “no” and “don’t” can potentially 
change the polarity of words in documents.

Data preparation also included the creation of n-grams (bigrams and trigrams) 
using the Phraser model of the gensim package. Bigrams are pairs of words that 
are repeatedly mentioned together in a given text corpus. For example, during our 
data preparation, words such as Jacob and Zuma were joined to produce a bigram 
Jacob_Zuma because they occurred together more than our determined minimum 
threshold of collocations. Similarly, we joined three words together into a trigram if 
they consecutively and consistently occurred together within the news articles corpus. 
For example, the word combination President Jacob Zuma was joined to produce a 
President_Jacob_Zuma trigram. 

We conclude this section with an example of a “messy” text followed by its “clean” 
version after data preprocesing:

• Before preprocessing: PRESIDENT Jacob Zuma has declared a special official 
funeral for renowned author and poet, Prof. William Keorapetse Kgositsile, 
a renowned veteran activist and a giant of the liberation struggle who died 
on Wednesday. 

• After preprocessing: president jacob zuma has declared a special official funeral 
for renowned author and poet prof william keorapetse kgositsile a renowned 
veteran activist and a giant of the liberation struggle who died on Wednesday.
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Hyperparameter settings
Table 1 shows the hyperparameter names and values used to train the embedding 
(with Python’s gensim package). As mentioned in section 2, the Word2Vec algorithm 
learns word embeddings using one of its two model architectures: Skip-Gram or 
CBOW. In our study, we used Skip-Gram. Also as mentioned above, Word2Vec uses 
two training methods to learn word embeddings: hierarchical softmax (Goodman, 
2001) and negative sampling (Mikolov et al., 2013). We adopted negative sampling, 
and a hyperparameter negative value of 10. The role of the hyperparameter “negative” 
is to specify the number of “noise words” that the model is allowed to draw on during 
model training. 

Table 1: Hyperparameter settings used to train the embedding
Parameter name Value

minimum word count (m) 50

window size 10

architecture Skip-Gram (s1)

training method negative sampling (h0)

negative 10

vector dimension size (d) 250

For two of the hyperparameters—minimum word count and vector dimension—
the hyperparameters seen in Table 1 (50 and 250, respectively)—were only finalised 
through experiments conducted on the initial embedding (see section 5).

5. Implementation, evaluation, and refinement of the word embedding
Implementation of the embedding
The gensim package (Řehůřek & Sojka, 2011b), implementable in the Python 
environment, was used to build and train the Word2Vec algorithm. The popularity 
and convenience of implementing the Word2Vec algorithm with gensim influenced 
our decision to select this implementation framework.

We used Google Colaboratory, an online environment for Python programming, 
to implement the Word2Vec algorithm with gensim. It took approximately eight 
hours to implement the embedding, starting from data preparation until the model 
finished training. Due to the large dataset size, we used a procedure in which data 
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was read in chunks of 10,000 sentences into a buffer holding 100,000 sentences, and 
after each read-in, the buffer was shuffled. This introduced a pseudo-randomness 
in which the first sentence in the corpus had a greater chance of being fed to the 
training procedure early on. 

Performance evaluation measures
We measured the performance of the embedding using both “similarity” and “analogy” 
measures.

Similarity measure
The similarity measure probes the extent to which words are similar or dissimilar 
by measuring the distance between their respective vector representations in an 
embedding. More precisely, this measure typically uses the cosine similarity, or the 
size of the angle between two vectors belonging to any two given words, as a proxy 
for measuring the degree to which the two words are related. Given any two word 
vectors vec(word1) and vec(word2), where vec(wordi) is the vector corresponding to a 
given word, the similarity value is computed as follows:

(1)

Note that we normalised word vectors in the embedding, so that their norm is always 
1. Equation (1) implies that highly similar words (or synonyms) have similarity 
values that are closer to 1, while highly dissimilar words have similarity values closer 
to –1. We used the WordSim353 dataset to evaluate our embedding. WordSim is a 
test dataset for measuring word similarity or relatedness (Agirre et al., 2009). The 
WordSim dataset consists of word pairs such as soccer and football, baseball and 
netball, etc. and their similarity scores. (The WordSim353 dataset is freely available 
for public use.2)

Analogy measure
Analogy measurement tasks ask the embedding to predict the fourth word in 
a relational equation of the form “ANC is to Jacob_Zuma as EFF is to Julius_
Malema”. In a relational task, the model is given the first three words and asked to 
predict the fourth word that will solve the relational equation, i.e., Jacob_Zuma – 
ANC = [predict word] – EFF. A prediction is computed by retrieving the 10 nearest 
neighbours to the vector vec( Jacob_Zuma) − vec(ANC) + vec(EFF). If the correct 
word is found to be among these 10 nearest neighbours, the model is given a score 
of 1 (correct prediction). Otherwise, a score of 0 (incorrect prediction) is given. This 

2  The WordSim353 dataset is at http://alfonseca.org/pubs/ws353simrel.tar.gz
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method is commonly known as the accuracy@k method (Xu, 2018). It is called the 
accuracy@k method because the value of k is arbitrarily chosen and it measures the 
extent to which the model is penalised for producing k nearest neighbours. 

The precision score for a set of analogies is then computed as follows:

(2)

For analogy measurement, we used the GloVe word analogy dataset. Publicly 
accessible via the GloVe website,3 the dataset is made up of 14 analogy tasks, which 
are named as follows: 

• capital-common-countries; 
• capital-world; 
• city-in-state; 
• currency; 
• family; 
• adjective-to-adverb; 
• opposite; 
• comparative; 
• superlative; 
• present participle; 
• nationality adjective; 
• past tense; 
• plural; and 
• plural verbs. 

Word analogies are relational equations of the form word1:word2::word3:word4 
(translated verbally as word1 is to word2 as word3 is to word4). To restate, our goal 
in testing the South African news embedding’s ability to solve analogy tasks was to 
measure how well the embedding predicted the fourth word (“word4”). 
 
In reporting the experiment results in this article, we use the following notations: 

• “p” stands for %;
• “d” stands for dimension size; and
• “m” stands for “minimum word count”. 

3  https://github.com/stanfordnlp/GloVe/tree/master/eval/question-data
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For example, the notation “100p 100d 50m” denotes our word embedding trained 
on 100% (p) of the training dataset, with a word vector dimension size (d) of 100, 
and with words (tokens) with a minimum word count (m) of 50 (meaning that 
words not appearing 50 or more times  were ignored during training). The reason 
for adopting 50 as the minimum word count is given below in the “determining a 
suitable minimum word count” sub-section.

Determining whether to train with sentences or documents
We conducted an experiment in order to determine whether the optimal training 
approach for our embedding was: (1) training based on data split into documents of 
news articles; or (2) training based on data split into sentences. As seen in Figure 1, 
we found that the precision of the word embedding trained on sentences was always 
the same or better than that of the word embedding trained on documents, with the 
sentence-contexts outperforming document-contexts in 11 (almost 80%) of the 14 
analogy tasks. This finding was consistent with emerging best practices in the NLP 
literature (Gu et al., 2018).

Figure 1: Training with sentences versus documents (evaluated via 14 analogy tasks)

Ref inement of hyperparameters through testing
As mentioned above, two of the hyperparameters could only be finalised once the 
embedding had been generated—allowing testing of the influence of different 
parameter settings on the embedding. We conducted experiments that measured the 
embedding’s precision in conducting 14 analogy tasks when the value of a certain 
hyperparameter was varied.
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Determining a suitable vector dimension size
We conducted a second experiment in order to determine the optimal dimension 
size, i.e., the size or dimensionality of the word vectors in the trained embedding. 
Identifying optimal dimensionality is important since it influences the space available 
to “encode meaning”: a low dimension may result in under-fitting, a situation where 
there is not enough space to reflect the subtle levels of meaning, while a dimension 
that is too large may lead to model over-fitting, where all words are positioned 
far from each other and relational meaning is lost (see also Yin & Shen, 2018). 
To understand the impact of the vector dimension, we trained and compared four 
versions of our word embedding, with each version having the same training settings 
except for the dimension size, which was varied for the values 100, 200, 300 and 400.

Figure 2: Training with 4 different vector dimension sizes (evaluated via 14 analogy tasks)

Figure 2 shows that while the precision consistently increased with higher dimensions, 
there was only a small improvement between 200 and 300, as well as a negligible 
improvement between 300 and 400. At the same time, due to the large vocabulary, 
100 additional dimensions translated to 1.24 x 107 additional values (for a vocabulary 
of 124,000 words) that would have to be stored to describe the word vectors. We 
therefore decided to fix the vector dimension size at 250 in order to balance the 
physical size of the model with performance needs. This decision was justified on the 
grounds that we were reliant on the free version of Google’s Colaboratory (Colab) 
platform to train and evaluate our models, and thus fixing the vector dimension size 
at 250 was necessary in order to reduce computational and time resources required 
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to train and evaluate embeddings. (The free version of Colab is limited in that one 
cannot leave the code running without being monitored, i.e., the code has to be 
constantly monitored to avoid premature termination of the task being executed.)

Determining a suitable minimum word count
We conducted a third experiment in order to determine the most suitable word count 
for the embedding. The minimum word count sets the minimum word frequency for 
pruning the vocabulary available for model training. All words with minimum word 
count below a given specified threshold are ignored during training (Řehůřek & 
Sojka, 2011b). A high minimum word count leads to embeddings with a smaller but 
more robust vocabulary. However, such small models may not contain the words that 
researchers require in applications, and we found that even words used in the analogy 
test set (such as “policewoman”) quickly became ignored if the minimum word count 
was too high.

Figure 3 shows the precision results of the four word embeddings, which were trained 
using the same hyperparameter settings except for the minimum word counts (which 
were set to 5, 10, 50 and 100, respectively). 

Figure 3: Training with 4 different minimum word counts (evaluated via 14 analogy tasks)
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It is evident in Figure 3 that the quality of the word embedding increased with 
increasing minimum word count. Nonetheless, since we intended to make the 
embedding publicly available for research, we decided to fix the minimum word 
count threshold at 50, which ensured that most of the words found in the vocabulary 
were associated with word vectors after building of the Word2Vec embedding. While 
the results show that a value of 100 was the optimal value for the minimum word 
count hyperparameter setting, the usefulness of our word embedding would be 
highly compromised if 100 were used—as only words whose frequency of occurrence 
reached 100 or more would appear in the vocabulary.

6. Maximising robustness: Determining variances and testing ensembles of 
embeddings
When developing and deploying a word embedding, one must seek to maximise 
its robustness. For example, one does not want the distance between word vectors 
in an embedding to significantly depend on random initialisation of weights in the 
training algorithm, or to depend on random permutations of the data when it is 
used during training of the algorithm. Likewise, the results should be robust against 
bootstrapping, or subsampling of the data (as long as the overall size or quality of 
the dataset—and therefore the information available—does not change). If large 
variances are produced by small changes in the training set, then this is evidence that 
the embedding does not generalise well (Antoniak & Mimno, 2018). 

In order to maximise robustness of our embedding, we conducted tests, as described 
below, in order to:

• determine the variances produced by data shuffling, random initialisation 
and bootstrapping; and

• determine the degree to which generation of ensembles of embeddings 
would reduce variance and improve robustness.

Determining the variances
To understand how training stochasticity (data shuffling and random initialisation) 
and subsampling (bootstrapping) influenced the distances between word vectors in 
our embedding, we generated three ensemble word embeddings:

• 10p subsampled: This first ensemble consisted of 10 word embeddings 
trained on 10% of the sentences in the data corpus that were randomly 
subsampled for each word embedding. The resulting word embeddings 
therefore had different vocabularies.



AJIC Issue 30, 2022        15

A word embedding trained on South African news data 

• 10p shuffled: This second ensemble consisted of 10 word embeddings trained 
on the same subset of 10% randomly sampled sentences and the resulting 
embeddings therefore shared the same vocabulary. (The differences between 
the embeddings stemmed only from the differences in training procedures.)

• 100p shuffled: This third ensemble consisted of five word embeddings (a 
smaller number of embeddings, due to their size) that were trained on the 
entire training dataset. (Again, the difference in the embeddings stemmed 
only from the differences in training procedures.) 

In addition to showing the variance of word similarities between different instances of 
the embedding, these three ensembles allowed us to study the effect of bootstrapping 
(when comparing 10p_subsampled vs 10p_shuffled), as well as the effect of the size 
of the training dataset (when comparing 10p_shuffled vs 100p_shuffled). It should 
be noted that the vocabulary of the smaller datasets was necessarily smaller as well, 
and we ignored analogies if one of the words (or the solution) was not part of the 
word embeddings’ vocabulary. We calculated the 360 similarities of word pairs in 
the WordSim353 dataset (Agirre et al., 2009)4 for all word embeddings in a set, and 
plotted the mean and variance of the results, as shown in Figures 4(a), 4(b), and 4(c). 

Figure 4(a): Variance of embeddings based on a 10% subsampled set of 10 embeddings

4  http://alfonseca.org/pubs/ws353simrel.tar.gz 
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Figure 4(b): Variance of embeddings based on a set of 10 embeddings trained on shuffled 
10% of the total training dataset

Figure 4(c): Variance of embeddings based on a set of five embeddings trained on shuffled 
full training dataset

The results confirmed our expectation that a variance in the training itself, as 
introduced by subsampling, would lead to an even larger variance of the word 
similarities. Furthermore, the results showed that a larger dataset led to a much 
lower variance. In the 100p model, for example, the variance was in fact low enough 
to reliably distinguish distances between words on an order of 0 to 2x10−4. These 
results suggested a strategy for how to make our word embedding more robust: build 
an ensemble model that united the prediction of several models (which is in fact 
standard practice to decrease variance (Antoniak & Mimno, 2018)). 
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Determining eff icacy of ensemble embeddings
We investigated the efficacy of ensemble embeddings using the aforementioned 
14 analogy benchmarks. For these benchmarks, averaging over models was not an 
option since the result of every analogy was a correct/incorrect answer. We therefore 
needed more elaborate rules for turning the decision of a single embedding into 
the ensemble decision. The rule we developed to combine analogy decisions into an 
ensemble was a rule that (1) computed the list of 10 closest neighbours to the vector 
in the analogy equation (such as vec(ANC) − vec(EFF) + vec(Zuma)) for every word 
embedding, and then (2) concatenated (joined together) the lists. We then computed 
the 10 words that appeared in the largest number of ensembles, and checked whether 
the desired result was in the final list (positive outcome) or not in the list (negative 
outcome).
 
Figure 5: Precision values for ensemble word embeddings evaluated on analogy tasks

Figure 5 shows the average performance of ensembles of varying sizes on the analogy 
tasks, using the three different strategies mentioned above to create the training sets 
for each member of the ensemble. The benchmarks were calculated by randomly 
sampling, 10 times, ensemble members from the set of trained models. For example, 
the 2X ensemble word embedding in Figure 5 represents an ensemble consisting 
of two members, created by randomly sampling two models from a set of 10 word 
embeddings. This ensured that the results did not depend on the model used to make 
up the ensemble. This evaluation generated four important observations:

• Generation of ensemble embeddings improved the precision of the model’s 
results.
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• The ensembles of embeddings performed better as they increased in size.
• This trend (improvement with increased ensemble size) was particularly 

strong for the 10p models (ensembles trained with smaller datasets), and not 
so prevalent for the ensembles trained on the full dataset. 

• Significant improvements (over single models) occurred even in ensembles 
composed of three or more embeddings, an important finding given that 
smaller ensembles are easier to store and use.

As a result, we are able to recommend the use of ensembles of three or more 
embeddings when datasets are relatively small, which is common in geographic 
areas, such as on the African continent, that are under-represented in terms of data 
representation.

7. Performance comparison between South African Word2Vec embedding and a 
GloVe embedding 
Figure 6 shows a comparison between our South African news Word2Vec embedding 
and the GloVe model in performing the 14 analogy tasks. We trained a single 
embedding (that is, the “100p_250d_50m” embedding) and a five-member ensemble 
of the South African news word embedding for comparison, and, consistent with the 
findings above, the ensemble showed a better performance. 

Figure 6: Results from comparison between Word2Vec and GloVe embeddings
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Overall, as seen in Figure 6, our Word2Vec word embedding was competitive 
on most tasks when compared to the GloVe embedding. And, interestingly, our 
Word2Vec ensemble of embeddings outperformed the GloVe model on four analogy 
tasks—remarkable given that the latter has the advantage of a significantly larger 
training dataset size and a global training set domain. This finding was surprising 
for two reasons. First, the GloVe algorithm is an international benchmark that 
has been acknowledged as one of the most stable models for production of word 
embeddings (Wendlandt et al., 2018). Second, the GloVe embedding we compared 
ours with was trained on a much larger corpus than our local word embedding. 
The GloVe embedding had approximately 300,000 unique word tokens in each 
embedding—300,000 for the GloVe embedding versus 124,000 for our embedding. 
The importance of vocabulary size in ensuring high quality word embeddings is 
well-documented (Rodman, 2020). The results are therefore encouraging evidence of 
the robustness and performance of our South African news word embedding.

We observed no differences of statistical significance, between the performance of 
our Word2Vec word embedding model and the performance of the GloVe model, on 
the largely universal grammar tasks among the 14 analogy tasks (such as the present 
participle and superlative tasks), or on semantic analogy tasks (such as capital-
common-countries task). (Because we were not able to check the word frequencies 
for the corpus used to train the GloVe model, we suspect that the equivalence in 
performance for the two models showed that the words used in the evaluation tasks 
were sufficiently represented in the corpuses used to train both the GloVe embedding 
and our local Word2Vec embedding.)

However, we found that for the capital-world analogy task, the South African news 
Word2Vec embedding did not perform well in analogy examples that involved 
tokens such as Brussels and Belgium. The results suggested that the news embedding 
appeared to have known Brussels more in the context of the European Union (EU). 
This inference followed from noting that the EU was predicted with high likelihood 
amongst a list of top 10 nearest neighbours as predicted by the news embedding to 
solve given relational tasks. Also, the South African news embedding failed to solve 
the relational task which involved Madrid and Spain. We observed that the South 
African news embedding appeared to know Madrid in the context of Real Madrid, 
the Spanish football team. This observation points to the need to build situation-
specific word embeddings whose learned word vectors fully capture and represent 
the original views and standpoints expressed by news content creators at the time of 
writing. 

It should also be noted that, during the comparison, we found that there was a subtlety 
that may have influenced the results to a small extent—a subtlety introduced by our 
rule that excluded analogies in a task if the embedding (or all of the embeddings 
in an ensemble) did not contain a word in the analogy. For example, if the local 
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embedding did not contain the word “nursultan” (representing “Nur-Sultan”), the 
capital-common-countries analogy of guessing Kazakhstan’s capital city did not have 
to be solved, while the global embedding had to solve it, even if the global embedding 
contained very few examples mentioning the city. Accordingly, we resolved this issue 
by evaluating the models using only those relational tasks with words that were 
common to both models.

8. Validation of the embedding against local benchmarks
In addition to testing our South African embedding against the international 
benchmarks provided by the GloVe algorithm, it was also necessary to validate 
the embedding against local benchmarks that represented local contexts. For this 
purpose, we created two local analogy tasks. The first local analogy task involved 
matching politicians to political parties—for example, EFF is to Julius_Malema as 
ANC is to Jacob_Zuma. This politician-to-political party relational task consisted 
of 398 analogy tasks, of which our local Word2Vec South African news embedding 
model successfully solved 212 (53%)—according to the performance evaluation 
metrics described above. The second local analogy task involved matching cities to 
provinces—for example, KZN is to Durban as Western_Cape is to Cape_Town. 
This city-to-province analogy consisted of 586 relational tasks, of which our local 
Word2Vec model successfully solved 582 (a model performance of 99%). Due to the 
fluidity of political affiliations, we were not surprised that the politician-to-political 
party task proved to be more difficult than the city-to-province task. 

However, we observed that, in certain circumstances, our South African news 
embedding failed to solve certain analogy tasks simply because text preprocessing 
did not include stemming, a practice that reduces all related tokens to their root 
word. As a result, the embedding was penalised for predicting DAS (which stands 
for DA’s) instead of DA. When we implemented stemming, that increased the 
predictive power of the word embedding for the task of matching politicians with 
their respective political parties (predictive accuracy increased from 53% to 59%). 
However, stemming proved to be counterproductive for the second task: matching 
provinces with their cities (predictive power dropped from 99% to 69%).

The negative effects from stemming arose from the fact that a word stemmer is a 
model that is trained to reduce English words to original root words, and therefore 
any token that is given to the model will be reduced to the root word that is known 
to the model. The work of Al-Shammari and Lin (2008) supports our finding 
regarding the drop in model performance, for certain analogy tasks, following 
word stemmatisation. Consequently, we recommend development of a full range of 
localised NLP tools, including word stemmers and lemmatisers, that are optimised to 
handle local contexts, so as to facilitate training of word embeddings whose learned 
word vectors truly resemble local contexts. 
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9. Conclusions
In this article, we have presented a word embedding that was trained, using the 
Word2Vec algorithm, on South African news article data collated and stored by 
MMA. The full corpus consisted of news articles that were published between 1 
January 2018 and 17 March 2021. We have presented results from testing of the impact 
of varied hyperparameters, changes in the training set, and ensemble-building, on the 
performance of the embedding. We have also presented results from comparison 
of the performance of our local Word2Vec embedding against the performance of 
the GloVe algorithm—results which showed competitive performance, and even 
superior performance in some instances, by our local South African embedding. 
Furthermore, we have provided results from two tests used to check the performance 
of our embedding against South African benchmarks.

We hope that the embedding and benchmarks we have presented promote further 
research in South African social sciences, and will help researchers who lack the 
resources required to train vast machine learning models for NLP. In particular, the 
word embedding contributed by this study presents researchers with an opportunity 
to use the word vectors as text encoders. For instance, researchers can use our word 
embedding in ways similar to how pre-trained word vectors produced by algorithms 
such as Word2Vec, GloVe, BERT and fastText are used to vectorise texts without the 
need to train word embeddings from scratch. Consequently, we hope and anticipate 
that our word embedding will play a significant role as the “embedding layer” in 
similar South African text analysis studies. We believe that contributions such as 
these are crucial to unlocking the potential of big data analysis in localised African 
contexts.
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